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This section is devoted to a review of some :i.mportant methods: of 

finding eigenelements of an operator T : (Cn ..;; cf" . Let T be 

represented the n x :n matrix [ti.j] with respect to the standard 

basis el' ... ' 

letter T . Then 

of ~. We shall denote this matrix also by the 

- -H =[t .. ]=r. 
J,l 

Before we discuss the matrix eigenvalue problem, we describe some 

decompositions of a matrix. The motivation for these results comes from 

the following facts. H 'T is a diagonal matrix (i.e., . = 0 if 
,J 

i # j) , then clearly the diagonal entries are the eigenvalues of T 

with e 1 , ... ,en as the corresponding eigenvectors. Next, if T is an 

upper triangular matrix (i.e., t .. = 0 
l,J 

H Jl > j ), then again the 

diagonal entries are the eigenvalues of T , but for a fixed i , e. 
l 

is not an eigenvector (corresponding to 

all j > i . If T is partitioned as 

( 12. 1) T 

k 

t. . ) unless 
1,1 

t .. 
1,J 

0 for 

then the eigenvalues of T consist of the eigenvalues of Tl,l and of 

T2 2 since det(T-zin) = det(T1 •1-zik)det{T2 •2-zin-k) . 

Also, if U is a unitary matrix, (i.e., UHu =I= uliH) , then 

the eigenvalues of T and of uHTu are the same; if x is an 

eigenvector of UHru corresponding to A , then Ux is a 

corresponding eigenvector of T . 
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11HJEORE!Il 1:2.1 (Schur decomposition) There exists z, unitary matrix U 

such that R = tfTU is upper triang,c!lar. Further, U can be so chosen 

that the eigenvalues , ... ,1\n of T appear in a given order along 

the of R . 

Stnce a matrix is diagonal if and only if it is upper triangular 

and cmmnutes w:i. th its conjugate tran.spose, :it follows by the above 

theorem that T is norm.al (i.e., 1Jlr = 'ITH j if and only if there is a 

unitary matrix U such tt>..at :is upper tri.angu1.ar. 

If 

a 

(12.2) 0 

0 0 

and )\ does not appea.r on t.he of R1 , 1 ~ then U:K is a 

r 1 
corresponding eigenvector of T , where x = l~J , with 

(R.l ., 
'~ 

i\l is upper trian.g;ular ~m.d invertible, 

this J.atter system ca.n be solved by back substitution. Similarly, if (, 

does not an. pear ,nn the diag_iJnal -'f P 
'Y VI - ~ \..2~2 

of corresponding; to 5\ whe:re y 

then 

ll··ol 
11 ' 
vj 

is an eigenvector 

with 

The column vectors of U are lmown as Schur vectors. 

Thus, for each k = 1 , ..... n 

subspace of T . If iA1 I ~ 

y 
k 

2: 

r. 
1' 

span{u1 ,. 

and 

is an invariant 

then 

u1 ,. 0. ,uk form an orthonormal basis for the spectral subspace 

associated with T cmd the eigenvalues Let 

U - ru n l k - !.. 1 , 0 0 
• '·-k~ 

and let Rk denote the k )( k leading pri:ncipal 
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submat:rix of R o If is an eigenvector of R. corresponding to ··-1{ . 

then is a,, eigenvector of T corresponding to fl.i for 

i = L ... ,k 

The p:roof of the Schur decomposition theorem is accomplished by 

induct:i.on on the order n of the matrix T ; no constructive proof is 

available. We shaH later describe a method, called the QR iteration, 

which generates matrices that approximate a Schur decomposition of T . 

A stable algor:i. however, is ava:Uable to construct a un.i tary matrix 

u0 such that 

entries below the principle subdiagonal equal to 0 . the comments 

after (12.17) 0) 

If we do not insist on un;i.tar!J equivaLence, T can be reduced to a 

form wh:Ich has zeros exc•ept possibly on the diagonal ai'J.d the 

principal superdiagonal. 

There exists an invertible nntrix 

diag(J1 , ... , 

ji 
[
A. 

1. 

