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As promised at the end of the last section, we introduce a mode of 

approximation which includes both the norm approximation and the 

collectively compact approximation, and which has nice implications for 

spectral approximation. At the end of this section we also show that 

the conditions needed for the convergence of various iteration schemes 

given in Section H are fulfilled under this mode of approximation. A 

variant of this mode ha.s been called 'strong approximation' in the 

literature {cf. [C'L], [LN]), but we have chosen to give it anothe1· more 

appropriate name. 

A sequence 

approximation of T € BL(X) if T 
n 

T, and for every z € p(T) , 

(14.1) I!(T-T )'R(z)(T-T )II _,, 0 . 
n n 

We denote this fact by T 
Il. 

T. Showing fha t a sequence is a 

resolvent operator approximation of T is, in general, a formidable 

task. However, there are two well ID>owa modes of approximation which 

imply the re:solv.rent operator approximation. It is obvious that 

implies 

A = TR(z) , 

Proposition 13.3 that 

T ~T 
n 

Also, :it follows by letting 

for z € p{T) and B = T B 
n 

T cc;. T 
n 

implies T . 

T In 
n 

Let T 
n 

T . By the uniform boundedness principle ([L], 9.1 

and 9.3), 

liT II ~ sup{ liT I! , n n 

For a closed subset E of p(T} , we have 

{14.2) 

max IIR(z) II < oo , 

zEE 

v(E} -

v (E) =: max II(T-T )R(z)ll < ro 
n zEE. n 

SEp vn(E} ( oo , 
n=1,2, ... >-
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since the function z 1+ R(z) is continuous on E and IIR(z)ll -+ 0 as 

lzl -+ 00 by (5.9) . 

Considering the analytic functions fn(z) = (T-Tn)R(z)(T-Tn) on 

p(T) , it follows by Problem 4.3 that the condition (14.1) holds for 

every z € p(T) if and only if every connected component of p(T) 

contains a set {zk} with a limit point in that component such that the 

condition (14.1) holds for z = ~, k = 1,2, ... ; in that case, the 

convergence is uniform for z in any closed subset of a connected 

component of p(T) . 

The simplest situation arises when p(T) is itself connected. 

This is certainly the case if a(T) is a countable set, e.g., when T 

is a compact operator. In this situation, it can be shown that the 

condition (14.1) holds for every z € p(T) if and only if for each 

fixed k = 0,1,2, ... 

II(T-T )Tk(T-T )II -+ 0 as n -+ 00 • n n 

See Problem 14.1. If T ~T and T is compact, then this condition 
n 

is equivalent to II(T-T )T II -+ 0 as n -+ oo 
n n 

We assume throughout this section that T ~T. 
n 

PROPOSITION 14.1 Let E be a closed subset of p(T) Then 

(T-T )R(z) ~ 0 , uniformly for z € E , and n 

(14.3) 

(14.4) 

max 
zEE 

o (E) 
n 

II(T-T )R(z)(T-T )II -+ 0 , 
n n 

=max 
zEE 

II[(T-T )R(z)]2 11 -+ 0 • 
n 

Proof We assume without loss of generality that the set E is compact. 

Let E. ) 0 ' and find in E such that for every z € E 

there is some with lz-z .I < c. 
J 

For z € p(T) , the first 

resolvent identity (5.5) shows that 
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(T-Tn)R(z) = (T-T )[R(z)-R(z.)] + (T-T )R(z.) 
n J n J 

= (z-zj)(T-Tn)R(zj)R(z) + (T-Tn)R(zj) 

Let x € X . Since Tn ~ T , there exists n0 such that for 

all n ~ n0 and j = 1, ... ,k , we have II(T-Tn)R(zj)xll < E. • Then 

II(T-T )R(z)xll ~ E. [v(E) maxiiR(z}ll + 1) 
n zEE 

Hence (T-T )R(z)x ~ 0 , uniformly for z € E . For z € E , we have 
n 

{T-T )R{z){T-T) = (z-z.)(T-T )R(z)R{z.)(T-T) + {T-T )R(z.){T-T ) . n n J n J n n J n 
Since for j = 1, ... ,k, II{T-T )R{zj)(T-T )II ~ 0 by assumption, we see 

n n 

that {14.3) holds. Finally, since 

o (E) ~ max II{T-T )R(z){T-T )II max IIR{z)ll, 
n zEE .n n zEE 

we see that on(E) ~ 0 as n .~ oo • // 

For a cLosed subset E of p(T) , Let n0(E) denote the smaLLest 

positive integer such that for aLL n ~ n0(E) 

Such an integer exists by Proposition 14.1. 

