12. FINITE DIMIENSIONAL EIGENVALUE PRORLEI

This section is devoted to a review of some important methods of finding eigenelements of an operator $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$. Let T be represented by the $n \times n$ matrix $\left[t_{i, j}\right]$ with respect to the standard basis e_{1}, \ldots, e_{n} of \mathbb{C}^{n}. We shall denote this matrix also by the letter T. Then $T^{*}=\left[\bar{t}_{j, i}\right]=T^{H}$.

Decomposition Results

Before we discuss the matrix eigenvalue problem, we describe some decompositions of a matrix. The motivation for these results comes from the following facts. If T is a diagonal matrix (i.e., $t_{i, j}=0$ if $i \neq j$), then clearly the diagonal entries are the eigenvalues of T with e_{1}, \ldots, e_{n} as the corresponding eigenvectors. Next, if T is an upper triangular matrix (i.e., $\mathrm{t}_{\mathrm{i}, \mathrm{j}}=0$ if $\mathrm{i}>\mathrm{j}$), then again the diagonal entries are the eigenvalues of T, but for a fixed i, e_{i} is not an eigenvector (corresponding to $t_{i, i}$) unless $t_{i, j}=0$ for all $j>i$. If T is partitioned as

$$
\mathrm{T}=\left[\begin{array}{cc}
\mathrm{T}_{1,1} & \mathrm{~T}_{1,2} \tag{12.1}\\
0 & \mathrm{~T}_{2,2} \\
\mathrm{k} & \mathrm{n}-\mathrm{k}
\end{array} \mathrm{~m}_{\mathrm{n}-\mathrm{k}}^{\mathrm{k}}\right.
$$

then the eigenvalues of T consist of the eigenvalues of $T_{1,1}$ and of $T_{2,2}$, since $\operatorname{det}\left(T-z I_{n}\right)=\operatorname{det}\left(T_{1,1^{-z I_{k}}}\right) \operatorname{det}\left(T_{2,2^{-z I_{n-k}}}\right)$.

Also, if U is a unitary matrix, (i.e. $U^{H} U=I=U U^{H}$), then the eigenvalues of T and of $U^{H} T U$ are the same; if x is an eigenvector of $U^{H} T U$ corresponding to λ, then $U x$ is a corresponding eigenvector of T.

THEORED 12.1 (Schur decomposition) There exists a unitary matrix U such that $R \equiv U^{H} T U$ is upper triangular. Further, U can be so chosen that the eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ of T appear in a given order along the diagonal of R.

Since a matrix is diagonal if and only if it is upper triangular and commutes with its conjugate transpose, it follows by the above theorem that T is normal (i.e. $T^{H} T=T T^{H}$) if and only if there is a unitary matrix U such that $U^{H} T U$ is upper triangular.

If

$$
R=U^{H} T U=\left[\begin{array}{ccc}
R_{1,1} & a & R_{1,2} \tag{12.2}\\
0 & \lambda & b^{t} \\
0 & 0 & R_{2,2}
\end{array}\right]
$$

and λ does not appear on the diagonal of $R_{1,1}$, then $U x$ is a corresponding eigenvector of T, where $x=\left[\begin{array}{l}u \\ 1 \\ 0\end{array}\right]$, with $\left(\mathrm{R}_{1,1}-\lambda \mathrm{I}\right) \mathrm{u}=-\mathrm{a}$. Since $\mathrm{R}_{1,1}-\lambda I$ is upper triangular and invertible, this latter system can be solved by back substitution. Similarly, if λ does not appear on the diagonal of $R_{2,2}$, then $U y$ is an eigenvector of T^{H} corresponding to $\bar{\lambda}$, where $y=\left[\begin{array}{l}0 \\ 1 \\ v\end{array}\right]$, with $\left(R_{2,2}^{H}-\bar{\lambda} I\right) v=-\bar{b}$.

The column vectors u_{1}, \ldots, u_{n} of U are known as Schur vectors. Since TU = UT , we have

$$
T u_{k}=\lambda_{k} u_{k}+\sum_{i=1}^{k-1} r_{i, k} u_{i}
$$

Thus, for each $k=1, \ldots, n, Y_{k}=\operatorname{span}\left\{u_{1}, \ldots, u_{k}\right\}$ is an invariant subspace of T. If $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{\mathrm{n}}\right|$ and $\left|\lambda_{\mathrm{K}}\right|>\left|\lambda_{\mathrm{k}+1}\right|$, then u_{1}, \ldots, u_{k} form an orthonormal basis for the spectral subspace associated with T and the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$. Let $U_{k}=\left[u_{1}, \ldots, u_{k}\right]$, and let R_{k} denote the $k \times k$ leading principal
submatrix of R. If v_{i} is an eigenvector of R_{k} corresponding to λ_{i}, then $U_{k} V_{i}$ is an eigenvector of T corresponding to λ_{i} for $i=1, \ldots, k$.

The proof of the Schur decomposition theorem is accomplished by induction on the order n of the matrix T; no constructive proof is available. We shall later describe a method, called the $Q R$ iteration, which generates matrices that approximate a Schur decomposition of T. A stable algorithm, however, is available to construct a unitary matrix U_{0} such that $U_{0}^{H} T U_{0}$ is upper Hessenberg, i.e., one with all the entries below the principle subdiagonal equal to 0 . (See the comments after (12.17).)

If we do not insist on unitary equivalence, T can be reduced to a form which has zeros everywhere except possibly on the diagonal and the principal superdiagonal.

THEORIDI 12.2 (Jordan decomposition) There exists an invertible matrix W such that $W^{-1} T W=\operatorname{diag}\left(J_{1}, \ldots, J_{p}\right)$, where each Jordan block

$$
J_{i}=\left[\begin{array}{ccc}
\lambda_{i 1} & 1 & 1 \\
& \cdot & 0 \\
& \cdot & \cdot \\
0 & & \cdot \\
\cdot & \lambda_{i}
\end{array}\right]
$$

is an $n_{i} \times n_{i}$ matrix with $n_{1}+\ldots+n_{p}=n$.
We remark that T and $W^{-1} T W$ have the same eigenvalues; if x is an eigenvector of W^{-1} TW corresponding to λ, then $W x$ is a corresponding eigenvector of T.