0 

1 0 

is an n. X matrix with + . .. + n n 
1 p 

We remark th.:J.t T and W-1TW b..ave the same eigenvalues; if X is 

an eigenvector of corresponding to A , then Wx is a 

corresponding eigenvector of T 

Theorem 12.2 follows from ol6}, but again a stable algor:l.thm for 

accomplishing the result is unavailable. If none of the Jordan blocks 

J 1 have any l's on the main superdiagonal, then T is sa:l.d to be 

diagonalizable It is clear that this happens if and only 
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if each eigenvalue of T is semisimple, i.e., every generalized 

eigenvector of T is, in fact, an eigenvector of T 

Closely associated with a Jordan decomposition is the spectral 

decomposition 

(12.3) T 

where , ...• ~ are the distinct eigenvalues of T, P. is the 
l 

spectral projection associated with T and 

is the associated nilpotent operator (cf. (7.16)). 

I'ertunrba:tion resu.I-ts 

We list some important results that give estimates for the change 

in the eigenvalues when an n x n matrix T 
0 

is perturbed by the 

addition of another n x n rr.at:rix v0 to a matrix T = T0 + 

~ 12.3 (Garshgor:in circle theorem) AH the of T lie 

in the union of the n disks 

A. 
:1 

n 

I 
j:::l 

., 
. ! } 

,J ) 
1' ... 'n " 

j# 

A proof is indicated in Problem 12.2. This result gives an estimate of 

how close the diagonal entries of a matrix are to its eigenvalues. If a 

Gershgo:rin disk is disjoint from the other Gershgorin disks, then it 

contains only one eigenvalue of T ([GV], p.2C~). 

~ 12.4 Let R = uHTou be a Schur decomposition of To , and let 

R = R- diag(r 1 1 .... ,r ) . Let p 
, n~n 

be the smallest positive integer 

such tP~t RP = 0 Given an eigenvalue of there is 

a."l eigenvalue !1.0 of T0 such that 



p-1 
where e. = iiV 0 112 . L iiRil; 

1=0 

For a proof, see [GV], p.201. 
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TIF~RBI 12.5 (Ba.uer-Fike-Jiang-Kahan-Parlett) Let J "' W-1T0W be a 

Jordan decomposition of T0 , and let 1!. be the size of the largest 

Jordan block. Given an eigenvalue A of 

eigenvalue of such that 

T - T + - 0 there is an 

Note that I! = 1 if r 0 is diagonalizable. In general, the 

integer e in the above inequality can be replaced by the size of the 

largest Jordan block to which belongs. 

For a proof, see [J]. 

Theorems 12.4 and 12.5 suggest that if T0 is not normal, then a 

small change in T0 may produce a large chru~ge in its eigenvalues. A 

perturbation analysis for an individual simple eigenvalue of T0 and a 

corresponding eigenvector is given in Section 18. For a result on the 

perturbation of an invariant subspace of dimension k of T0 , we 

refer the reader to Theorems 7.2-4 and 8.1-7 of [GV]. 

In case the operator T is self-adjoint, all the eigenvalues of T 

are real and there is an orthonormal basis of ~n consisting of the 

eigenvectors of T Let us denote the i-th largest eigenvalue of T 

have the following result. 
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~ 12.6 (Courant-Fischer minimax characterization) If T is 

self-adjoint, then 

ma.x min q(x) • 
dim Y=k O#xEY 

where y denotes a subspace of ~ and is the Rayleigh 

quotient of T at x if. 0 . 

For a proof and several interesting consequences of this theorem 

regarding eigenvalues of perturbed self-adjoint operators, 1ne refer the 

reader to [WI] p.l00-·108. 

Iterative methods 

Most of the iterative methods for approximating eigenelements of an 

n x n matrix T depend on the following main idea . 

. ~h be the distinct eigenvalues of T {h ~ n) , 

arranged so that i~1 I 2 2 I~ I . Consider the spectral 

decomposition (12. of T : 

Then for j 1,2, ... ' 

(12.4) [ n fjl~j-i i] 
+ I !l. A, Dh . 

:i.=O IJ n 

then it is clear that the 

first k summations lin (12A) will dominate the others as j ~ 00 • The 

dominance would be sizeable if l~kl is much larger than l~+l I . 

