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13. APPROXIMATION OF BOUNDED OFERATORS

In this section we consider some modes of approximating an operator
T € BL(X) by a sequence (Tn) of operators in BL(X) . We study the
relationships among these modes. Our interest lies in the approximation
of o(T) by a(Tn) .

If Tnx -»Tx, x€X, i.e., HTnx - Txll > 0 for every x € X ,
we say that (Tn) is a pointwise approximation of T , and denote this
fact by T 27T .

The pointwise approximation has, in general, no implication for the
approximation of the spectrum: (i) For n = 1,2,... , there may exist

an eigenvalue An of Tn such that (An) converges to an element of
2

the resolvent set of T . For example, let X =2, and for x =
[x(1), x(2)....1% in X . let
T x = [0,...,0, x(n+1), x(n+2),...1%

where the zeros occur in the first n places. Then T Ls1=-0,
U(Tn) = {0,1} , while o(T) = {0} . (ii) There may exist an eigenvalue
A of T such that no subsequence of (An) , Wwhere An € a(Tn) ,

converges to A . For example, let X = 82 , and

T x = [%(2)..... x(n), 0, 0, ...1°, Tx

[x(2). x(3). ...1% .

Then T_ 27, o(T ) = {0} . while o(T) ={z €C: |z| <1} and
every z € C with |[z] <1 1is an eigenvalue of T .

The above two examples point out the lack of upper semicontinuity
and lower semicontinuity of the spectrum with respect to the pointwise
approximation. (Cf. (9.11) and the discussion there.) However, for
self-adjoint operators on a Hilbert space, we do have lower semi-—

continuity of the spectrum with respect to the pointwise convergence.
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PROPOSITION 13.1 Let T and Tn , n=1,2,... , be self-adjoint
operators on a Hilbert space X # {0} . Let Tn L5T and a € o(T) .
Then for every e > O , there is no(e) such that if n > no(e) .

then I -Al < e for some A_ € o(T ) .
n n n

Proof Since T 1is self-adjoint, we see by Theorem 8.7(a) that A is a
real number. Let € >0, and p=A+ ie , so that p € p(T) . By

(8.13), we have

—

1
||R([.l.)|| = m = g .

Let x € X with lixll =1 and HR(u)xll > 1/2e . Again, since Tn is

self-adjoint, we have p € p(Tn) and

1 1
Rl = gistlua(ryy < e

with Rn(u) = (Tn—[J.I)_l . Now, by (9.2),
R (1) - R(k) = R_(1)(T-T _JR(k)

where Ian(u)Il < 1/e and II(T—-Tn)R(u)xII - 0 . This shows that

Rn([.L)X - R(u)x and hence there is an integer no(e) such that

lIRn(u)xIl 2 1/3e for all n 2 no(e) . Since Ilxll =1 , we have

m;ﬁ = lan(u.)ll 2 1/3e ,

i.e., dist(u,a(Tn)) < 3 for all n 2 no(e) . Thus, there is

N € o(T_) such that
n n
AT € Il + Ju=A ] S e+ 3e = de

This would prove the proposition if we had started with e/4 instead

of e . Va4
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We now consider stronger modes of approximating T .

If HTn—TH -0 , then (Tn) is said to be a norm approximation

of T ; we denote this fact by Tn u—ﬂe T . It is clear that

Tn u—ﬂé T implies Tn L , but the converse is not true in general.

The discussion around (9.11) in Section 9 shows that the spectrum
is upper semicontinuous with respect to a norm approximation, but it is
not lower semicontinuous in general. However, if A 1is an isolated
spectral value of T , o(T) is both upper and lower semicontinuous in
a neighbourhood of A with respect to a norm approximation. This will
follow as a special case of Remark 14.6(iii).

If X 1is a finite dimensional space, then for each T € BL(X) ,
we have o(T) = oa(T) . Also, Tn -B5 T if and only if Tn UBLN T .
Thus, we have the continuity of the spectrum of T when X is finite
dimensional. For other special cases of continuous change of the
spectrum, see Problem 9.2.

Although a norm approximation is good enocugh to give the continuity
of the spectrum in a neighbourhood of an isolated spectral value, many
useful approximation procedures (Tn) of T do not converge in the
norm, as we shall see in Sections 15 and 16. For this reason, we study

yet another important mode of approximation.