Theorem 12.2 follows from (7.16), but again a stable algorithm for accomplishing the result is unavailable. If none of the Jordan blocks J_{i} have any 1 's on the main superdiagonal, then T is said to be diagonalizable. It is clear that this happens if and only
if each eigenvalue of T is semisimple, i.e., every generalized eigenvector of T is, in fact, an eigenvector of T.

Closely associated with a Jordan decomposition is the spectral

decomposition

$$
\begin{equation*}
T=\sum_{i=1}^{h} \tilde{\lambda}_{i} P_{i}+D_{i} \tag{12.3}
\end{equation*}
$$

where $\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{h}$ are the distinct eigenvalues of T, P_{i} is the spectral projection associated with T and $\tilde{\lambda}_{i}$, and $D_{i}=\left(T-\tilde{\lambda}_{i} I\right) P_{i}$ is the associated nilpotent operator (cf. (7.16)).

Perturbation results

We list some important results that give estimates for the change in the eigenvalues when an $n \times n$ matrix T_{0} is perturbed by the addition of another $n \times n$ matrix V_{0} to a matrix $T=T_{0}+V_{0}$.

THEORI貨 12.3 (Gershgorin circle theorem) All the eigenvalues of T lie in the union of the n disks

$$
\Delta_{i}=\left\{z \in \mathbb{C}:\left|z-t_{i, i}\right| \leq \sum_{\substack{j=1 \\ j \neq i}}^{n}\left|t_{i, j}\right|\right\}, i=1, \ldots, n
$$

A proof is indicated in Problem 12.2. This result gives an estimate of how close the diagonal entries of a matrix are to its eigenvalues. If a Gershgorin disk is disjoint from the other Gershgorin disks, then it contains only one eigenvalue of T ([GV], p.200).

THEOREM 12.4 Let $R=U^{H} T_{0} U$ be a Schur decomposition of T_{0}, and let $\widetilde{R}=R-\operatorname{diag}\left(r_{1,1}, \ldots, r_{n, n}\right)$. Let p be the smallest positive integer such that $\widetilde{\mathbb{R}}^{p}=0$. Given an eigenvalue λ of $T=T_{0}+V_{0}$, there is an eigenvalue λ_{0} of T_{0} such that

$$
\left|\lambda-\lambda_{0}\right| \leq \max \left\{\epsilon, \epsilon^{1 / p_{p}}\right\}
$$

where $\epsilon=\left\|V_{0}\right\|_{2} \sum_{i=0}^{p-1} \| \widetilde{R}_{2}^{i}{ }_{2}^{i}$.
For a proof, see [GV], p. 201.

THEORFIM 12.5 (Bauer-Fike-Jiang-Kahan-Parlett) Let $J=W^{-1} T_{0} W$ be a Jordan decomposition of T_{0}, and let ℓ be the size of the largest Jordan block. Given an eigenvalue λ of $T=T_{0}+V_{0}$, there is an eigenvalue λ_{0} of T_{0} such that

$$
\frac{\left|\lambda-\lambda_{0}\right|^{\ell}}{\left(1+\left|\lambda-\lambda_{0}\right|\right)^{\ell-1}} \leq\left\|w^{-1} V_{0} w\right\|_{2}
$$

Note that $\ell=1$ if T_{0} is diagonalizable. In general, the integer ℓ in the above inequality can be replaced by the size of the largest Jordan block to which λ_{0} belongs.

For a proof, see [J].

Theorems 12.4 and 12.5 suggest that if T_{0} is not normal, then a small change in T_{0} may produce a large change in its eigenvalues. A perturbation analysis for an individual simple eigenvalue of T_{0} and a corresponding eigenvector is given in Section 18. For a result on the perturbation of an invariant subspace of dimension k of T_{0}, we refer the reader to Theorems 7.2-4 and 8.1-7 of [GV].

In case the operator T is self-adjoint, all the eigenvalues of T are real and there is an orthonormal basis of \mathbb{C}^{n} consisting of the eigenvectors of T. Let us denote the i-th largest eigenvalue of T by $\lambda_{i}(T)$, so that $\lambda_{n}(T) \leq \lambda_{n-1}(T) \leq \ldots \leq \lambda_{2}(T) \leq \lambda_{1}(T)$. We then have the following result.

THEORIDM 12.6 (Courant-Fischer minimax characterization) If T is self-adjoint, then

$$
\lambda_{k}(T)=\max _{\operatorname{dim} Y=k} \min _{0 \neq x \in Y} q(x)
$$

where Y denotes a subspace of \mathbb{C}^{n} and $q(x)=\frac{x^{H} T x}{x^{H}}$ is the Rayleigh quotient of T at $x \neq 0$.

For a proof and several interesting consequences of this theorem regarding eigenvalues of perturbed self-adjoint operators, we refer the reader to [WI] p. 100-108.

Iterative methods

Most of the iterative methods for approximating eigenelements of an $\mathrm{n} \times \mathrm{n}$ matrix T depend on the following main idea.

Let $\tilde{\lambda}_{1}, \ldots, \tilde{\lambda}_{h}$ be the distinct eigenvalues of $T(h \leq n)$, arranged so that $\left|\tilde{\lambda}_{1}\right| \geq \ldots \geq\left|\tilde{\lambda}_{h}\right|$. Consider the spectral decomposition (12.3) of T :

$$
T=\left(\tilde{\lambda}_{1} P_{1}+D_{1}\right)+\ldots+\left(\tilde{\lambda}_{h} P_{h}+D_{h}\right)
$$

Then for $j=1,2, \ldots$,

$$
T^{j}=\left[\sum_{i=1}^{n}\left[\begin{array}{l}
j \tag{12.4}\\
i
\end{array}\right] \tilde{\lambda}_{1}^{j-i} D_{1}^{i}\right]+\ldots+\left[\sum_{i=0}^{n}\left[\begin{array}{l}
j \\
i
\end{array}\right] \tilde{\lambda}_{h}^{j-i} D_{h}^{i}\right]
$$

If $\left|\tilde{\lambda}_{1}\right| \geq \ldots \geq\left|\tilde{\lambda}_{k}\right|>\left|\tilde{\lambda}_{k+1}\right| \geq \ldots \geq\left|\tilde{\lambda}_{h}\right|$, then it is clear that the first k summations in (12.4) will dominate the others as $j \rightarrow \infty$. The dominance would be sizeable if $\left|\tilde{\lambda}_{k}\right|$ is much larger than $\left|\tilde{\lambda}_{k+1}\right|$.