To illustrate how this idea works in practice, and for the sa~e of 

simplicity, let us assume that T is diagonaLizable. 

be the eigenvalues of T arranged so that l/\1 ! 2 

u 1 , .•• ,u be a basis of C~ such that Tu1. ... n 

Let 

2 j)',n I , and let 

i = 1, ... ,n . 



Assume that 

and 

Then for 

(12.5) 

provided 

xO = clul + 

j 1 ,2, 0 •• ' 

Tjx 
0 = 

such that 

Tx. 1 # 0 
J-

Here 
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1 

0. 0 + c u with c 1 ¢ 0 nn 

r n 
[~~]j u 1 ] + I lclul 

i=2 

and for j 1,2, ... , define 

sgn. z. equals 0 if and equals 

z/lzl if Z#O. Thenitcanbeseenbyinductionon j that 

xj = sgn(y~jx0)Tjx0 / IITjx0 11 and that xj ~ x = sgn.(y~u1 )u1 / 11u1 11 as 

j ~ 00 • (See the proof of Theorem 11.12.) 

This is a variant of the Qower method discussed in Section 11. 

Note that all xj and x have norm 1 . The scalar factor sgn(y~jx0} 

ensures that the sequence (x .) 
J 

itself converges to a fixed eigenvector 

X of T. It is then clear that the Rayleigh quotients q(x .) 
J 

_ x~xj 
- H 

x.x. 
J J 

xRrx converge to the dominant eigenvalue A.1 = -H-- of T . It is apparent 
XX 

that (cf. Table 19.6) 

(12.6) I . 

If E p(T) is closer to an eigenvalue 1\ of T than to any 

other eigenvalue, we can apply the above considerations to the operator 

and obtain the following variant of the inverse iteration: 
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Let x0 € ~, be such that 

j 1,2, ... , let 

(T-z0I}~j = xj-1 
(12.7) 

H~ 
sgrn(y0x.) 

X. J 
J ~~~-~~ 

J 

1 

X. 
J 

and let Y € !Jf . 
0 

For 

If in the j-th step we use a shift equal to the P.ayleigh quotient of T 

at the previous iterate, we obtain the following version of the Rayleigh 

quotient iteration: 

Let x € ltn with 
0 

11x0 112 = 1 . 

H T 
zj = xj-l xj-l 

if is an eigenvalue of T , 

For j 

solve 

1 ,2,. ".' let 

(T-z .I)~. = 0 
J J 

(12.8) to find a corresponding eigenvector; otherwise, solve 

and normalize 

The residttals :r(x.'J = Tx. -
J J 

j 

monotonically if T is normal (Problem 12.3). 

::::X~ / 
J 

1,2, ... , decrease 

THBO~ 12.7 Let T be normal and zj € It Eilld xj € ~n be defined 

as in the Rayleigh quotient iteration (12.8). Then the sequence (zj} 

in converges; also, either (zj.xj) converges to an eigenpair of T 

which case the asymptotic :r21te is cubic, or (zj) converges {linearly) 

to a point equidista:r1t from k (L eigenvalues of T and the 

sequence (x.) does not converge. 
J 

A p:roof of this result, along w-ith a discussion of the Rayleigh 

quotient iteration for nonnormal watrices is given in [P]. The special 

case of self-adjoint operators is treated in Sections 4.6 to 4.9 of 

[PA]. 
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If we wish to find several eigenvectors of T associated either 

with the dominant eigenvalue o:r with a few of the largest (in modulus) 

eigenvalues of T , then we need to look beyond the power method. 

Also, the power method fails if I = !1\2 1 , and it converges very 

is near !1\1 I . Actually, the power method is a 

process of iteration on the sub:spaces defined 

F . "' span {Tx .· -JL} . So, more gene:ral.Iy, Wf! can :i. terate on a 
J .! 

k-dimensim1al subspace and hope to :reach a k-dimensional invariant 

subspace of T . In practice, one chooses a basis of the starting 

subspace and iterates on it by T . To achieve numerical stability and 

to make sure that the iterated basis vectors do not point in nearly the 

same direction, one can orthonormalize them at each step. This gives us 

the following simultaneous orthogonal iteration. 

