NOTATION

The following notation is frequently used without explanation in the text.

```
A = closure of a subset A (usually in a Euclidean space)
B~A}={,x\inB:x\not\inA
XA}=\mathrm{ characteristic function of A
# =A = identity map A}->\textrm{A
L
B
\mp@subsup{\overline{B}}{\rho}{}(x)= closed ball ;
```

(If we wish to emphasize that these balls are in the balls in \mathbb{R}^{P}, we write $\left.B_{\rho}^{P}(x), \quad \bar{B}_{\rho}^{P}(x).\right)$

$$
\begin{aligned}
& \omega_{\mathrm{n}}=L^{\mathrm{n}}\left(\mathrm{~B}_{1}(0)\right) \\
& \eta_{\mathrm{x}, \lambda}: \mathbb{R}^{\mathrm{P}} \rightarrow \mathbb{R}^{\mathrm{P}}
\end{aligned}
$$

(for $\lambda>0, x \in \mathbb{R}^{P}$) is defined by $\eta_{x, \lambda}(y)=\lambda^{-1}(y-x)$;
thus $\eta_{x, I}$ is translation $y \mapsto y-x$, and $\eta_{0, \lambda}$ is homothety $y \mapsto \lambda^{-1} y$)
$W \subset C U$ (U an open subset of \mathbb{R}^{P})
shall always mean that W is open and \bar{W} is a compact subset of U. $C^{k}(U, V)$ (U, V open subsets of finite dimensional vector spaces) denotes the space of C^{k} maps from U into V.

$$
C_{C}^{k}(U, V)=\left\{\phi \in C^{k}(U, V): \phi \text { has compact support }\right\}
$$

(*) In Chapter $1 B_{\rho}(x)$ denotes the closed ball.

ERRATA

```
please send further corrections/comments to:
    Leon Simon
    Centre for Mathematical Analysis
    Australian National University, GPO Box 4,
    Canberra ACT 2601 AUSTRALIA.
```

p17	line 13	H is a finite dimensional Hilbert space
p21	line 9	[RH] should be [Roy]
p33	line 11	η_{k} converges uniformly to zero on bounded subsets of A
p51	line -1	"if 9.3 holds" should be "if $\int_{M} \operatorname{div}_{M} X=0$ "
p65	line -1	$\delta / 2$ should be $\delta / 4$.
p70	line -9	"ordered by inclusion" should be "ordered by the relation
		$\mathrm{R}<\mathrm{S}$ ¢ $\mathrm{R} \subset \mathrm{S}$ and $H^{\mathrm{n}}(\mathrm{S} \mathrm{\sim R})>0 \prime$.

p87 Note that the Remark $17.9(1)$ refers to the case $\underset{=}{H} \in L_{l o c}^{p}(\mu), p>n$.
p96 line -5 Chapter 10 should be Chapter 8
p127 line $8 \quad \delta^{3 / 4}$ in place of $\delta^{1 / 2}$
line $10 \quad \delta^{1 / 2}$ in place of $\delta^{1 / 4}$
line $-5 \quad \delta^{1 / 4}$ in place of $\delta^{1 / 8}$.
p130 line-7 25.1 should be $d x^{j}(f)=e_{j} \cdot f, f \in C^{\infty}\left(U ; \mathbb{R}^{P}\right)$.
pl40 line -8 $\quad \sigma^{-n}$ should be σ^{-P}.
p143 In Remark 26.28 we must justify that $\theta_{\sigma_{k}}$ is bounded in L^{1} (B) for
each ball $B \subset C U$. Indeed by 6.4 and ${ }_{=}^{M}(\partial T)<\infty$, there are
constants c_{k} such that $\theta_{\sigma_{k}}-c_{k}$ is bounded in $L^{1}(B)$, and hence
$T_{\sigma_{k}}-c_{k}\|B\|$ has bounded mass in B. But $T_{\sigma_{k}} \rightarrow T$ and hence
$\left\{c_{k}\right\}$ is bounded.
p149 line $9 \quad P=n+1$ should be $P=n$.
p171 line $-6 \quad(\partial \mathrm{~T})_{\mathrm{p}}=(\partial \mathrm{T}) \mathrm{L}_{\mathrm{k}-1}(\mathrm{a} ; \rho)$.
p176 In (31), Q should be ($2 Q$) in both terms on right side.
p215 line 13 (*) should be $T=\partial \llbracket E \rrbracket$
p169 line $1 \nRightarrow$ line 2 unless $k=2$. But with $L=L_{k-2}\left(a_{F}\right)$, dist $(y, L) / \operatorname{dist}\left(x, p_{F}^{-1}(L)\right)$
$=|y-a| /|x-a|$ by similarity, and $p_{F}^{-1}(L) \subset L_{k-1}(a)$, so $|\bar{D} \tilde{\psi}(y)|$
$\leqq c|x-a| / \operatorname{dist}\left(x, I_{k-1}(a)\right)$ as required.
p191 In line -2 , replace T by T_{j}, where $\left\{j^{\prime}\right\} \subset\{j\}$ and $\rho>0$ are chosen so that (i) $\eta_{x,} \lambda_{j} \#_{j} T^{\prime} \rightarrow \theta(x)\left\|T_{x} M\right\|$ (O.K. by (10) and the fact that $T_{j} \rightarrow T$), and so that (ii) lines $-4,-5$ remain valid with T_{j}, in place of T (O.K. by 28.5(1) and a selection argument as in 10.7(2)).