To illustrate how this idea works in practice, and for the sake of simplicity, let us assume that T is diagonalizable. Let $\lambda_{1}, \ldots, \lambda_{n}$ be the eigenvalues of T arranged so that $\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{n}\right|$, and let u_{1}, \ldots, u_{n} be a basis of \mathbb{C}^{n} such that $T u_{i}=\lambda_{i} u_{i}, i=1, \ldots, n$.

Assume that $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|$. Let $x_{0} \in \mathbb{C}^{n}$ be such that $\left\|x_{0}\right\|=1$ and

$$
x_{0}=c_{1} u_{1}+\ldots+c_{n} u_{n} \text { with } c_{1} \neq 0
$$

Then for $\mathrm{j}=1,2, \ldots$,

$$
T^{j}{ }_{x_{0}}=\lambda_{1}^{j}\left[c_{1} u_{1}+\sum_{i=2}^{n} c_{i}\left[\frac{\lambda_{i}}{\lambda_{1}}\right]^{j} u_{i}\right]
$$

Find $y_{0} \in \mathbb{C}^{n}$ such that $y_{0}^{H} u_{1} \neq 0$, and for $j=1,2, \ldots$ define

$$
\begin{equation*}
x_{j}=\frac{\operatorname{sgn}\left(y_{0}^{H} T x_{j-1}\right)}{\left\|T x_{j-1}\right\|} T x_{j-1} \tag{12.5}
\end{equation*}
$$

provided $T x_{j-1} \neq 0$. Here $\operatorname{sgn} z$. equals 0 if $z=0$, and equals $\bar{z} /|z|$ if $z \neq 0$. Then it can be seen by induction on j that $x_{j}=\operatorname{sgn}\left(y_{0}^{H} T^{j_{x_{0}}}\right) T^{j_{x_{0}}} /\left\|T^{j} x_{0}\right\|$ and that $x_{j} \rightarrow x=\operatorname{sgn}\left(y_{0}^{H} u_{1}\right) u_{1} /\left\|u_{1}\right\|$ as $j \rightarrow \infty$. (See the proof of Theorem 11.12.)

This is a variant of the power method discussed in Section 11. Note that all x_{j} and x have norm 1. The scalar factor $\operatorname{sgn}\left(y_{0} H_{T} j_{x_{0}}\right)$ ensures that the sequence $\left(\mathrm{x}_{\mathrm{j}}\right)$ itself converges to a fixed eigenvector x of T. It is then clear that the Rayleigh quotients $q\left(x_{j}\right)=\frac{x_{j}^{H} T x_{j}}{x_{j} x_{j}}$ converge to the dominant eigenvalue $\lambda_{1}=\frac{x^{H} T x}{x^{H}}$ of T. It is apparent that (cf. Table 19.6)

$$
\begin{equation*}
\left\|x_{j}-x\right\|=0\left[\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{j}\right]=\left|q\left(x_{j}\right)-\lambda_{1}\right| \tag{12.6}
\end{equation*}
$$

If $z_{0} \in \rho(T)$ is closer to an eigenvalue λ of T than to any other eigenvalue, we can apply the above considerations to the operator $\left(T-z_{0}\right)^{-1}$ and obtain the following variant of the inverse iteration:

Let $x_{0} \in \mathbb{C}^{n}$ be such that $\left\|x_{0}\right\|=1$ and let $y_{0} \in \mathbb{C}^{n}$. For $j=1,2, \ldots$, let

$$
\begin{align*}
\left(T-z_{0} I\right) \tilde{x}_{j} & =x_{j-1} \\
x_{j} & =\frac{\operatorname{sgn}\left(y_{0}^{H} \tilde{x}_{j}\right)}{\left\|\tilde{x}_{j}\right\|} \tilde{x}_{j} \tag{12.7}
\end{align*}
$$

If in the j-th step we use a shift equal to the Rayleigh quotient of T at the previous iterate, we obtain the following version of the Rayleigh quotient iteration:

Let $\mathrm{x}_{0} \in \mathbb{C}^{\mathrm{n}}$ with $\left\|\mathrm{x}_{0}\right\|_{2}=1$. For $\mathrm{j}=1,2, \ldots$, let $z_{j}=x_{j-1}^{H} T x_{j-1} ;$
if z_{j} is an eigenvalue of T, solve $\left(T-z_{j} I\right) \tilde{x}_{j}=0$
(12.8) to find a corresponding eigenvector; otherwise, solve
$\left(T-z_{j} I\right) \tilde{x}_{j}=x_{j-1}$, and normalize $x_{j}=\tilde{x}_{j} /\left\|\tilde{x}_{j}\right\|$.
The residuals $r\left(x_{j}\right)=T x_{j}-z_{j+1} x_{j}, j=1,2, \ldots$, decrease monotonically if T is normal (Problem 12.3).

THEOREM 12.7 Let T be normal and $z_{j} \in \mathbb{C}$ and $x_{j} \in \mathbb{C}^{n}$ be defined as in the Rayleigh quotient iteration (12.8). Then the sequence $\left(z_{j}\right)$ converges; also, either $\left(z_{j}, x_{j}\right)$ converges to an eigenpair of T, in which case the asymptotic rate is cubic, or $\left(z_{j}\right)$ converges (linearly) to a point equidistant from $k(\geq 2)$ eigenvalues of T and the sequence $\left(x_{j}\right)$ does not converge.