We say that (Tn) is a collectively compact approximation of T

if Tn L5 T and there is an integer Ny such that the set

(13.1) U {(T-T)x : x €X, Ixll <1}
n=T

0

has a compact closure {or equivalently, is totally bounded} in X ,

i.e., if fork=1,2,... , X € X with kaH <1, and Iy 2 ng >

then the sequence ((Tj —T)xk) has a convergent subsequence in X . We
k

denote this fact by Tn AN
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Note that if T € BL(X) 1is itself a compact operator, then

Tn <5 T if and only if Tn 25T and there is an integer 0y such
that the set
[+
U {Tnx tx € X, lixhh £ 1}
n=n,
has a compact closure in X . This follows because the compactness of

T means that the set {Tx : x € X , lxll { 1} itself has a compact
closure. Notice, on the other hand, that if T_ <5 T, and if
infinitely many Tn’s are compact, then T = Tn + (T—Tn) is compact.

We now prove a useful characterization of a collectively compact

approximation.

PROPOSITION 13.2 Let T 25T . Then T, £S5, T if and only if
(2) there is an integer 1, such that Tn~ T 1is a compact

operator for all n = ng -
(b) whenever kaH {1 for k=1,2,..., and 1 ¢ n, < n, <l

are integers, ((Tnk—T)xk) has a convergent subsequence in X .

Proof Let Tn =t,7T , and let the set

[+ ]
W= U {(Tn—T)x tx € X, Ixll £ 1}
n=n
0
have a compact closure._ Then for each n ny . the set
{(Tn—T)x :x €X, lxll {1} is contained in W and hence has a compact

closure. Thus, the condition (a) is satisfied. Next, choose ko such

that k > ko implies o, > ng, - Again, the set {(T—Tnk)xk k2 ko}

is contained in W and hence has a compact closure. Thus, the

condition (b) also follows.
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Assume now that the conditions (a) and (b) hold. For

n=1,2,... , let lIxll <1, and let j 2 n
n n 0

Note that (jn) is not necessarily an increasing sequence of integers.

be positive integers.

We show that the sequence ((Tj —T)xn) has a convergent subsequence.
n
Case 1: The set {jn tn=1,2,...} is finite.
Then there is a positive integer m > ny and integers m such that
1 {m <{my, <... and j =m for each k=1,2,... . Now,
1 2 m

(T,

j -Tix = (Tm—T)x ,

m "k m

where (Tm—T) is a compact operator by the condition (a). Hence

((Tm—T)xmk) has a convergent subsequence.

Case 2: The set {jn :n=1,2,...} is infinite.

We can then find positive integers m such that m, < m,, {... and
J <3 {... . For k=1,2,... , let j = and X =y, .
my m,, m Dy ™ k

Then
(T, -T)x_ = (T -Tly, »
J k
MR
where Hka <1 and n; <n, <... . Now by the condition {(b). the
sequence ((Tnk—T)yk) has a convergent subsequence. V4

We recall the uniform boundedness principle which says that if
(Tn) is a sequence in BL(X) and HTan < o {® for each x € X,
then HTnH {a<»® for some « 2> O and all n . A consequence of this
p

principle is that if Tn <> T, and if W 1is a totally bounded subset

of X, then Tnx - Tx uniformly for x € W. (See [L], 9.1 and 9.3.)
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We now study approximation by the composition of a pointwise
convergent sequence and a sequence which converges in a collectively

compact manner.

PROPOSITION 13.3 Let A ., A . B . B beall in BL(X) . A LA

CC

and Bn ——> B . Then

cc
(13.2) (Bn—B)An -2 0,
(13.3) Il(An—A)(Bn—B)Il -0 .

If, in addition, B is compact, then

(13.4) AB <548 ,BA <SspBA,
nn nn
(13.5) (A=A _)BIl >0 , (A=A )B Il =0 .

Proof Since An L, A and Bn L, , we have IIAnll < a and

IanlI B for all n . Then it follows easily that Aan £, ,

BA -25BA, and (B-B)A 250 . As B -*55B, let n, be such
nn n n n 0

that the set

0
W= U {(B-B)x:x€X, Ixil <1},
n=n0

is totally bounded. Now,

[+
U {(B-B)Ax:x€X, Ixll {1} C {ay : y €W} .

n=no

Hence (Bn—B)An <€,0 . This proves (13.2). Next, the pointwise
convergence Anx - Ax is uniform for x in the totally bounded set

W . This implies H(A -A)(B -B)I »0 , i.e.. (13.3) holds.
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Let, now, B be compact. Then AB and BA are both compact. To
show A B <55 AB ., we prove that if =l =1 for k=1,2,..., and

1« n, < n, <... , then (A_B xk) has a convergent subsequence

P Pk

(Proposition 13.2). But since B_L —— B and B is compact, (B Xk)
n N

has a subsequence (B X } which converges to some y in X . Then

j J

A, B - Ayll < A I IB
oy oy Tk m oy Ky

-yl + lA_ y - Ayll ,
. ) .
J J J J J

so that (A_ B X ) converges to Ay . Next, to conclude
1

i
BnAn —<S,BA, we note that the set
0
U {BAx:x€X, lixll {1}
nep. B O
0
00
is contained in the set U {aB x : x € X , llxll { 1} which is totally
n=n
0

bounded since the set E is totally bounded, and B is compact.
Finally, since An L5 A and B is compact, the pointwise convergence
Anx - Ax is uniform on the totally bounded set {Bx : x € X ,lxll { 1}

Hence I(A-A )BIl >0 . Also, Ii(A-A)B Il -0 by (13.3). /7

A nice criterion is available for the collectively compact
approximation by a sequence of projection operators. It will prove to

be very useful in the next section.