we have o {E) < 1 . 
n 

<DROLLARY 14.2 Let 

we have E C p(T ) 
n 

E c p(T) be closed. Then for all n ~ n0(E) , 

if we let R {z) = {T -zl)-1 for z € E , then 
n n 

(14.5) 

so that 

{14.6) 

(14. 7) 

max 
zEE 

()() 

R {z) = R{z) I [{T-T )R{z)]k , 
n k::O n 

IIR {z)ll n 

max IIR{z)ll [1 + v (E)] . n < zEE - . 
1 - o {E) 

n 

M(E) = sup{IIRn{z)ll : z € E . n ~ n0{E)} < 00 • 

max IIR (z)x - R{z)xll ~ 0 for every x € X . 
zEE n 
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(T-T )R(z)) ~ I![(T-T )R(z) 1/2 < 1 max max 
zEE n zEE n 

Let z E E A = T - zi and B = T - zi By Theorem 9.1, B is 
n 

invertible, i.e., z € p(T ) . Thus, E C p(T ) . Also, (9.4) shows 
n n 

that R (z) is given 
n {14.5), and 

II S: 
II III + (T-T )R(z)ll 

n 

(9.5). Taking the maximum over z E E , we obtain (14.6). 

(14.2) and (14.4), max IIR (z)ll , n 2 n0 (E) 
zEE n 

remains bounded. 

Finally' let X E X . Then for z € E and n L no(E) ' 

R (z)x - R(z}x = R (z)(T-T )R(z)x n n n 

by the second resolvent identity (9. Hence 

IIRn(z)x - R(z)xil S: M(E) rmax ll(T-Tn)R(z}xll] 
t;EE 

But max li(T-Tn)R(z)xll ->· 0 by Proposition 14.1. Hence (14. 
zEE 

follows. // 

We now prove the upper semicontinuity of the spectrum with respect 

to the resolvent operator approximation. 

THEO~~ 14.3 Let T ~ T . Let G be an open set containing 
n 

a(T) Then G also contains a(T ) for all large n 
n 

If A € a(T ) and A _,. A , then /-, € a(T) . 
n n n 

Proof The set E = {z E ([; : z €£ G , lz I S a} , where 

a = sup{ liT II : n == 1, 2, . 0 0 } 

n 
is a compact subset of p(T) . Hence by 

Corollary 14.2, we see that E C for all n ~ n0 {E) ; but if 
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z E a(T ) , 
n 

then iz I < r (T ) ~ - a n. 
::::; a . This shows thBt a(T ) C G 

n 

Let E a(T } and X -> X . Assume X E p{T} 
n n 

and let 

d = dist{X,a(T)) . Then the set G = {z E ~ : dist(z ) < d/2} is 

open and contains a(T) . Hence a(T ) C G for all large n , 
n 

so that 

dist(X ,a(T)) < d/2 . Now, 
n 

d dist(X,a(T)) ~ + 

< IX-X I + d/2 . 
n 

) 

This shows that IX-X I ) d/2 for all large n , and contradicts 
n 

Thus, X € a(T) . II 

Before we proceed to prove the lower semicontinuity of the spectrum 

at the discrete spectral values, we prove a useful preliminary result. 

lJ:liill!IA 14.4 Let f be a simple closed rectifiable positively oriented 

curve in p(T) . Then f c p(T ) 
n 

H P and P 
n 

denote the spectral projections of T and associated W"i th f 

respectively, then 

p ~p 
n 

(14.8) 

If rank P < 00 , then 

(14.9) 

(14.10) 

(14.11) 

p ~p, 
n 

II(T-T )PII ~ 0 , li(T-T )P II _,. 0 , 
n n n 

II(P-P )PII ~ 0 , I!(P-P )P !I ..., 0 
n n n 

Proof Since f is a compact subset of p(T) , it follows by Corollary 

Fix n l n0 (f} . Consider 
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the family of operators 

and the disk 

T ( = T + t(T -T) , t E ~ , 
n n 

ltl < 
max 
z€f 

as introduced in .14). Since < 1 , we see that t E a[' for 

all If ,denotes the E'ip,!BCtral projecti.on a.ssoctate:rl 

with T (t) and r 
n 

then Corollary 9.7 we have for t E af 

rank P raril< P (1) 
n n 

rank P . 

Next, Proposition 14.1, we see that for each x EX , 

R (z)x ~ R(z)x uniformly for z E f . Hence by (4.8), n 

i.e., 

p X 
n 

p _E._, p 
n 

R (z)x dz ~ - ~ I R(z)x dz = Px 
n n r . 