A proof of this result, along with a discussion of the Rayleigh quotient iteration for nonnormal matrices is given in [P]. The special case of self-adjoint operators is treated in Sections 4.6 to 4.9 of [PA].

Simultaneous orthogonal iteration

If we wish to find several eigenvectors of T associated either with the dominant eigenvalue or with a few of the largest (in modulus) eigenvalues of T, then we need to look beyond the power method. Also, the power method fails if $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|$, and it converges very slowly if $\left|\lambda_{2}\right|$ is near $\left|\lambda_{1}\right|$. Actually, the power method is a process of iteration on the subspaces defined by $F_{0}=\operatorname{span}\left\{x_{0}\right\}$, $F_{j}=\operatorname{span}\left\{T x_{j-1}\right\}$. So, more generally, we can iterate on a k -dimensional subspace and hope to reach a k -dimensional invariant subspace of T. In practice, one chooses a basis of the starting subspace and iterates on it by T. To achieve numerical stability and to make sure that the iterated basis vectors do not point in nearly the same direction, one can orthonormalize them at each step. This gives us the following simultaneous orthogonal iteration.

Let the eigenvalues of an arbitrary $n \times n$ matrix T satisfy

$$
\left|\lambda_{1}\right| \geq \ldots \geq\left|\lambda_{k}\right|>\left|\lambda_{k+1}\right| \geq \ldots \geq\left|\lambda_{\mathrm{n}}\right|
$$

Let Y_{k} (resp.. $Y_{k}{ }_{k}$) denote the spectral subspace associated with T and $\lambda_{1}, \ldots, \lambda_{k}$ (resp., T^{H} and $\bar{\lambda}_{1}, \ldots, \bar{\lambda}_{k}$); it is of dimension k. Let F_{0} be a k dimensional subspace of \mathbb{C}^{n} such that

$$
\begin{equation*}
\mathrm{F}_{0} \cap\left(\mathrm{Y}_{\mathrm{k}}^{\prime}\right)^{\perp}=\{0\} \tag{12.9}
\end{equation*}
$$

Since the dimensions of F_{0} and $\left(\mathrm{Y}_{\mathrm{k}}^{\prime}\right)^{\perp}$ add up to n , the condition (12.9) is almost always satisfied. In case T is diagonalizable and u_{1}, \ldots, u_{n} is a basis of eigenvectors of T corresponding to $\lambda_{1}, \ldots, \lambda_{n}$, the condition (12.9) is equivalent to

$$
\begin{equation*}
F_{0} \cap \operatorname{span}\left\{u_{k+1}, \ldots, u_{n}\right\}=\{0\} \tag{12.10}
\end{equation*}
$$

Consider an orthonormal basis $q_{1}^{(0)}, \ldots, q_{k}^{(0)}$ of F_{0}, and let $Q_{0}=\left[q_{1}^{(0)}, \ldots, q_{k}^{(0)}\right]$ be the $n \times k$ matrix with columns $q_{i}^{(0)}$, $i=1, \ldots, k$. For $j=1,2, \ldots$, let

$$
T Q_{j-1}=Q_{j} R_{j}
$$

be the $Q R$ factorization. (See Theorem 4 of Appendix II.) Then each Q_{j} is of rank k. If $Q_{j}=\left[q_{1}^{(j)} \ldots . . q_{k}^{(j)}\right]$, then

$$
T^{j}\left(F_{0}\right)=\operatorname{span}\left\{q_{1}^{(j)} \ldots, q_{k}^{(j)}\right\}
$$

Given $\epsilon>0$, there is a constant $C(k, \epsilon)$ such that
(12.11) $\hat{\delta}\left(T^{j}\left(F_{0}\right), Y_{k}\right) \leq C(k, \epsilon)\left[\frac{\left|\lambda_{k+1}\right|+\epsilon}{\left|\lambda_{k}\right|-\epsilon}\right]^{j}, j=1,2, \ldots$.

For the definition of the gap $\hat{\delta}\left(T^{j}\left(F_{0}\right), Y_{k}\right)$, see (2.4). The proof of this result is quite involved and we refer the reader to [GV], p. 212. Also, see [W], p. 430 for an outline of the proof when T is diagonalizable; in that case, we can let $\epsilon=0$ in (12.11).

The above result shows that as $j \rightarrow \infty$ the space spanned by the columns of Q_{j} comes close to the invariant subspace Y_{k} of T at the rate $\left|\frac{\lambda_{k+1}}{\lambda_{k}}\right|^{j}$ (cf. (12.6)).

Note that $Q_{j} Q_{j}^{H}$ is the orthogonal projection with range $\operatorname{span}\left\{q_{1}^{(j)}, \ldots, q_{k}^{(j)}\right\}=T^{j}\left(F_{0}\right)$. If q_{1}, \ldots, q_{k} is an orthonormal basis of Y_{k} and $Q=\left[q_{1}, \ldots, q_{k}\right]$, then the orthogonal projection onto Y_{k} is given by $Q Q^{H}$. (See Problem 2.7.) Also, by (2.6)

$$
\hat{\delta}\left(T^{j}\left(F_{0}\right), Y_{k}\right)=\left\|Q_{j} Q_{j}^{H}-Q Q^{H}\right\|_{2} .
$$

which tends to zero as $j \rightarrow \infty$.

