150

10. RAYLEIGH-SCHRODINGER SERIES

Let AO be a simple eigenvalue of TO € BL(X) and 20 be a
corresponding eigenvector. For V0 € BL(X) , consider the family of
operators T(t) = TO +tV, , t € C. For suitable values of t , we
develop an iterative procedure of obtaining an eigenvalue A(t) of

T(t) . and a corresponding eigenvector ¢(t) starting with the initial
terms AO and %o - We give conditions on t for which this procedure
is guaranteed to converge. We also discuss the question of the
simplicity of A(t) . and of its isolation from the rest of o(T(t)) .
The theory of linear perturbation developed in the last section will be

heavily relied on.

Since AO is a simple eigenvalue of TO with a corresponding

eigenvector 9o - it follows from Theorem 8.3 that there is an
) % 3¢ -
eigenvector %o of TO corresponding to the eigenvalue AO such that

(¢O,¢g> =1, and that the spectral projection PO associated with TO

and A is given by

0
10.1 Px = <x,9.> € X
(10.1) ok = X.epd9 X )
The reduced resolvent S0 associated with TO and AO satisfies
(10.2) SO = lim Ro(z)(I—PO) .
Z*%O

Let I' be a curve in p(To) which isolates AO from the rest of

U(TO) . Then Corollary 9.9 shows that for all t in the disk

(10.3) ar ={t€C : |t] < 1/max ra(VORO(z))} .
z€l
the operator T(t) has only one spectral value A(t) inside I , it

is a simple eigenvalue of T(t) , and t » A(t) is an analytic
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function on &8 Let the Taylor expansion of A(t) around O be

-
given by

t "
(10.4) A(t) = Ay + k§1 x(k)t . tE€d. .

Also, for all t with |t| sufficiently small,

P(t)e,

(10.5) o(t) = ——~
<P(t)ey.¢o>

is an eigenvector of T(t) corresponding to A(t) and it satisfies
S
(10.6) <¢(t),¢o> =1,

where P(t) is the spectral projection associated with T(t) and T .
Since ¢(t) is analytic on a neighbourhood of O , we can consider its
Taylor expansion around O :

o

k
(10.7) o(t) = Po * kgl ¢(k)t , t mear O .

. %
(Since P(O)<pO = PO¢O = 9q and (¢0,¢0> =1, we have ¢(0) = ® )

The series (10.4) and (10.7) are known as the Rayleigh-Schriodinger

series for T(t) with initial terms AO and % respectively.
We remark that instead of considering an eigenvector ?0 of TO

% >
corresponding to AO and the eigenvector %o of T0 corresponding to

XO which satisfies <wo,¢;> =1, we can consider any % € X,
x: € X* with <Pox0,x§> # 0 and the Taylor expansion of the analytic
function
P(t)xO
(10.8) x(t) =

<P(t)x, ,x3>

in a neighbourhood 0O . Although this flexibility in the choice of
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E 3
X0 € X and XO € X can be useful, we restrict ourselves to the case

Xo = 9o and x; = ¢z ., and leave the general case to Problem 10.1.

PROPOSITION 10.1 The coefficients in the Rayleigh-Schrodinger series

(10.4) and (10.7) are iteratively given by

E 3
My = VoP(x-1)%0”
X
(10.9) ?x) = SolVoP(r-1y * 121 ANiyP(k-1)]
k-1
= So(A (1) V0P (r-1) * 122 Ni)So?(k-1)
for k =1,2,..., where ¢(O) =9 -

In case X 1is a Hilbert space, T0 and V0 are self-adjoint, and

H¢0H =1, then

A(l) = <V0¢0,¢0> .
k k

Mawn) T Yorm) e’ T 2 2 Nae-n Py )

(10.10)

k=1,2,...

M T Voren) )’ T 2 L Naen ) )

k=2,3,...
Further, each A(k) is a real number.

Proof Since for all t mnear O , A(t) is an eigenvalue of T(t) and

¢(t) 1is a corresponding eigenvector, we have
T{t)e(t) = A(t)e(t) . i.

(To+tVo) [éo (p(k)tk] = {Z Mi)® ]["z" HON ]
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with ?0) = 90 and A(O) =Ny » by (10.4) and (10.7). Since T, and

VO are continuous operators, we have

© k
k+1
YoPat 2 [Eo Moy )

[ve] k [+
Y Ta@eat ==
k=0 O (k) k=0

Let us compare the coefficients of tk on both sides. For k=0, we
simply get

T

o%0 = N

0% -

This is the known fact that AO and ¢y are eigenelements of To .