Now, assume that rank P < oo Then by Theorem 13.4, we have 

p ~p 
n 

The relations (14. and {14.10) follow immediately from 

(13.5). 

Since the gap between the subspaces P(X) 

(cf. A)} 

and P (X) 
n 

li(P -P)P II} 
n n 

satisfies 

it follows from (14.10) that, it tends to zero as n ~ 00 • // 

Now we prove a very important theorem. 

THEO~ 14.5 Let "A be a discrete spectral value of T of algebraic 

multiplicity m , geometric multiplicity g , &nd let it be a pole of 
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order £ of R(z) . Let f be a curve in p(T) separating A from 

the rest of a(T) . 

(a} For each n L n0 (r) , a(T ) n Int f consists of a finite 
n 

number of eigenvalues A 1, ... ,/\ k n, n~-
of where k < m . n -

(b) 

(14.12) 

and if 

then 

(14.13) 

n 

If \'l E {A l , ... , A k } n, n, n 
then as n -,) oo , 

is an eigenvector of T corresponding to A of 
n n 

II P II < £(f} max 
~n- -~n - dist(_A.,f) 

zEf 
I!R(z)li II(T-T )<P II ~ 0 , 

n n 

where e(f) is the length of f . Also, a subsequence of (<Pn) 

converges to an eigenvector of T . 

(c) Let m . (resp., gn, J.) n,J 
denote the algebraic (resp., 

norm 1 , 

geometric) multiplicity of A . ' and let I! . 
n,J 

be the order of the 

pole of R (z) 
n 

(14.14) 

n,J 

at A • Then 
n,J 

= m for all 

gn,j ~ g for j = l, ... ,kn and all large n 

... + 12 n,k 
n 

for all large n . 

we have f C p(T ) by Lemma 14.4, and if 
n 

P (resp., P) denotes the spectral projection associated with 
n 

T(resp., T} and f, then 
n 

rank P ran~ P = m . 
n 

Hence by Theorem 7.7, a(T ) n Int f consists of a finite number of 
n 
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mn,l + 

k 
n 

of 

248 

T and we have 
n 

... + mn,k "" rank 
n 

m. 

For E. > 0 • let f denote the circle with centre A. and 
t 

radius e. 

we have by (14.8} 

rank (T,) 
E. 

rruJk Pr 
E 

rank P = m . 

This implies that for al.l n t: n0 (rc.), A . E Int i.e., 
~ n,J 

lA. .-'AI <e. for j = 1, ... ,kn Thus, if A € {A. 1 , ... ,A. k} 
n, .] n n, n, ·n 

then A --?A , 
n 

as n ~ 00 • Next, let be an eigenvector of T 
n 

corresponding to of norm 1 . By the second resolvent identity 

(5.5}, we have 

P - P = ~J [R(z)-R (z)Jdz 
n 2ln r n· 

(T -T)R (z)dz n n 

But R (z)<p 
n n 

<P - P<.p = (P -P)<P = l.~ ~I Ji!&_. dz] (T -T)<p 
n n n n 2111 r An - z n n 

Since -Jo A , we see that for all z € f and for all large n 

Also, 

lA. -z I l d/211 , where d dist(/\,r) . 
n 

II(T-T )<P II = !I(T-T )P <P II ~ li(T-Tn)Pnll n n n n n 

which converges to zero by (14.9). Hence (14.13) follows. 

Since p 

that the set 

is compact and p 
n 

P by Lemna 14.4, we conclude 
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is totally bounded in X . Now, each 'Pn = Pn'Pn is in this set, so 

that there is a subsequence (<P ) which converges to some <p in X 
~ 

Since II(T-T )<P II S II(T-T )P II ~ 0 by (14.9) , we have 
~ nk ~ ~ 

i.e., <p is an eigenvector of T corresponding to 'A . 

We have already shmm that 

assume that 

To show g . S g for all large n and 
Tl,J 

dim Z(T 
n j I) = gn,j l h for all n 

n n 

subset N and jn E {l, ... ,k} . 
n 

Let 'A ='A . 
n n,Jn 

for all 

j = 1, ... ,kn , 

in an infinite 

By the Riesz 

lemwa ([LJ,6.8; cf. Problem 3.1.), there is x k E Z(T -'A I) for 
n~ n n 

k = 1 , ... , h such that !lx kll = 1 and n, 

k-·1 
!lx -n,k I 

i:::l 
c.x .II L :l./2 

1 n, 1 
for k ~ 2, ... ,h and all 

Since for each k L ... ,h a subsequence of (xn,k) converges to 

some xk E Z(T-'AI) we see that IIYK!I = 1 for k = 1, ... ,h and 

k-1 
I!XJc - I cixi II 2: :l./2 for k 

i=l 
2, ... ,h. and all c. E ([; . 