Consider unitary matrices $U=[Q, \widetilde{Q}]$ and $U_{j}=\left[Q_{j}, \widetilde{Q}_{j}\right]$. Then

$$
U^{H} T U=\left[\begin{array}{cc}
Q^{H} T Q & Q^{H} T \tilde{Q} \\
\tilde{Q}^{H} T Q & \widetilde{Q}^{H} T \tilde{Q} \tilde{Q}
\end{array}\right], \quad U_{j}^{H} T_{j}=\left[\begin{array}{cc}
Q_{j}^{H} T Q_{j} & Q_{j}^{H} T \widetilde{Q}_{j} \\
\widetilde{Q}_{j}^{H} T Q_{j} & \widetilde{Q}_{j}^{H} T \widetilde{Q}_{j}
\end{array}\right]
$$

Now,

$$
\begin{aligned}
& \left\|\tilde{Q}^{H} \mathrm{TQ}\right\|_{2}=\left\|\left[\begin{array}{c}
0 \\
\widetilde{Q}^{\mathrm{H}} \mathrm{TQ}
\end{array}\right]\right\|_{2}=\left\|\left[\begin{array}{c}
Q^{\mathrm{H}} \\
\widetilde{Q}^{\mathrm{H}}
\end{array}\right] \mathrm{TQ}-Q Q^{\mathrm{H}} \mathrm{TQ}\right\|_{2} \\
& =\left\|\mathrm{TQ}-Q Q^{\mathrm{H}} \mathrm{TQ}\right\|_{2}=\left\|\left[\mathrm{TQ}-Q Q^{H} \mathrm{TQ}, 0\right]\right\|_{2} \\
& =\left\|\left[T Q-Q Q^{H} T Q, 0\right]\left[\begin{array}{l}
Q^{H} \\
\tilde{Q}^{H}
\end{array}\right]\right\|_{2} \\
& =\left\|T Q Q^{H}-Q Q^{H} T Q Q^{H}\right\|_{2} \text {. }
\end{aligned}
$$

Similarly, $\left\|\tilde{Q}_{j}^{\mathrm{H}} \mathrm{TQ}_{j}\right\|_{2}=\left\|T Q_{j} Q_{j}^{H}-Q_{j} Q_{j} \mathrm{H}_{\mathrm{H}} Q_{j} Q_{j}^{\mathrm{H}}\right\|_{2}$. Since $\left\|Q_{j} Q_{j}^{H}-Q Q^{H}\right\|_{2} \rightarrow 0$, we see that $\left\|\widetilde{Q}_{j}^{H} T Q_{j}\right\|_{2} \rightarrow\left\|\widetilde{Q}^{H} T Q\right\|_{2}$. But $\widetilde{Q}^{H} T Q=0$ since the space Y_{k} spanned by the columns of Q is invariant under T and the columns of \widetilde{Q} are orthogonal to those of Q. Hence

$$
\begin{equation*}
\left\|\tilde{Q}_{j}^{\mathrm{H}} \mathrm{TQ}_{\mathrm{j}}\right\|_{2} \rightarrow 0 \text { as } \mathrm{j} \rightarrow \infty \tag{12.12}
\end{equation*}
$$

i.e., the matrix $U_{j}^{H} \mathrm{TU}_{\mathrm{j}}$ comes close to a block triangular matrix.

As we have seen earlier, the Schur vectors q_{1}, \ldots, q_{k} form an orthonormal basis of the invariant space Y_{k} of T associated with $\lambda_{1}, \ldots, \lambda_{k}$. Further, $\lambda_{1}, \ldots, \lambda_{k}$ are the eigenvalues of the $k \times k$ matrix $Q^{H} T Q$, and if v_{i} is an eigenvector of $Q^{H} T Q$ corresponding to λ_{i}, then $u_{i}=Q v_{i}$ is an eigenvector of T corresponding to λ_{i}, $i=1, \ldots, k$.

Stewart has suggested a technique for accelerating the convergence of approximate eigenvalues. It combines the simultaneous orthogonal iteration with what he calls a Schur-Rayleigh-Ritz step. It is as follows.

$$
\begin{aligned}
\text { For } j & =1,2, \ldots \text { let } \\
T Q_{j-1} & =\bar{Q}_{j} \bar{R}_{j} \text { (QR factorization) } \\
R_{j} & =\bar{U}_{j}^{H}\left(\bar{Q}_{j}^{H} T \bar{Q}_{j}\right) U_{j} \text { (Schur decomposition) } \\
Q_{j} & =\bar{Q}_{j} \bar{U}_{j} .
\end{aligned}
$$

where the diagonal entries of the upper triangular matrix R_{j} are in descending order of absolute value. Let $1 \leq i \leq k$. Then the $i^{\text {th }}$ diagonal entry of R_{j} is an approximation of λ_{i} of order $\left|\frac{\lambda_{k+1}}{\lambda_{i}}\right|^{j}$, provided $\left|\lambda_{i}\right|>\left|\lambda_{i+1}\right|$ (and of course, $\left|\lambda_{k}\right|>\left|\lambda_{k+1}\right|$) ([GV], pp. 212 and 311).

QR iteration

Assume that

$$
\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|
$$

and let u_{i} be an eigenvector of T corresponding to λ_{i}. Let $U_{0}=\left[u_{1}^{(0)}, \ldots u_{n}^{(0)}\right]$ be a unitary matrix such that for $\mathrm{k}=1, \ldots, \mathrm{n}-1$ 。

$$
\operatorname{span}\left\{u_{1}^{(0)}, \ldots, u_{k}^{(0)}\right\} \cap \operatorname{span}\left\{u_{k+1}, \ldots, u_{n}\right\}=\{0\}
$$

Then it follows by the convergence theory of the simultaneous or thogonal iteration ((12.10) and (12.11)) that if we let for

$$
\begin{equation*}
T U_{j-1}=U_{j} R_{j}(Q R \text { factorization }) \tag{12.15}
\end{equation*}
$$

for $j=1,2, \ldots$, then the $n \times n$ matrix $U_{j}^{\mathrm{H}} \mathrm{TU}_{j}$ tends to a block triangular form

$$
\left[\begin{array}{cc}
\mathrm{T}_{1,1}^{(\mathrm{k})} & \mathrm{T}_{1,2}^{(\mathrm{k})} \\
0 & \mathrm{~T}_{2,2}^{(\mathrm{k})} \\
\mathrm{k} & \mathrm{n}-\mathrm{k}
\end{array}\right] \mathrm{k}
$$