For k =1,2,... , we have

k
(10.11) (ToMeDek)y = VoP(k-1) * 121 M) (k1) -

Now, by (10.6), we see that

(o]

E 3 ¥ k
1=<p(t)py> =1+ Y <¢(k),¢o>t
k=1
for all t near O . Hence
(10.12) < *> =0, k=1,2
. ‘P(k)-‘PO = s - sy o oo

Taking scalar products with ¢3 on both sides of (10.11) and using

(10.12), we obtain
* 3 % — %
since ¢; is an eigenvector of T: corresponding to XO . Thus,
Ay = <V > L k=12
(k) 0¢(k—1)’¢0 ’ T

Next, applying SO on both sides of (10.11), and noting that

3
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we have

MR

?(k) = So['vo“’(k—l) - x(i)w(k~i)] :

This proves (10.9), if we note that Sow =8 P0¢O

Let, now, T0 and V0 be self-adjoint operators on a Hilbert

0.

space X , and "?0" =1 . Then ¢§ =9 - We claim that for
k=3,4,... and m=1,...,k-2 ,

k-m—-1

o T Y tm) T L 2

MS

MNx-1-3) 2 (1) 9 (3)°

This relation can be proved for each fixed k by induction on m if we
use (10.9) and the self-adjointness of TO R So and VO . The proof
simply consists of a long calculation and we omit it. (Cf. [S]. Problem
14 on p.296.) Changing k to 2k+l and to 2k , and putting m =k ,
we obtain (10.10).

Since TO is self-adjoint, its eigenvalue AO is real. Let a

circle T with centre AO separate AO from the rest of U(TO) .

00
Then by Corollary 9.9, A(t) =N, + ) A tk is the only spectral
0 xo (¥

value of T(t) = T0 + tVo inside I' for all t € ar . Since A(t) is
a simple eigenvalue of T(t) ., and the conjugate curve T coincides
with T, it follows by Corollary 8.2(c) that A(t) Z . =

is tne only spectral value of [T(t)]* = To + EVO inside I for all

(k)fk is the only spectral value of

[e ]
t €38, . But A(t) =%+ kzl A

T(t) = TO + EVO inside I' for all t € ar . Thus, XA(t) = A(t) for
k

all t € 8. . This shows that A = A for all

r (k)

is real. /7

i.e., A

(k)



155

We note that the coefficients in the two Rayleigh-Schrodinger

series with initial terms AO and 9o can be calculated iteratively in

the following order:
My Pyt N2y )y Ne)y ey

In case TO and V0 are self-adjoint, then we can, in fact, find

N1y Pyt N2y Ney ) NayNe) )

in this order.
The calculation of the A(k)’s involves only the scalar products,
while the calculation of the w(k)‘s involves finding x = Son , where

n € X is such that Pon =0 . Since P.S, =0 and S

0% ol(I—PO)x is the

inverse of (TO—AOI)l(I_PO)(X) , we see that x 1is the unique element

of X such that

(TO—AOI)X =1, Bx=0.

0
For t€€C, and j=1.,2,..., let
% k
AL(t) =N, + Ap Nt
349 =% " 2 Mg
J
k
At) = + t .
‘PJ( ) ‘PO kZl ‘P(k)

where A(k) and @(k) are given by (10.9). Thus, Aj(t) and ¢j(t)
can be calculated in an iterative manner, and for |t| sufficiently
small, they converge to eigenelements A{t) and o(t) of T(t)
respectively, as j = .

It is of particular interest to know specific values of the
parameter t for which Aj(t) and ¢j(t) will approximate
eigenelements of T(t) ; a larger absolute value of such t implies

the possibility of allowing bigger perturbations. We note that the
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Rayleigh-Schriodinger series (10.4) for A(t) converges, 1i.e.,
Aj(t) - A(t) ., for all tE€ ar . It will then be advisable to choose a
suitable curve I' around AO so that ar is as large as possible; it
would also be helpful if we know some lower bounds for the radius of
such Br . The Rayleigh-Schriodinger series (10.7) for ¢(t) , however,
is known to converge only in some neighbourhood of O . This is because
the denominator (P(t)¢o,¢;> of ¢(t) may have a zero at some
to € ar ., and then, unless the numerator P(t)cpO also has a zero of
the same order at tg - we will have a pole of ¢(t) at ty - Thus,
it is usefu} to know the values of t € ar for which the denominator
does not vanish, and more generally, even if it vanishes, does not cause
a singularity of ¢(t) .