Let the eigenvalues of an arbitrary n x n matrix T satisfy 

Let (resp., denote the spectral subspace associated with 

it is of dimension 

k Let F0 be a k dimensional subspace of ~n such that 

(12.9) 

Since the dimensions of F0 and (Yk)~ add up to n , the condition 

(12. is almost always satisfied. In case T is diagonalizable and 

u 1 , ... ,un is a basis of eigenvectors of T corresponding to 

A1 , ... ,1\n, the condition (12.9) is equivalent to 



217 

Consider an orthonormal basis of 

J be the n x k rr.atrix with colullllls 

i = 1, ... ,k. For j = 1,2, ... , let 

be the QR factorizati011.Q (See Theorem 4 of 

is of rank k If i(j) en 
[ql ' ... ,qk ] 

Given e '· 0 there is a constant c) / 

+ f:. 
j 

(12.11) B(Tj ~ e 

Appendix H.} 

j), 
J 

such 

.] 

then 

that 

1,2, 

and let 

Then each 

For the definition of the gap ll(TJ , Yk) , see (2.4). The proof of 

this result is quite involved and we refer the reader to [G''I), p.212. 

Also, see [W], p.430 for an outline of the proof ·zyvhen T is 

diagonaHzable; in that case, we can let e = 0 in (12.11}. 

The above result shows truH as ~l _.., fr> the space spanned by the 

columns of 

rate 
/1. • 
l~k+liJ 
I "A k 

Note ttat 

.[.en span,.q1 · , ... , 

of yk and Q 

comes close to the i:nvad.ant subspace Yk of 1' at the 

(12.6)). 

is the orthogonal. projection with ra.nge 

(j)l, - 'f,j(F ) 
j - -0 If is ru1 orthonormal basis 

[ql' ... ,ql J 
K 

then the orthogonal projection onto 

is given by 
H 

QQ {See Problem 2. 7.) Also, by {2.6) 

which tends to zero as j --7 00 • 

H 
IIQ.Q. 

J J 
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Consider unitary matrices U Then 

Now, 

Similarly, IIQ~fQj 
H 

- QQ 112 -!> 0 ' 

since the spa.ce Yk 

H = ~ITQ.Q. -
J J 

[~fQj 
Q?Qj 

Since 

we see that IIQ~Q .1!2 -l> I!QHTQII2 But QHrQ = 0 
J J 

speu~ed by the columns of Q is invariant under 

and the columns of Q are1 orthogcmal to those of Q . Hence 

(12. 12) ..,}0 as j-1> 00 , 

i.e., the matrix ?uj comes close to a block triangular matrix. 

As we have seen earlier, the Schur vectors form an 

orthonormal basis of the invariant space Yk of T associated with 

, ... ,Ak. Further, , ... ,Ak are the eigenvalues of the k x k 

T 

is an eigenvector of QRyQ corresponding to 

then u 1 = Qv1 is an eigenvector of T corresponding to 

j 1' ... ,k . 

Stewart has suggested a technique for accelerating the convergence 

of approxJ.mate eigenvalues. It combines the simultnneous orthogonal 

iteration with what he calls a Schur-Rayleigh-Ri tz step. It is as 

follows. 
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For j = 1,2, ... , let 

TQ. 1 = Q.R. (QR factorization) 
J- J J 

(12.13) Rj = uj(Q~Qj)Uj (Schur decomposition) 

Qj = Qjuj • 

where the diagonal entries of the upper triangular matrix R. are in 
J 

descending order of absolute value. Let 1 ~ i ~ k . Then the ith 

diagonal entry of R. is an approximation of A. of order 
J 1 

provided !Ail> 1Ai+1 I (and of course, 1~1 > 1~+1 I) ([GV], pp.212 

and 311). 