for every $k=1, \ldots, n-1$, i.e., it converges to an upper triangular matrix R. Thus, $T_{j}=U_{j}^{H} T_{j}$ approximates a Schur decomposition of T. (Note that each U_{j} is unitary.) The $Q R$ iteration process arises by considering how to compute T_{j} directly from T_{j-1}. Now, since $T U_{j-1}=U_{j} R_{j}$, we have

$$
\begin{equation*}
T_{j-1}=U_{j-1}^{H} T U_{j-1}=U_{j-1}^{H}\left(U_{j} R_{j}\right)=\left(U_{j-1}^{H} U_{j}\right) R_{j} \tag{12.16}
\end{equation*}
$$ where $U_{j-1}^{H} U_{j}$ is unitary and R_{j} is upper triangular. If we let $Q_{j}=U_{j-1}^{H} U_{j}$, we obtain the $Q R$ factorization

$$
T_{j-1}=Q_{j} R_{j},
$$

of T_{j-1}. Then

$$
T_{j}=U_{j}^{H} T U_{j}=\left(U_{j}^{H} T U U_{j-1}\right)\left(U_{j-1}^{H} U_{j}\right)=R_{j} Q_{j}
$$

Thus, T_{j} is obtained by computing the $Q R$ factorization of T_{j-1} and multiplying the factors in the reverse order. The $Q R$ iteration is defined as follows.

$$
\text { Let } U_{0} \text { be a unitary matrix, and } T_{0}=U_{0}^{H} \mathrm{TU}_{0} \text {. }
$$

For $\mathbf{j}=1,2, \ldots$, let
$T_{j-1}=Q_{j} R_{j}$ (QR factorization)

$$
T_{j}=R_{j} Q_{j}
$$

The starting unitary matrix U_{0} can be chosen so that $T_{0}=U_{0}^{H} T U_{0}=\left[h_{i, j}\right]$ is upper Hessenberg, i.e., $h_{i, j}=0$ for all i and j which satisfy $i>j+1$. In fact, U_{0} can be obtained as a product of ($\mathrm{n}-2$) Householder matrices. (See (6) of Appendix II.) A stable algorithm which reduces T to an upper Hessenberg form in this way requires $\frac{5}{3} n^{3}$ flops and is given in [GV], p. 222.

Let T_{0} be upper Hessenberg and invertible. Then all the iterates T_{j} of the $Q R$ iteration (12.17) are upper Hessenberg (Problem 12.4). Hence the number of flops of each $Q R$ iteration comes down to $O\left(n^{2}\right)$
from $O\left(n^{3}\right)$. In case T_{0} is not invertible, the zero eigenvalue of T_{0} emerges after just one QR step. (See Problem 12.6.) Also, an indication of the distance from the span of the first k columns of U_{j} to span $\left\{u_{1}, \ldots, u_{k}\right\}$ is given by the single nonzero entry of the subdiagonal block of dimension $(n-k) \times k$ of T_{j}, namely, by $t_{k+1, k}^{(j)}$. Further, if the upper Hessenberg matrix $T_{0}=U_{0}^{H_{T U}} \mathrm{TU}_{0}=\left[h_{i, j}\right]$ is unreduced, i.e., $h_{i+1, i} \neq 0$ for each $i=1, \ldots, n-1$, then the condition (12.14) for the convergence of the $Q R$ iteration is always satisfied (Problem 12.5). In case $h_{i+1, i}=0$ for some i, then the eigenvalue problem for T_{0} (and hence for T) gets decoupled into two smaller eigenvalue problems of order i and $n-i(c f .(12.1)$).

We had assumed $\left|\lambda_{1}\right|>\left|\lambda_{2}\right|>\ldots>\left|\lambda_{n-1}\right|>\left|\lambda_{n}\right|$ to motivate the principle behind the $Q R$ iteration. In this case the matrix T_{j}, which is unitarily similar to T, converges to an upper triangular matrix R having its diagonal entries equal to the eigenvalues of T arranged in order of decreasing modulus. When T has a number of eigenvalues of equal modulus, the limiting matrix is no longer triangular, but if $|\lambda|$ occurs p times as the modulus of an eigenvalue of T, then T_{j} tends to have an associated diagonal block submatrix of order p; this submatrix does not tend to a limit, but its eigenvalues converge to the p eigenvalues whose modulus is $|\lambda|$. (See [WI].)

Shifts of origin are employed to speed up the convergence of the $Q R$ iteration. If $z_{j} \in \mathbb{C}$ is the shift at the j-th step, the shifted QR algorithm reads:

$$
\begin{aligned}
U_{0} \text { unitary, } T_{0} & =U_{0}^{H} T_{0} \\
T_{j-1}-z_{j} I & =Q_{j} R_{j} \text { (QR factorization) } \\
T_{j} & =R_{j} Q_{j}+z_{j} I .
\end{aligned}
$$

Of ten the shift $z_{j}=t_{n, n}^{(j)}$, which is the last entry of T_{j}, is chosen; the Wilkinson shift equals the eigenvalue of the bottom right 2×2 submatrix $\left[\begin{array}{ll}t_{n-1, n-1}^{(j)} & t_{n-1, n}^{(j)} \\ t_{n, n-1}^{(j)} & t_{n, n}^{(j)}\end{array}\right]$ which is closer to $t_{n, n}^{(j)}$.

There is another process, called the LR iteration which historically preceded the $Q R$ iteration: Let L_{O} be a lower triangular $n \times n$ matrix with 1 's on the diagonal, and $T_{0}=L_{0}^{-1} T_{0}$. For $j=1,2, \ldots, \quad$ let

$$
\begin{aligned}
& T_{j-1}=L_{j} R_{j} \quad \text { (LR factorization) } \\
& T_{j}=R_{j} L_{j}
\end{aligned}
$$

Although an arbitrary matrix may not have an $L R$ factorization (cf. Theorem 1 of Appendix II), Rutishauser showed that if T has eigenvalues of distinct moduli, then in general T_{j} tends to an upper triangular form, the diagonal entries tending to the eigenvalues of T arranged in order of decreasing modulus. In case of eigenvalues of equal modulus, the behaviour is similar to that of the QR iteration. The matrix L_{0} may be chosen so that T_{0} is upper Hessenberg. The $L R$ algorithm can be modified by allowing partial pivoting when a matrix does not have a $L R$ factorization or has a numerically unstable LR factorization. (Cf Theorem 2 of Appendix II):

For $\mathfrak{j}=1,2, \ldots$,

$$
\begin{aligned}
& T_{j-1}=P_{j} L_{j} R_{j} \\
& T_{j}=R_{j} P_{j} L_{j}
\end{aligned}
$$

where P_{j} is a permutation matrix. Also, shifts of origin can be introduced to speed up the convergence.

