NOTATION

The following notation is frequently used without explanation in the text.

$$\begin{split} \bar{A} &= \text{ closure of a subset A (usually in a Euclidean space)} \\ B &\sim A &= \{x \in B : x \notin A\} \\ \chi_A &= \text{ characteristic function of A} \\ \frac{1}{B_A} &= \text{ identity map } A \neq A \\ L^n &= \text{ Lebesgue measure in } \mathbb{R}^n \\ B_\rho(x) &= \text{ open}^{(*)} \text{ ball with centre } x \text{ radius } \rho \\ \bar{B}_\rho(x) &= \text{ closed ball }; \end{split}$$

(If we wish to emphasize that these balls are in the balls in \mathbb{R}^{P} , we write $B_{\rho}^{P}(x)$, $\overline{B}_{\rho}^{P}(x)$.) $\omega_{n} = L^{n}(B_{1}(0))$ $\eta_{x,\lambda} : \mathbb{R}^{P} \neq \mathbb{R}^{P}$

(for $\lambda > 0$, $x \in \mathbb{R}^{P}$) is defined by $\eta_{x,\lambda}(y) = \lambda^{-1}(y-x)$; thus $\eta_{x,1}$ is translation $y \mapsto y-x$, and $\eta_{0,\lambda}$ is homothety $y \mapsto \lambda^{-1}y$)

 $W \subset U$ (U an open subset of \mathbb{R}^P)

shall always mean that W is open and \bar{W} is a compact subset of U .

 $C^k\left(U,V\right)$ (U,V open subsets of finite dimensional vector spaces) denotes the space of C^k maps from U into V .

$$C_{c}^{k}(U,V) = \{ \phi \in C^{k}(U,V) : \phi \text{ has compact support} \}$$

(*) In Chapter 1 $B_{0}(x)$ denotes the *closed* ball.

ERRATA	Please send further corrections/comments to: Leon Simon Centre for Mathematical Analysis Australian National University, GPO Box 4,
	Canberra ACT 2601 AUSTRALIA.
p17 line 13	H is a <i>finite dimensional</i> Hilbert space
p21 line 9	[RH] should be [Roy]
p33 line 11	$\boldsymbol{\eta}_k$ converges uniformly to zero on bounded subsets of A .
p51 line -1	"if 9.3 holds" should be "if $\int_{M} \operatorname{div}_{M} X = 0$ "
p65 line -1	$\delta/2$ should be $\delta/4$.
p70 line -9	"ordered by inclusion" should be "ordered by the relation
	$R \leq S \Leftrightarrow R \subset S$ and $H^n(S \sim R) > 0$ ".
p87 Note that	the Remark 17.9(1) refers to the case $\ \underline{H} \ \in \ L^p_{\ loc}\left(\mu\right)$, $p>n$.
p96 line -5	Chapter 10 should be Chapter 8
p127 line 8	$\delta^{3/4}$ in place of $\delta^{1/2}$
line 10	$\delta^{1/2}$ in place of $\delta^{1/4}$
line -5	$\delta^{1/4}$ in place of $\delta^{1/8}$.
p130 line -7	25.1 should be $dx^{j}(f) = e_{j} \cdot f$, $f \in C^{\infty}(U; \mathbb{R}^{P})$.
	σ^{-n} should be σ^{-P} .
p143 In Remark	26.28 we must justify that θ_{σ_k} is bounded in $L^1(B)$ for
	B CC U . Indeed by 6.4 and $\underline{\mathbb{M}}_{B}(\partial T) < \infty$, there are
constants	c_k such that $\theta_{\sigma_k} - c_k$ is bounded in $L^1(B)$, and hence
] has bounded mass in B. But $T \rightarrow T$ and hence
{c _k } is	bounded.
p149 line 9	P = n+1 should be $P = n$.
	$(\partial T)_{0} = (\partial T) L L_{k-1}(a; \rho)$.
	p K-1 Q should be (∂Q) in both terms on right side.
	(*) should be $T = \partial \llbracket E \rrbracket$
	line 2 unless k = 2. But with $L = L_{k-2}(a_F)$, dist(y,L)/dist(x, $p_F^{-1}(L)$)
= y-a / x	-a by similarity, and $p_{F}^{-1}(L) \subset L_{k-1}(a)$, so $ \overline{D}\widetilde{\psi}(y) $
	ist(x,L _{k-1} (a)) as required. 2, replace T by T _j , where {j'} < {j} and ρ >0 are chosen so that
(i) $\eta_{\mathbf{x}, \lambda_{j} \# \mathbf{T}_{j}} \stackrel{\sim}{\rightarrow} \theta(\mathbf{x}) [\![\mathbf{T}_{\mathbf{x}}^{M}]\!]$ (O.K. by (10) and the fact that $\mathbf{T}_{j} \stackrel{\sim}{\rightarrow} \mathbf{T}$), and so	
J	lines -4, -5 remain valid with T_{i} , in place of T (O.K. by

that (ii) lines -4, -5 remain value with T_j , in p 28.5(1) and a selection argument as in 10.7(2)).