1 

This shows that the set {x1 , ... ,Y11} is linearly independent in 

Z(T-'AI) , i.e., g l h Thus, gn,j ~ g for all large n and 

j = 1, ... ,kn 

Finally, by LemTa 7.8 and Lemma 7.1(ii), we have 

P (X} = z [cT -'A 1) 2n, 1] Ell ... ~ z (cT -/-, k ) i!n,kn] 
n n n, n n,. n 
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Let 

2 2 
T = {T -X I) n. 1 ... (T -X k I) n,kn, n ~ n0 (f) . 

n n n,1 n n, n 

Assume that 2 1 + ... + 2 k = h for all n in an infinite set N. 
n, n, n 

Since T L T , X . -+ X , and P ~ P , we have n n,J n 

T p ~ (T-XI}~ 
nn 

as n runs through N . But clearly, T P = 0 , so that (T-XI}hP = 0 nn 

i.e., R(P) C Z((T-XI)h) Since Z((T-XI)h) C R(P) always, we see by 

(ii) of Lemma 7.1 that 2 ~ h . This shows that for all large n , we 

must have 2 ~ 2n, 1 + ... + 2 k // 
n, n 

REMARKS 14.6 (i) We give simple examples to show that in (14.14), 2 

need not equal 2 1+ ... +2 k and g need not equal 
n, n, n 

gn,1 + ... + g k for all large n. 
n, n 

Let X= a;2 and T = [~ ~] T = [1;n ~] Then liT -Til n 

X = 1 is an eigenvalue of T with m=g = 2 and 2 = 1 

only eigenvalue X = 1 of T 
n n 

Again, if we consider T = [~ ~] 
satisfies m = 2 , n g ::: 1 • n 

and Tn = [1;n n . then 

n 

but 

2 
n 

-+0 

the 

= 2 . 

IITn-TII-+ 0 , X= 1 is an eigenvalue of T with m = 2 , g = 1 and 

2 = 2 , while the eigenvalues X 1 n, 
1 + ~1/n and X 2 = 1 - ~1/n of 

n, 

T satisfy m . = ~ . = 2 . = 1 for j = 1,2 . n n,J 'll,J n,J 

Next, we give an example to show that if Xn -+X and '~'n is a 

corresponding eigenvector of T of norm 1 , 
n 

then the sequence 

itself (even after multiplying <p by a constant of absolute value 1) 
n 

may not converge to an eigenvector of T , although a subsequence of 

('Pn) must converge. let X = a? and T = [~ ~] , Tn = [l;n lin] 

Then liT -Til -+ 0 , X= 1 is an eigenvalue of T with m = g = 2 . 
n 



while 'A 
n, 1 

Let 'A = 1 + 
n 
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1 + 1/n and 'A 2 = 1 - 1/n are eigenvalues of 
n, 

and <pn 

T 
n 

eigenvector of Tn corresponding to 'An of norm 1 , the sequence 

(c <p } where lcni = 1 ' has no limit, but the subsequence ('P2n) nn 

converges to (1/-12' , 1/.J2} while the subsequence ('.02n+1) converges 

to (1/-12 both of which are eigenvectors of T 

corresponding to 'A = 1 . 

(ii) Let )\ be a discrete spectral value of T , separated by a 

curve f from the rest of a(T} as in Theorem 14.5. It is often of 

importance to know which eigenvalues of T are close to 'A 
n 

with a special case here. Let 'A be the dominant 

We deal 

vaLue of 

T . Then there is a circle f C p(T) with centre 0 such that 

a(T) '\ {/1.} c Int l~ and f c Ext f 

"" or I@ w~ ( 
I 

@ 
r 

//// : a{T) '\ {'A} 

Figure 14.1 

let /1. 1, ... ,'A k be the eigenvalues of 
n, n, n 

T which 
n 

lie inside f , the sum of their algebraic multiplicities being equal 

to m . Let, now, n z n0(f) as well. Then 'f c p(T ) 
n 

spectral decomposition theorem (Theorem 6.3) shows that 

and the 



252 

where P n is the spectral projection associated with Tn and f If 

P is the spectral projection associated with T and f , then by 

Corol 9. 7, 

:rank( 

since P + P I 0 Hence 

points of 

} ' 

T outside r 
n 

sup{ LuI 

rank P = m , 

1 .... ,An,k are precisely the spectral 
n 

This shows that for n l max{ 

j 
j ' 

< min{ lA .I 
n,J 

j 

1, ... ,k } 
n 

Thus, if the dominant eigenvalue A of T has algebraic multiplicity 

m, then the m eigenvalues of T with largest moduli (counted 
n 

according to their algebraic multiplicities) converge to A This 

argument caTJ. be modified to treat the case where T has no dominant 

spectral value, but 

a(T) n 

A similar result for discrete spectral points of T with. second largest 

absolute value can also be proved. See [KY], and Problems 14.5, 14.6. 