For both $Q R$ and $L R$ iterations, we ultimately have

$$
\mathrm{U}^{-1} \mathrm{TU}=\mathrm{R},
$$

where R is upper triangular and U is the product of all the transformation matrices used in the execution of the iteration process; if this product is retained, then we can calculate the eigenvector of T in a manner described earlier. (See (12.2).)

If only a few of the eigenvectors of T are needed, one can proceed as follows. In practice we obtain only an approximation \widetilde{R} of R with diagonal entries μ_{1}, \ldots, μ_{n}. Since μ_{i} is very close to λ_{i} but in general not equal to it, we can assume that $\mu_{i} \in \rho(T)$. With an almost arbitrary starting vector x_{0}, we can employ the inverse iteration with a fixed shift $z_{0}=\mu_{i}$. (See (12.7).) We remark that if the matrix T is very large, then the $Q R$ iteration (to find the eigenvalues) and the inverse iteration (to find a single eigenvector) can be impractical to implement. (Note that in inverse iteration, one has to solve a large system of linear equations arising from $\left.\left(T-z_{0} I\right) x=x_{0}.\right)$ In this situation, the methods discussed in Section 11 can be useful, where a small eigenvalue problem for a nearby matrix T_{0} of size $n_{0} \times n_{0}$ is first solved and then a solution of an $n_{0} \times n_{0}$ system of linear equations is computed. See Sections 17 and 18 for the algorithms constructed for these methods.

Self-adjoint meatrices

If T is self-adjoint (i.e., $T^{H}=T$), and $T_{0}=U_{0}^{H} T U_{0}$ is upper Hessenberg, then, in fact, T_{0} is tridiagonal (i.e., has zeros everywhere below the principal subdiagonal and above the principal superdiagonal.) If a fixed shift is used, then the self-adjoint and the
tridiagonal character is maintained in the $Q R$ iteration process. In case the entries of T are real there is no need for complex shifts since the eigenvalues of T are also real. Then the Householder tridiagonalization as well as the $Q R$ algorithm with Wilkinson's shift both require $\frac{2}{3} n^{2}$ flops each. (See [GV] pp. 277 and 282.) The symmetric $Q R$ algorithm is one of the most effective and elegant methods of solving eigenvalue problems, especially for small and full matrices.

In case T is large and sparse, the Householder tridiagonalization becomes impractical because multiplication by Householder matrices destroys sparsity, and we may end up with large full matrices. Starting with an arbitrary first column $u_{1}^{(0)}$ with $\left\|u_{1}^{(0)}\right\|_{2}=1$, we can, however, attempt to find directly a unitary matrix $U_{0}=\left[u_{1}^{(0)}, \ldots, u_{n}^{(0)}\right]$ such that $T_{0}=U_{0}^{H} T U_{0}$ is tridiagonal. Let

$$
\mathrm{T}_{0}=\left[\begin{array}{ccccc}
\alpha_{1} & \beta_{1} & & & \\
\beta_{1} & \alpha_{2} & \cdot & \cdot & \\
& \cdot & \cdot & \cdot & \beta_{\mathrm{n}-1} \\
& & \cdot & \beta_{\mathrm{n}-1} & \alpha_{\mathrm{n}}
\end{array}\right]=\mathrm{U}_{0}^{\mathrm{H}} \mathrm{TU}_{0}
$$

Since $T U_{0}=U_{0} T$, we have (with $\beta_{0} u_{0}^{(0)}=0$),
(12.18) $T u_{i}^{(0)}=\beta_{i-1} u_{i-1}^{(0)}+\alpha_{i} u_{i}^{(0)}+\beta_{i} u_{i+1}^{(0)}, \quad i=1, \ldots, n-1$.

As $u_{i}^{(0)}$ must be orthogonal to $u_{i-1}^{(0)}$ and $u_{i+1}^{(0)}$, and have Euclidean norm 1 . we see that

$$
\begin{equation*}
\alpha_{i}=\left[u_{i}^{(0)}\right]^{H} \mathrm{Tu}_{i}^{(0)}, \quad i=1, \ldots, n-1 \tag{12.19}
\end{equation*}
$$

Then, if we let

$$
\tilde{u}_{i}=\left(T-\alpha_{i} I\right) u_{i}^{(0)}-\beta_{i-1} u_{i-1}^{(0)}
$$

(12.18) shows that $\tilde{u}_{i}=\beta_{i} u_{i+1}^{(0)}$. If we choose $\beta_{i}=\left\|\tilde{u}_{i}\right\|_{2}$, then

$$
\begin{equation*}
u_{i+1}^{(0)}=\tilde{u}_{i} / \beta_{i}, \text { provided } \beta_{i} \neq 0 \tag{12.20}
\end{equation*}
$$

This tells us how to find the $(i+1)-s t$ column of U_{0} iteratively as long as $\beta_{i} \neq 0$. It can be shown by induction that $\beta_{k}=0$ if and only if $\mathrm{k}=\operatorname{dim} \operatorname{span}\left\{\mathrm{u}_{1}^{(0)}, \mathrm{Tu}_{1}^{(0)}, \ldots, \mathrm{T}^{\mathrm{n}-1} \mathrm{u}_{1}^{(0)}\right\}$. If $\beta_{\mathrm{k}}=0$ for $\mathrm{k}<\mathrm{n}$, then the eigenvalue problem gets decoupled. If $\beta_{k} \neq 0$, then for $\mathrm{i}=1, \ldots, \mathrm{k}+1$, we have by induction, (12.21) $\operatorname{span}\left\{u_{1}^{(0)}, \ldots, u_{i}^{(0)}\right\}=\operatorname{span}\left\{u_{1}^{(0)}, T u_{1}^{(0)}, \ldots, T^{i-1} u_{1}^{(0)}\right\}$. Thus, the columns $u_{1}^{(0)}, \ldots, u_{i}^{(0)}$ of U_{0} form an orthonormal basis for the Krylov subspace $K\left(u_{1}^{(0)}, T, i\right) \equiv \operatorname{span}\left\{u_{1}^{(0)}, T u_{1}^{(0)}, \ldots, T^{i-1} u_{1}^{(0)}\right\}$.