Before we address ourselves to the above questions, we remark that
if r is the radius of convergence of the series (10.7) for ¢(t) ,
then for every t with |t] < r , the series (10.7) and hence the
series (10.4) (since A(k) = <V0¢(k—1)’¢g>) converge to, say, ®(t) and

A(t) . Then we must have
T(€)(t) = A(t)8(t) , <B(t).pp> =1, forall lt|l <r .
This is because the analytic functions

£(t) = T(£)8(t) - A(£)2(t) and g(t) = <@(t).0>

are equal to O and 1 , respectively, on a neighbourhood of O , and
hence must equal O and 1 , respectively, in any domain in which they
are analytic and which contains O . This is an immediate consequence

of the identity theorem. (See Problem 4.2.) The above argument also
shows that if both the functions A(t) and ¢(t) have analytic
continuations to a domain D , which may be larger than the disk of

convergence of (10.7), then the continuations represent eigenelements of
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T(t) ., and the scalar product of the eigenvector with w: is equal to
1 . This is often possible if one knows the singularities of the limit
function on the circle of convergence.

By repeatedly shifting the origin to points where A(t) and ¢(t)

are analytic, we obtain Taylor expansions for A(t) and &(t) such as

M) = 3 Agy(ict I

B(t) = 2 By (t- B

where Ak and Qk can be calculated in terms of A(k) and ¢(k) .

These series converge very rapidly near the new origin tO .

Examples
We now consider simple examples to get an idea of what is involved
in finding the disk ar and in calculating the coefficients A(k) and

w(k) by the formulae (10.9). Other examples will be treated

numerically in Section 19.

(i) Let X=0¢2,

0 0 0 1/16
TO= and VO= .

4 0

(0] 3%
Let AO =2 and P9 = [ ] =% - If z#0, 2, then

[—llz 0 } [ 0 1/16(2—z)]
R = ., V.R =
o2 =1, 1/(2-z) A 0

Since det(VORo(z)—uI) = uz + 1/4z(2-z) , we see that
a(VORo(z)) = {+1/2z(2-2)} . Let Fe denote the circle with centre
Ay =2 and radius e < 2 . Then for z € r_ . we have |z-2] =

so that
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ra(VORo(z)) = 1/2Nelzl .,
max r (V.R.(z)) = 1/2e(2-€) .
ot 00
z€l
e
r
€
2-€ aF e :
Ag=2 € 2ve(2-€)
z-plane t-plane
Figure 10.1

Thus, O = {tecC: |t] < 2le(3-€)} . We find that the radius of O
3 3

is largest when € =1, i.e., when e = dist(AO,U(TO)\{AO})/2 , and

the radius of ar then equals 2 . We have
€

0 0 172 0
PO = and SO = = .

01 0O 0

{Cf. PA(t) and Sx(t) for t =0 in the example which illustrates
(7.8).) Now,

N 1/16
N1y = Voorvp> = [0.1] e 0,
172 0] [1/16 1/32
-S. V.o, = s
0'0%0 o o] |o 0

N 0
gy = Vor(1y%e> = [0:1] e 1/8 ,

#(1)

[l

1}
oy
o
[ ——]

172 0 0
*(2) = %) ol?q) = [ ]

0 0] |[1/8 0

%
A(B) = <V0¢(2)’WO> =0,
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?3) = S0P 1) Vol 2y T N2y%0?(1)

i/72 O 1/32 1/512
= - 1/8 = - )
(0] (0] (0] 0
5 0
A = <V o0 = =[0,1 = - 1/128 .
@) = Vofggyfo> =0

In two more steps, we would obtain ¢(4) = [g] . A(S) =0, and

1/4096
¢(5) = [ 0 ] . A(G) = 1/1024 . Thus, we have

At) = 2 + t2/8 - t/128 + tO/1024 ... ,
"0 /32 /512 24006

ot) = + — +
1 0 0 0
£/32 - t3/512 + t°/4006 . ..

1

If we calculate sufficiently many terms of the above series, we can see

that the series for A(t) 1is none other than the Taylor series for
1+ J1+t2/4 = LZ + J4+t2| s

where J4+t2 denotes the principal branch of the square root of 4+t2

NI

Similarly, ¢{t) has 1 as the second component while the first

component is given by the Taylor series for

1 2
- I [1 - J1+t /4| = - p{t)/4t ,
1 2
where pu(t) = 5 2 - N4+t . Thus

- pft)r4t
e(t) =

1
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It is easy to check that these results agree with the direct calculation

of the eigenvalues A(t) and p(t) of

0 t/16
T(t):T +tV“[ ],

0 0 4t 2

and the eigenvector ¢(t) corresponding to A(t) satisfying
<¢(t),¢:> =1 . (Cf. the example which illustrates (7.8).)

It can be seen that both the series for A(t) and ¢(t) converge
for [t] < 2 and hence represent eigenelements of T(t) . Moreover,
they have analytic continuations across every point on the circle of
convergence |t| =2 , except for the points t = +2i , and will

continue to represent eigenelements there.