These results are of great importance in choosing an initial 

approximation A 
n 

of in the i te:ration schemes we l:1ave developed in 

Section 11. 

(iii) Let A be an isolated point of a(T) , and assume that 

F = {z E ~ : 0 < !z-AI ~ e0} c p(T) for some e0 > 0 0 First, if 

A E a(T ) and lA -/\I s eo ' 
then -l>A. This can be seen as 

n n n 

follows. Let (A ) be a subsequence 
nk 

of {A ) such that A ~{J. 
n nk 

Then lp.-A! s co Also, fJ. € a(T) for otherwise there is r > 0 

such that E = {z E ~ : lz-tJ.I S :r} C p(T) and hence for all 
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we have "- -Y f.ln with 
nk 

E c p(T ) 
n 

contradicting 

1\ E a(T ) 
~ ~ 

Hence f.1 A . Thus, every convergent subsequence of 

the bounded sequence converges to A , i.e.' "- -""-· n 
This 

proves the upper semicontinuity of a(T) at "-

Secondly, let 0 < e ~ e0 , and r 
E 

for every n ~ there ex:ists 

I"- -.AI n,e 
.( E. This follows by noting 

rank 

it 1\ + e,e 

·E a(T ) 
t n 

that for n 

;i 0 . 

(Cf. Theorem 14.3.) 

Then 

such that 

2 no(fe) 

We thus have the lower semicontinuity of a(T) at 1\ • (Cf. Theorem 

14.5(b).) 

(iv) We note that Theorem 14.5 (along with its proof} remains valid if 

we only assarne that T LT and 
n 

for every 

z E r in place of our overall assumption T 
n 

ro --l>T 

We now consider a very important special case. 

Let .A be a simple eigenvalue of T , separated by a closed curve 

r from the rest of a(T) . Let * ;!J (resp., ;jJ ) be an eigenvector of T 

(resp., corresponding to A (resp., A) such that 11;/JII = 1 = 

* <;!J,'-/1 > . Then the spectral projection P associated with T and A 

is given by 

Px * <x,')l >~ , x € X . 

Let T ~ T . By Theorem 14.5, f contains only one spectral 
n 

value 'A of T and it is a simp i.e eigenvalue of T fo:r each 
n n n 

n :.< no(f) let 'Pn (resp., be an eigenvector of T (resp., r*) 
n n 

5\ ) * Then corresponding to "- (resp., such that !lcp II = 1 = <<Pn·'~'n) n n n 
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the spectral projection P associated with T and A is given by n n n 

Since P ~ P by Lemma 14.4, we have 
n 

{14.15) 

In fact, if ~n is any eigenvector of T corresponding to A , 
n n 

then there is a constant c such that the entire sequence (c ~ ) {and 
n nn 

not just a subsequence) converges to an eigenvector of T corresponding 

to A . In fact, since A is a simple eigenvalue of T for all 
n n 

* n ~ n0{r) . we have <~n'~n> ¢ 0 , and if we let 

* * en <~.~ > /(~ .~ > n n n 

* then c ~ = c P ~ = <~.~ >~ ~~ nn nnn n n 

Next, ll~nll = 11~11 = 1 , so that {14.15) implies 

* l<~.cp >I ~ 1 . n 

Taking scalar products with ~* in {14.15), we also have 

{14.16) 

Let be an integer such that 

for all n ~ n1 , 

and let 

{14.17) 

Then, cp is an eigenvector of T corresponding to A it depends on 

n and satisfies 
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Note that by (14.6) 

sup{IIRn(z)ll z € r . n ~ n0(r)} = M(r) < co • 

THEOREM 14.7 Let X be a simple eigenvalue of T . With the 

notations introduced above, we have for all large n , 

(14.18) IX-X I < 211P II II(T-T )·'·II < J!(f)M(r) II(T-T )PII n- n n.,..- 1r n ' 

(14.19) 

Proo£ Noting that * I<.P.~n>l ~ 1/2 for n ~ n1 , consider the operator 

given by 

(14.20) * 0 (t~ ) = t.P / <.P.~ > • t € c . n n n 

Then it is clear that 11~11 ~ 2 . and 

since 

IX-X I = II (X-X Hll n n 

= 110 P (T-T )PIJIII n n n 

~ 211Pnll II(T-Tn)PII 

< J!(f)M(r) II(T-T )PII 
- 11' n • 

P = - ~I R (z)dz 
n 211'1 r n 

Thus, (14.18) is proved. 