QR iteration 

Assume that 

and let ui be an eigenvector of T corresponding to Ai Let 

u0 = [u~0l, ... ,u~0)] be a unitary matrix such that for 

k = 1, ... ,n- 1 , 

(12.14) (0) (0) 
span{u1 ·····~ } n span{~+1, ... ,un} = {0} 

Then it follows by the convergence theory of the simultaneous orthogonal 

iteration ((12.10) and (12.11)) that if we let for 

(12.15) TU. 1 = U.R. (QR factorization) , 
J- J J 

for j = 1,2, ... , then the n x n matrix ~j tends to a block 

triangular form 

[
T(k) 

1.1 

0 

k 

T~~Jl k 

T{k) n-k 
2,2 
n-k 
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for every k = l, ... ,n- 1 , i.e., it converges to an upper triangular 

matrix R. Thus, T. = ~U. approximates a Schur decomposition of 
J J J 

T . (Note that each U. is unitary.) The QR i tera.tion process 
J 

arises by considering how to compute T. directly from T. 1 J J-
Now, 

since we have 

(12.16) 

where U~ 1u. is unitary and R. is upper triangular. If we let 
J- J J 

R 
QJ. = U. 1u. we obtaf,n the QR factorization 

J- J 

of Tj-l Then 

T. = ~TU. = (U~TU._1 )(lf!_ 1U.) = 
J J J J J J J 

Thus, is obtained by computing the QR factorization of 

multiplying the factors in the reverse order. The QR iteration is 

defined as follows. 

(12.17) 

Let u0 be a unitary matrix, and T0 = ~u0 . 

For j=l,2, ... , let 

The starting unitary matrix u0 can be chosen so that 

T0 = U~O u0 = [h .. ] is upper Hessenberg, i.e., h .. == 0 for all i 
l,J l,J 

and 

and j which satisfy i ) j + 1 . In fact, u0 can be obtained as a 

product of (n-2) Householder matrices. (See (6) of Appendix II.) A 

stable algorithm which reduces T to an upper Hessenberg form in this 

way requires 5 3 3 n flops and is given in [GV], p.222. 

Let T0 be upper Hessenberg and invertible. Then all the iterates 

T. of the QR iteration (12.17) are upper Hessenberg (Problem 12.4). 
J 

Hence the number of flops of each QR iteration comes down to O(n2 ) 



from 3 
O(n ) 
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In case is not invertible, the zero eigenvalue of 

T0 emerges after just one QR step. (See Problem 12.6.) Also, an 

indication of the d.ista.."1ce from the span of the first k columns of u. 

to span {u1 , ... ,uk} is given by the single nonzero entry of the 

subdiagon_al block of dimension x k 

Further, if the upper Hessenberg matrix 

gnreduced, i . e. , h.L1 . # 0 for each i 
l.""'il '1 

f T 0. - j ' 

T0 = d1ru 0 0 

namely, by 

[h .. ] is 
1,J 

1 ' then the 

) 

condition (12.14) for the convergence of the QR iteration is always 

k 

satisfied (Problem 12. In case 
• i 

0 for some i then the 

J 

eigenvalue problem for T0 (and hence for T } gets decoupled into two 

smaller eigenvalue problems of order i and n. - i (cL (12.1)). 

We had assumed ll\1 I ) I > ... > ) IX I to motivate the 
n 

principle behind the iteration. In this case the matrix 

which is unitarily similar to T , converges to an upper triang11lar 

matrix R having its diagonal entries equal to the eigenvalues of T 

arranged in order of decreasing modulus. i'lhen T has a number of 

eigenvalues of equal modulus, the limiting matrix is no 

triangular, but if li\1 occurs p times as the modulus of an 

eigenvalue of T , then tends to have an associated diagonal block 

subw.atrix of order p ; this subrratr:i.x does not tend to a limit, but 

its eigenvalues converge to the p eigenvalues whose modulus is ll\1 

(See [WI].) 