The above property is the foundation of another iterative method known as the Lanczos method for finding approximate eigenelements of a self-adjoint operator T. Starting with a unit vector $u_{1}^{(0)}$, sets of orthonormal vectors $u_{1}^{(0)}, \ldots, u_{i}^{(0)}$ are constructed such that (12.21) holds. This can be accomplished by using the formulae (12.18), (12.19) and (12.20). Let $Q_{i}=\left[u_{1}^{(0)}, \ldots . u_{i}^{(0)}\right]$. Then the minimax characterization (Theorem 12.6) gives

$$
\begin{aligned}
& M_{i}=\lambda_{1}\left(Q_{i}^{H} T Q_{i}\right)=\max _{x \neq 0} q\left(Q_{i} x\right) \leq \max _{x \neq 0} q(x)=\lambda_{1}(T), \\
& m_{i}=\lambda_{i}\left(Q_{i}^{H} T Q_{i}\right)=\min _{x \neq 0} q\left(Q_{i} x\right) \geq \min _{x \neq 0} q(x)=\lambda_{n}(T) .
\end{aligned}
$$

By considering the directions of most rapid increase and decrease of the Rayleigh quotient $q(x)$, it can be seen that the property (12.21) guarantees $M_{i}<M_{i+1}$ and $m_{i+1}>m_{i}$, unless, of course, $M_{i}=\lambda_{1}(T)$ or $m_{i}=\lambda_{n}(T)$. (See [GV], p.323.) Note that $M_{n}=\lambda_{1}(T)$ and $m_{n}=\lambda_{n}(T)$. (Cf. Ritz theorem, [L], 27.14 for an infinite dimensional analogue.)

The orthonormal vectors $u_{1}^{(0)} \ldots, u_{i}^{(0)}$ are called Lanczos vectors. The extremal eigenelements of the matrix $Q_{i}{ }^{H} T Q_{i}$ give progressively better estimates of the extremal eigenelements of T as i increases to n. This method is quite useful in dealing with large sparse matrices. The Lanczos algorithm requires $(4+\mathrm{k}) \mathrm{n}$ flops to execute, if each matrix-vector product is assumed to involve only kn flops (k being much smaller than n, due to the sparsity of T).

There are other special methods for approximating eigenelements of a self-adjoint matrix T such as the Jacobi methods and the bisection method. We refer the interested reader to Section 8.5 of [GV]. The Rayleigh quotient iteration (12.8) is an effective method of computing a single eigenpair because of its global cubic convergence (Theorem 12.7).

Problems

12.1 An $n \times n$ matrix T is diagonal if and only if it is triangular as well as normal.
12.2 Gershgorin's theorem follows by noting that if λ is an eigenvalue of T and $\lambda \neq t_{i, i}$ for $i=1, \ldots, n$, then $T-\lambda I$ is not invertible but $D-\lambda I$ is invertible, where
$\mathrm{D}=\operatorname{diag}\left(\mathrm{t}_{1,1}, \ldots, \mathrm{t}_{\mathrm{n}, \mathrm{n}}\right)$, and hence

$$
1 \leq\left\|(D-\lambda I)^{-1}(T-D)\right\|_{\infty}=\sum_{\substack{j=1 \\ j \neq i}}^{n}\left|t_{i, j}\right| /\left|\lambda-t_{i, i}\right|
$$

for some $\mathrm{i}, 1 \leq i \leq n$.
12.3 Let T be normal, $x_{0} \in X$ with $\left\|x_{0}\right\|_{2}=1$. Let z_{j} and x_{j} be defined as in (12.8) for $j=1,2, \ldots$. Then by (8.9),

$$
\left\|\left(T-z_{j+2} I\right) x_{j+1}\right\|_{2} \leq\left\|\left(T-z_{j+1} I\right) x_{j+1}\right\|_{2} \leq\left\|\left(T-z_{j+1} I\right) x_{j}\right\|_{2}
$$

12.4 Let T_{0} be upper Hessenberg and invertible. Then for $j=1,2, \ldots$, the matrix T_{j} in the $Q R$ iteration (12.17) satisfies $T_{j}=R_{j} T_{j-1} R_{j}^{-1}$ and hence is upper Hessenberg.
12.5 Let $T_{0}=U_{0}^{H} T U_{0}$ be unreduced upper Hessenberg, and let $U_{0}=\left[u_{1}^{(0)}, \ldots, u_{n}^{(0)}\right]$. Let $\left(\lambda_{1}, u_{1}\right), \ldots,\left(\lambda_{n}, u_{n}\right)$ be eigenpairs of T with $\left|\lambda_{1}\right|>\ldots>\left|\lambda_{\mathrm{n}}\right|$. Then for every $\mathrm{k}=1, \ldots, \mathrm{n}-1$,

$$
\operatorname{span}\left\{u_{1}^{(0)}, \ldots, u_{k}^{(0)}\right\} \cap \operatorname{span}\left\{u_{k+1}, \ldots, u_{n}\right\}=\{0\}
$$

12.6 Let T_{0} be unreduced upper Hessenberg and singular, and let $T_{0}=Q_{1} R_{1}$ be the $Q R$ factorization. Then the last entry $r_{n, n}^{(1)}$ of R_{1} is zero. The zero eigenvalue thus emerges in the lower right hand corner in one step of the $Q R$ iteration.