* <~.~ > = 1 • n 

~ - ~ = (P-P )~ = (P-P )P~ , n n n 

P - P = - ~I [R(z)-R (z)]dz 
n 211'1 r n 

. 1 I = - -. R (z)(T -T)R(z)dz 
211'1 r n n 

Next, since 

Since for the semisimple eigenvalue X we have R(z)P = P/(X-z) and 

11~11 ~ 2 , we see that (14.19) holds. // 
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In Section 11, we have developed several iteration schemes for 

finding successive approximations to eigenelements A,~ of T by 

starting with eigenelements of a 'nearby' operator We now 

wish to show that if (T ) is a resolvent operator appproximation of T 
n 

(which, of course, includes the important cases of the norm and the 

col compact approximations), then we can choose 

where n0 is fixed, and have the conditions for the convergence of the 

iteration schemes satisfied. 

Before we consider other iterative schemes discussed in Section 11, 

we prove some preliminary results. 

PR.Ofi!EITION 14.8 Let T 
n 

T on a closed subset E of p(T) , 

as n -w 

(14.21) me,;K II(T-T11)[R11 (z)-R(z) ]II ...,.0, 
z€:£ 

(14.22) !lD1{ I!(T-Tn}R11(z)xll ..;; 0 for every xEX, 
z€:£ 

(14. max II(T-T )R (z)(T-T )II -<>0 
zEE n n n 

(14.24) max II[(T-T )R (z)]2 U ~ 0 . 
zEE n n 

(T-T )[R (z)-R(z)] . 
n n 

By (14.5), we have 

00 

(T-T )R (z) n n (T-T )R(z)[I+(T-T )R{z)] I [(T-T )R(z)]2j , 
n n j=O n 

so that 

00 

A (z) 
n 

[(T-T )R(z) 
n 

+ (T-T )R(z)[I+(T-T )R(z)] I [(T-T )R(z)]2j . 
n n j=l n 
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Recalling v (E) 
n sup II(T-Tn)R(z)ll 

zEE 

9 
a.11d o (E) = max II[(T-T )R(z)r11 , 

n zEE n 

we see th..at 

But by (14.2), vn(E} ~ v < ro ar1d by (14.4}, o (E) ~ 0 . Hence n, , 

max 
zEE 

IIA (z)ll ~ 0 . 
n 

We haye thus proved (14.21). Let now x EX . 

have 

max li(T-Tn)R(z)xll ->- 0 . 
zEE 

Proposition 14.1, we 

Since (T-T )R (z}x = A (z)x + (T-T )R(z)x , we see that (14.24) n n n n 

follows easily. Next, we note 

(T-T )R (zJ(T-T ) 
n n n [Rn(z)-R(z)] 

Now, max IIAn(zJII-;. 0 , and max li(T-Tn}R(z)(T-Tn)ll _,. 0 by (14.3). 
zEE zEE 

Hence (14.23) holds. Since sup{ < 00 by 

(14.6), we see tr..at (14.24) holds as well. // 

'fl!EO~ 14.9 Let T C p(T) separate a simple eigenvalue A of T 

from the rest of a(T) For n 2: no(f') let A be the simple 
n 

(resp., 
~.qfo 

eigenvalue of T inside r and let 'Pn '1\) be an n 

eigenvector of Tn (resp., T:) corresponding to An {resp., :\n) such 

that Let S (resp., Sn) denote the reduced 

resolvent associated with T and A (resp., T ar1d A ) . Then n n 

(14.25) II(T-T )<P II -Y 0 , 
n n 

(14.26} { is a hounded s equ.er:.c~e ~ 



(14.27) 

(14.28) 

{14.29) 

Proof Since 

and li 

since 

and 1 ' 
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S x ~ Sx for every x € X , 
n 

II 

(14. 

'i'!e see that 

(II(T~T )S II) are bounded sequences, 
n n 

II ~ 0 , (T-T )S ] 2 1! ~ 0 . 
n n 

II(T-T )P <P li < II(T-T )P i! n nn- n n 

• we see that II(T-T )'P II ~ 0 . 
n n 

Next, 

= <x~ 

* ii<P II 
n 

= liP !I 
n 

But P ~ P . Hence by 
n 

the uniform houndedness principle, * (II<Pnll) is a bounded sequence. 