Shifts of origin are employed to speed up the convergence of the 

zj € !C 

QR algorithm reads: 

QR iteration. If is the shift at the j-th step, the shifted 

uo unitary, T 
0 ~uo 

T. 1 - z.I = Qlj (QR factorization) 
J- J 

T. = RjQj + z.I 
J J 
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Of ten the shift = t(j) , which is the last entry of TJ. , is 
n,n 

chosen; the Ylilkinson shift equals the eigenvalue of the bottom :right 

[

t(j) 
n-l,n-1 

2 l< 2 submatrix 
t(j) 
n,n-1 

which is closer to (j) 
n 

There is another process, called the LR iteration which 

historically preceded the QR iteration: Let L0 be a lower triangular 

n x n matrix wj th ] 's on the diagonaL and 

j 1,2, ... , let 

T. 1 J-

T. R.L. 
J .] J 

(LR factorization) 

For 

Although an arbitrary matrix may not have an LR factorization (cf. 

Theorem 1 of Appendix II), Rutishauser showed that if T has 

eigenvalues of distinct moduli, then in general T. 
J 

tends to an upper 

triangular form, the diagonal entries tending to the eigenvalues of T 

arranged in order of decreasing modulus. In case of eigenvalues of 

equal modulus, the behaviour is similar to that of the QR iteration. 

The matrix L 
0 

may be chosen so that is upper Hessenberg. The 

algorithm can be modified by allowing partial pivoting when a matrix 

does not have a LR factorization or has a numerically unstable LR 

factorization. (Cf Theorem 2 of Appendix II): 

For j = 1,2, ... , 

= PjLlj 

R.P.L. 
J J J 

where P. is a permutation matrix. Also, shifts of origin can be 
J 

introduced to speed up the convergence. 

LR 
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For both QR and LR i terat:!.ons, we ul tirrately have 

-1 
U TU::R, 

where R is upper triangular and U is the product of all the 

transformation matrices used in the execution of the iteration process; 

if this product is retained, then we can calculate the eigenvector of T 

in a manner described earlier. (See (12.2).) 

If only a few of the eigenvectors of T are needed, one can 

proceed as follows. In practice we obtain only an approximation R of 

R with diagonal entries Since is very close to A.. 
l 

but in general not equal to it, we can assume that f-L. € p(T) . With an 
l 

almost arbitrary starting vector x0 , we can employ the inverse 

iteration with a fixed shift (See (12.7).) We remark that 

if the matrix T is very large, then the QR :i.teration (to find the 

eigenvalues) and the inverse iteration (to find a single eigenvector) 

can be impractical to implement. (Note that in inverse iteration, one 

has to solve a large system of linear equations arising from 

(T-z0 I)x = x0 .) In this situation, the methods discussed in Section 11 

can be useful, where a small eigenvalue problem for a nearby matrix T0 

of size is first solved and then a solution of an n0 x n0 

system of linear equations is computed. See Sections 17 and 18 for the 

algorith~s constructed for these methods. 

Self-adjoint matrices 

If T is self-adjoint (i.e., TH = T), and To= u~o is upper 

Hessenberg, then, in fact, r 0 is tridiagonal (i.e., has zeros 

everywhere below the principal subdiagonal and above the principal 

superdiagonal.) If a fixed shift is used, then the self-adjoint and the 
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tridiagonal character is maintained in the QR iteration process. In 

case the entries of T are real there is no need for complex shifts 

since the eigenvalues of T are also real. Then the Householder 

tridiagonalization as well as the QR algorithm with Wilkinson's shift 

both require in2 flops each. (See [GV] pp.277 and 282.} The 

symmetric QR algorithm is one of the most effective and elegant 

methods of solving eigenvalue problems, especially for small and full 

matrices. 

In case T is large and sparse, the Householder tridiagonalization 

becomes impractical because multiplication by Householder matrices 

destroys sparsity, and we may end up with large full matrices. Starting 

with an arbitrary first column u~O) with llu~O} 112 = 1 , we can, 

however, attempt to find directly a unitary matrix u0 = [u~0>, ... ,u~0)] 

such that To =~o is tridiagonal. Let 

a1 (31 

To = (31 a2 
f3n-1 

f3n-1 a n 

(0} - (0) (0) (0} (12.18) Tu. - f3i 1u. 1 + a.u. + (3.u. 1 1 - 1- 1 1 1 1+ 

As must be orthogonal to u~O) 
1-1 

norm 1 , we see that 

and 

=~o· 

i 

(0) 
ui+1 ' 

1, ... ,n - 1 . 

and have Euclidean 

(12.19} i = 1, ... ,n- 1 . 