THEOREM 13.4 (Anselone) Let Pn L2, P, where P1 , P2 ,... are
projections in BL(X) . If Pn <S5, P, then rank Pn = rank P for
all large n . Conversely, if for all large n , rank Pn = rank P <

®©  then
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Pn LS, p , and we have
(13.6) .H(P—Pn)PH -0 and H(P-Pn)PnH -0 .

Proof First note that since Pn 25 P and each Pn is a projection,

©0
so is P . Let Pniw, and U {(P-P)x :xe€X, Ixll {1} be
n=n
0
totally bounded. If neither P nor any of P , P s... is
oy no+1

compact, then by Corollary 3.9, rank Pn = rank P = ® for all n > ng -
Next, let either P or some Pn {(n 2 no) be compact. Then, in fact,

P is compact since P = (P—Pn) + Pn . Now, by (13.5), we have
H(P—Pn)PH - 0 and H(P—Pn)PnH -0 .
Hence for all large n ,
rU(P(Pn—P)) = rg((Pn—P)P) {1 and ra(Pn(Pn—P)) = ra((Pn—P)Pn) <1,

by (5.12) and (5.10). It follows by Proposition 9.6 that Pn(X) and
P(X) are linearly homeomorphic, and hence have the same (finite)
dimension for all large n .

Conversely, assume that for all large n , we have

rank Pn =rank P=m (% , so that P, Pn and hence Pn - P are

CcC

compact. To show Pn ——= P , it is sufficient, by Proposition 13.2,
to prove that if for k =1,2,... , HukH <1, 1¢K n, < n, <... , then
(P uk) has a convergent subsequence in X .
Pr
3 %*
Let E ERRRRE be an ordered basis of P(X) ., and let E SERRRTE
be in X* which are adjoint to R ERRREE S let for i=1,....m,
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Since Pn Pyp , we see that for i,j=1,...,m,

. XD <X, XD =6, .
n,i’"j i’7j i,
Hence for all large n , the matrix
3* .
A =Ja . .], where a_ . .=<x_ .,x,>, 1i,j=1,....m,
n n,i,]J n,i,j n,i’"J

is invertible. By Remark 3.4, it follows that the set {x 'ERRERES }

is linearly independent in Pn(X) , and since rank Pn =rank P=m ,

we see that it forms a basis of P (X) . Also, if B_=[b_ . .] is
n n n,1i,]
the inverse of An , then the elements
m
3% -
%0, ° 121 Pk, 7% » 4= leom
% %
in X are adjoint to x seeesX c <x_ .,,x .>=06, .. Since for
n,1 n,m n,i’" mn,j i,]
fixed i,j , wehave a_ ., ., =6, ., as n =%, we note that
n,1,J 1,]
b . .=06, . as well. This shows that for all large n
n,i,]J 1,]
lbn,i,jl <B,i.j=1,...,m,
and hence
IS H<a, j=1,....m,
n,
where a and [ are constants. Now, for k=1,2,... , P is of

finite rank, so that by (3.8) we have

o 3, Fanel g

If we let

<
1]
™
N
d
[=1
"
NG
»



237

then we see that Pnkuk = Pnkvk , and

v Il < m o sup{HPkH tk=1,2,...} max{"xjﬂ P j=1,...,m} .

Now, since (vk) is a bounded sequence in the compact subset P(X) of
X , it has a subsequence which converges to some v in P(X) . For
the sake of ease in notation, we denote this subsequence by (Vk)

itself. Then

WP v, - Pvll <P v, - P vil + IP_ v - Pyl
e k m K P

S WP M llvy = vl + WP v - Bvll .
T P

Since P_ v -» Pv , this implies P = P v, »Pv=v as k-»w,
P i e k

and completes the proof. Va4

We now investigate relationships between norm approximation and
collectively compact approximation.

THEOREHM 13.5 (a) Let Tn nn, T , and assume that Tn -T is

compact for all large n . Then Tn =L, T .

(b) Let T -%>T . Then W(T-T) >0 . If, in addition,

TZ 2,7, then Tn'-’—-ﬂ-»T.