Let x E X . By (14. -> R(z)x unHormly for z € r 

Also, since ), _,A. by (14.12}, ·we see that 
D. 

dist(A.n,f) 2 dist{A.,f)/2 > 

0 for all large n Hence 

The sequences (iiS li) and i(l! 
n 

dz Sx. 

) are th,en hounded by the 

uniform boundedness principle. Lastly, to prove (14.29) we note that 

lfT-T )S (T-T ) 
' n· n n 

(T-T )R (z)(T-T ) 
1 r n n n 

2vi Jr - z - A. 
n. 

dz . 

Again, since > > 0 , we see by (14. that 

ll(T-Tn)Sn(T·-Tn)l! -> 0 Since ( is a bounded sequence, we also 

have !I[(T-T )S ] 2 11 -l> 0 // 
n n 

~'<K 14.10 We are now in a posi Uon to show that various concli tions 

needed for the convergence of the iteration schemes and fo:r obtaining 

error estimates considered in Sections 10 and 11 can be fulfilled if we 
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choose T0 = T for some suitable 
no 

when ~ T. Let a 

simple eigenvalue A of T be isolated from the rest of a(T) by a 

simple closed rectifiable curve f in p(T) , and let n ~ n0 (r) 

Then by Theorem 14.5(b), the only spectral value of 

simple eigenvalue A 
n 

Since 

max ra((T-Tn)Rn(z)) s rr~ 
zEf z€f 

by (14.24), we can choose 

II[{T-T )R(z)]2 il < 1 . 
no 

max 
z€f 

Hence 

such that 

max r ((T-T )R (z)) < 1 . 
zEf a nO nO 

T 
n 

inside r is a 

Then the Rayleigh-Schrodinger series (10.4) for the eigenvalue A(t) of 

T(t) = T + t(T-T ) 
no no (with initial term A ) converges for 

no 
ltl ::; 1 because 1 E of (See (9.14).) In particular, putting 

t = 1 we see that A(l) is the only spectral value of T(l) = T 

inside r &<d it is a simple eigenvalue. Hence it must coincide with 

the eigenvalue I\ we started with. Thus, 

00 

As for the convergence of the Rayleigb-Schrodinger series (10.7) for the 

eigenvector <p(l) of T(l} = T , it is sufficient to have 

where 

a + (a +b )c < 1 , 
n n n n 

a = max !I[(T-T )R (z)]2 1! , 
n zET n n 

b = max li(T-T )R (z)ll , 
n zEf n n 

c 
n 

£(T)II(T-T )<P II ii<P*II 
n n n 

2v[dist(A ,r)]2 
n 
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(See Proposition 10.2.) Now, the relations (14.24), (14.6), (14.25), 

(14.26) and the fact that A -+A as n -+ oo , show that a -+ 0 , n n 

(bn) is a bounded sequence and en -+ 0 . Hence we can choose n0 so 

that a + (a +b )c < 1 , and ensure the convergence of the 
no no no no 

eigenvector series 

Next, let 

00 

~{1) = ~ + I ~(k) . 
no k=1 

11 = II(T-T )<P II , n n n * p = ll.p II , n n s = liS II , 
n n 

a = II{T-T )S II , /3 = 1l p s , "Y = max{a • /3n} • n n n n n n n n n 

EO = max{II[(T-T )S ]211 ~ a3/2/31/2} . 
n n n 'n' n n 

Then by (14.25), (14.26), {14.28) and (14.29) we see that Tln-+ 0 , 

(a ) 
n 

are bounded sequences, f3 -+0 and EO -+0 
n n 

For the estimates given in {11.30) for the Rayleigh-Schrodinger 

iteration scheme (11.18) as well as the fixed point iteration scheme 

(11.19), we need ~ < 1/4 
n 

This can now very well be achieved for a 

convenient value n0 of n Then, as pointed out in Remark 11.9{v), 

we have better bounds for the successive iterates at every other step. 

II II In case T - T , we have a -+ 0 , and hence "Y -+ 0 . If , in n n n 

this case, we choose n0 such that "Y < 1/4 , 
no 

then Theorem 11.5 

shows that better bounds for the iterates are available at every step. 

Thus, we have a geometric convergence of the iterates, as against the 

semigeometric convergence when we only have {c < 1/4 
no 

19.4, Rayleigh-Schrodinger and fixed point schemes.) 