Then, if we let 
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(12.18) sho·~rs that If we choose then 

(12.20) 

This tells us how to find the (i+l)-st column of u0 i terat.ively as 

long as # 0 . It can be shoiD~ induction that Pk = 0 if and only 

then the eigenvalue problem gets decoupled. If fJh # 0 then for 
~· 

i == 1, ... ,k + 1 , we have by induction, 

{12.21) 

{0) (0) Thus, the columns u 1 , ... , u 1 of u0 form an orthonor!l~al basis for 

the Krylov ~ce K(u~0J,T,i} = span{u~0),Tu~0), ... ,Ti-lu~0)} . 

The above property is the foundation of another iterative method 

known as the La.11.czos method for finding approximate eigenelements of a 

self-adjoint operator T Starting with a 1.:m.t t vector sets of 

orthonormal vectors , ... ,ui0 ) are constructed such that (12.21) 

holds. Thts can be accomplished by using the formulae (12.18), (12.19) 

and (12.20). (0) (0) Let Q. = [u1 , ... ,u. ] 
1 . 1 

Then the minimax 

characterization (Theorem 12.6) gives 

(Q~Q.) =max q(Q,x) ~max q(x) = A1(T) 
11 x¢0 ~ xp£0 

M:. 
]. 

m1. -= A. (Q~Q.) = min q(Q.x) ~ mtn q(x) == "A (T) 
1 1 1 x#O 1 X#O n 

By considering the directions of most rapid increase and decrease 

of the Rayleigh quotient q(x} , it can be seen that the property 

(12.21) guarantees 

and m = A (T) 
n n 

!.f. < I>!:. 1 
l l+J. 

unless, of course, 

(Cf. Ritz theorem, [L], 27.14 for an infinite 

dimensional analog-..1e.) 
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The orthonormal vectors are called Lanczos vectors. 

The extremal eigenelements of the matrix give progressively 

better estimates of the extrema.! eigenelements of T as i increases to 

n . This method is quite useful in dealing with large sparse matr:i.ces. 

The Lanczos algorithm requires (4+k)n flops to execute, if each 

matrix-vector is assumed to involve kn flops being 

much smaller th~1 n due to the sparsity of T ) . 

There are other special methods for approximating eigenelements of 

a self-adjoint matrix T such e.s the Jacobi methods and the bisection 

method. We refer the interested reader to Section 8.5 of The 

Rayleigh quotient iteration (12.8) is an effective method of computing a 

single eigenpair because of its cubic convergence (Theorem 12. 

Problems 

12. 1 lim. n x n matrix T is diagonal H and only if it is triangular 

as well as normal. 

12.2 Gershgorin's theorem follows by noting that if A is an 

eigenvalue of T and )\ #-

not invertible but D AI 

D = diag(t1 1 , ... ,t ) , n,n 

for some i , 1 ~ i s n . 

12.3 

'i 

is 

and 

for i = 
invertible, 

hence 

n 

I 
j::::l 
j;,.!i 

be defined as in (12.8) for j = 1,2, ... 

1, .... n then T - A.I is 

where 

.I / IA.-t .. I 
'J l' l 

Let and x. 
J 

Then (8.9), 
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1.2.4 Let T0 be upper Hessenberg and invertible. Then for 

j = 1,2, ... , the 1natrix T. in the QR iteration (12.17) satisfies 
J 

-1 
T. :::: R .T. 1R. and hence is upper Hessenberg. 

J J J- J 

be unreduced upper Hessenberg, an.d let 

Let (11 1 , ) , ... , T 

with I > ... > Then for every k = 1 , ... , n - 1 , 

} n spa.'1{Uk ., , ... , 
'+.t 

{0} . 

12.6 Let To be unr-educed upper a.:nd singular, and let 

be the QR factorization. 'Then the last entry (1} of Rl r n,n 

is zero. The zero eigenvalue thus emerges :in the lower right hand 

corner in one step of the QH. i terat:i.on. 