Proof (a) Proposition 13.2 shows that we need only prove the

following: If kaH {1 and 1 ¢ ny < n, <... , then ((Tnk—T)Xk)

has a convergent subsequence. But

I(T_ -T)x Il < UT_ =TI
(“k )% < o

which tends to zero as k - ® , and we are through.
{(b) Letting An = Bn = Tn and A =B =T in (13.3), we see that

2
(T -T)71 =0 .
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Now, let T: 2, 7%, and assume for a moment that (Tn) is not a

norm approximation of T . Then there exist 6 > O , X € X with

kaH {1 and integers 1 < n, < n, {... such that
T -T)x Il 26 .
n, *x
Since Tn <57 ., we may assume by passing to a subsequence, if

necessary, that ((Tn —T)xk) converges to some y in X . Then
k

iyl > 5 . Let y. €X' be such that <y .y> = liyl by the Hahn-Banach

theorem (Proposition 1.1). Then

0<8< iyl =<y .y>

lim<y™, (T -T)x, >
v . ( o, )%,

1im<(Tnk—T)*y*, x>

CTim T vy = Ty
e
=0 .
This contradiction shows that we must, in fact, have Tn E—ﬂe T . //

We give examples to show that the converse statements of parts (a)

and (b) of the above theorem are false.

2, T=0, and

1}

First, let x

2

T x = &x,e_>e x€2 ,n=1,2,... .,
n n

1
where ej is the j-th standard basis vector in 82 . Thus, Tn is the

projection on the span of e along the orthogonal complement of e
2

Since <x,en> -0 as n->® for every x € &7, we see that
Tn L7 Also, for each n , the bounded operator Tn ~-T= Tn is
compact because it is of rank 1 . Now,

> 2

U {(Tn—T)x :1x €L

,llxllg1}={te1 :tecC, el <1},
n=1
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which is a one dimensional closed and bounded set, and hence it is

compact. Thus, T €5 T . But since Te =e, , we see that
n nn 1
HTn—TH = HTnH 21 for each n , showing that (Tn) is not a norm

approximation of T .

Secondly, let X

1
[\~
-]
i
o
4

Tnx =x/n , x €& ,n=1,2,...

Then it can be easily seen that each Tn is self-adjoint and

Tn u—ué'T . However, for every Dy . We have
o0 [e)
. 2 X . 2
u {(Tn—T)x :x €87, lixll {1} = U {ﬁ-. x € 27, Ixlh < 1} .
n=n0 n=n o .
This set contains the set {x/nO P x € 82 , lixll € 1} , whose closure is

not compact since 82 is infinite dimensional, showing that (Tn) is
not a collectively compact approximation of T .

Thus, we remark that while a norm approximation and a collectively
compact approximation are both stronger modes of approximating T than
a pointwise approximation, neither is stronger than the other. Since
both these modes occur in practical situations (as the examples in
Sections 15 and 16 will show), we wish to study the implication of these
modes for the approximation of the spectrum, especially, its discrete
part. In the next section we shall introduce another mode of
approximation which will allow us to unify the study of a norm

approximation and a collectively compact approximation.
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Problems
13.1 Let x =2, and A_€C with I\ l<a, n=12,... . Let
T [x(1). x(2), .1 = [x(1). 0, ..., 0, A x(n). 0, O, S

T[x(1), x(2). ...1% = [x(1). 0, 0, ...1° .
Then o(T ) = {0, 1, A} . ofT) = {0.1} , while T 25T . (i) Let

xn -»c¢c, ¢c#0 or 1 . Then An € a(Tn) , but ;:2 An € p(T) . (ii)

Let An =1 for all n . Then An is a double eigenvalue of Tn ,

but 1lim A_ is a simple eigenvalue of T .
n
n=0

13.2 Let Tn 25T . Then Tn <€, T if and only if there is ng
such that T - Tn is compact for all n 2 ng o and whenever
k=1,2,..., kaH {1, the set {(T—Tk)xk tn=1,2,...} hasa

compact closure in X .

00

13.3 If Tn L2, T and the set U {Tnx :x €X, lixll {1} has a
n=1

compact closure in X , then T is compact. (Higgins has proved that
if each Tn is compact and the set {(T—Tk)xk tk=1,2,...} has a
compact closure in X whenever X € X with kaH < 1 , then T is
compact. )}

13.4 Let An—P—>A and Bnﬁ-)B, where B is compact. Then

ap LU, ap

n n

13.5 Let X be a Hilbert space and T , Tn € BL(X) . Assume that for
each n=1,2,... , T - Tn is compact and self-adjoint. Then Tn E~E»

T if and only if Tniwr.

13.6 Let Tn L2, T . Then for all sufficiently large n ,

dim R(T) < dim R(Tn) .