{See Table 

If "Y < 1/4 (resp., {EO < 1/4), then Theorem 11.8 (resp., 
no no 

Problem 11.2) shows that both the iteration schemes (11.18) and (11.19) 

converge to a simple eigenvalue ~ of T , and ~ is the closest 
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spectral point of T Thus, if the simple eigenvalue A of 

T with which we started is the closest spectral value of T from AO 

then ~ = A . Note that this can be achieved by taking n0 large 

enough since "4nother way of achieving this is to 

choose f to be a circle with radius ~ dist{A,a(T)'{A})/2 and centre 

A , and find an eigenvalue A of T inside f . 
no no 

Next, assume that A is the dominant (simple) eigenvalue of T . 

Since r (P (P-P )) ...,. 0 by ( 14.10), we can choose n0 such that a n n 

(14.30) r (P (P-P }) < 1 . 
a no no 

Remark 11.13(a) shows that we can let * * = <pno and xo = <pno as the 

starting vectors in the power method 

* <P<p ,<p > ;t 0 ) 
no no 

(Note: e 1 , DE-l = P and 

Finally, let )', ;t 0 . Then by Theorem 14.7, for aU la~ n 

where the eigenvector <p of T depends on n, and 

c 2(f)M(f} {" max 1 
' 11" 

M(f) = sup{liR (z)ll : z € f,n l no(f)} ( 00 
n 

Also, by (14.9), II(T-T )PII ~ 0 . Now, assume that T is compact. Then 
n 

II (T-T }Til -l> 0 . Thus, we see that the modified fixed point iteration 
n 

scheme (11.31) would converge to ~ and A if we choose T0 = T 
no 

for 

a suitably large no This remark holds for the Ahues iteration scheme 

{11.35) as well. The error bounds (11.34) are in terms of 

and they improve at every step. 

II(T-T )Til 
no 
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Problems 

14.1 Let An , Bn , T € BL(X) be such that 

bounded. Then 

IIA II and liB II are n n 

IIA R(z)B II -+ 0 , as n -+ 00 
n n 

for all z in the unbounded conncected component of p(T) if and only 

if 

for each fixed k = 0,1,2, .... (Hint: Problem 4.3, (5.8) and (5.9)) 

14.2 Let E C p(T) be a compact set, and let r be a simple closed 

rectifiable curve in p(T) 

R (z) ~ R(z) n uniformly for 

Let T ~T Then R (z) n n 

(a) Let T ~ T . Then 
n 

z € E and Pr(Tn) ~ Pr(T) 

~R(z) uniformly for z E E 

(b) 

{i.e.' 

R {z) n ~R{z) uniformly for z € E , and for some positive integer 

the set 

U U {Rn(z)x - R(z)x x € X , llxll ~ 1} 
n=no zEE 

has a compact closure in X ) (Hint: 

Proposition 4.2 of [AN]. Compare this result with Lemma 14.4, where the 

rank of Pr(T) is assumed to be finite.) 

14.3 Let r c p(T) , rank Pr(T) < ro and Tn ~T Then for all 

large n , we have r c p(T ) 
n 

and the arithmetic mean of the 

eigenvalues of T inside r converges to the arithmetic mean of the 
n 

eigenvalues of T inside r . 

llx -Px II -+ 0 , 
n n 

IIPx II -+ 1 , 
n 

and there is a subsequence 

that x~ -+ x for some x € R(Pr) with llxll = 1 . 

llx II = 1 n 

(x ) 
~ 

Then 

such 
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14.4 With the notations of Theorem 14.5, 

k k 
n n 

I 2 j sm+k- I g . sm 
j=1 n, n j=1 n,J 

14.5 Let T € BL(X) and assume that 

with A.'# ll The considerations of Remark 14.6(ii) can be extended to 

A. and p. 

14.6 Let T € BL(X) , A. be the dominant discrete spectral value of T 

and let p. be a discrete spectral value of T such that if X € a(T) 

X ¢ A. , X ¢ p. , then lXI < lp.l . Then Remark 14.6(ii) can be 

extended to p. 

4.7 With the notations of Theorem 14.7, * ~ l<~n·~ >I~ 1 . Choose n1 

such that n ~ ~1 implies * I<~ .~>I ~ 1/2 . Let 
n 

M(f} = sup{IIR(z)ll : z € f} Then 

IA.-A. I s 211PII II(T-T ) II < l!(f)M(f) liT~ -A. <P II , n n ~n - v n n n 

2(f)M(f) 
= II(P -P)~ II < 21Td. t(A. f) II(T-T )~ II . n n - 1s n' n n 

14.8 Let A. € ad(T) be isolated by a closed curve f . If 

is bounded and II(T-T )S.. (T-T }II ~ 0 n -l\ n 

T ~T, 
n 