(ii) Suppose that the operator T0 is diagonalizable, i.e., TO

can be represented by a diagonal matrix

diag(\,, By ”2"") s

with respect to a Schauder basis 9o+ X+ Kg oeno for X .Further

assume that there is a Schauder basis ¢3,XT,... of X* which is
. . LN * o B

adjoint to L ERERTIE PP <Xi’xj> = 6i,j s <¢0,xi> =0 = <xi,¢0>,

and <¢0,¢g> =1 . With respect to this basis T; is represented by

the diagonal matrix
diag(y‘\o, ,11, ﬁ2, .Y)

Suppose that dist(ko,{ul,uz,...}) >0, i.e., AO is a simple

eigenvalue of T0 . Then PO and SO are represented by the matrices

1 1

diag(1, 0, O0,...) and diagEO, — —f:——,...] , respectively. Also,
K17 Ho™o
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£
k(l) = <VO¢O,¢O> s

0

1 3%
go(l) = —SOV0<pO = - kz:l H <VO<PO,Xk>Xk N and
Aoy = Vg, o> = = § L Ve KV x>
(2) 0?(1) %o W2 B - Ay 0for Mk 0%k’ %0” -

The above formulae are often found in textbooks on quantum mechanics
"~ where X 1is assumed to be a Hilbert space and To is'a (usually

unbounded) self-adjoint operator, so that we have ¢3 = 9q and

3¢
X, =% . k=1,2,... . (Cf. [S], p.247.) Note that Al = AO + A(I)
and A2 = AO + A(l) + A(z) give the first order and the second order
approximations to the eigenvalue A of T = T0 + VO . It should be
noticed that in the expressions for ¢(1) and A(2) , the terms for
which Iuk—AOI is small dominate; these come from the eigenvalues of
T, which are closest to A, . In practice, only these terms are

(o] 0

considered to obtain approximations of ¢(1) and A(Z) .

We return to the consideration of the values of t € ar for which
the function ¢(t) = P(t)¢0/<P(t)¢o,¢3> is analytic. The first result
in this regard gives conditions on t wunder which the denominator does

not vanish. See [N], Theorem 2.3.1 for a similar result. We introduce

the following notations: For a curve I in p(TO) , let

. = max H(VORO(Z))zu .

z€l
(10.13) bO = max HVORO(Z)H .
z€l
3 . 2
Sy = B(T)HVO¢OH H¢OH / 2w[d1st(Xo,T)] ,

where 2(I') is the length of I' . Note that the constants a, bO

and <o depend on the curve T .
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PROPOSITION 10.2 Let

(10.14) + (a0+b0)cO <1.

20
Then for all t with |t]l <1, we have t € ar and
<P(t)¢0,¢;> # 0 ., so that the two Rayleigh-Schrodinger series (10.4)

and (10.7) converge to eigenelements of T(t).

Proof Since

2,172 _ 1/2

VoR < maxII[V R I <1,
mex To +(VoRo(Z)) e [VoRo(2)1] 24

it follows that t € ar for all t with Jtl ¢ 1 . Consider the

Kato-Rellich perturbation series (9.15)

s Kk
P(t) = P P, .t5 .
(9) =% * kZI (k)

Now, P and for k =1,2,... , we have by (9.16),

o%o = %o -

_nyktl

P = L‘E%Y" j} Ro(z)[VoRo(z)]k_lvoRo(z)wodz

dz .

(-1)k*1 [ Ry(2)[VoRo(2) T
r

2wi AO -z

since Ro(z)¢0 = ¢0/(A0—z) for z € p(TO) . Also, for x € X ,

3
<R0(z)x,¢0> = (z)x P0¢0> = <P R (z)x ¢0

(Ro(z)Pox,¢o>

1]
1}

<x,¢0>/(ho—z) ,

so that

dz

k+1 <[V R (z)] PP >
< W5 - (1) 0°0 o 0°%0
(x)%0° %0 21 J} (AO_Z)
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s — * - —
Putting k =1, we see that (P(1)¢O,¢O> =0, and for k =2,3

3
o x| 2(T) IVl u¢0n

I

max vy, (Z)]
2n[dist(A, 72

I

k-1
¢ max H[VORO(z)] ]
z€l’

Thus,

[

I<P(t)pg 0501 = 11 + z <kp "y

(x)¥o0° %o

[\

1- |t| ItV R

We show that for [t| <1,
coltl Z maxn[tvoRo(z)]k“lu <1
k=2 z€r
to conclude (P(t)wo,¢3> # 0 . Since

k-1 2
k§2 ma?H[tV Ry (z)T" 71 < [|t|22¥HV Ro(z)ll + Itl EZ?H[VORO(Z)] Il

Itl 2maxlI[V R ]
g jgo [ ’ z€l : 0 O(Z)] ]
ltl(b+1t]

. tl( O+ ao)

1- lel%s,
we see that for |t|l <1,

(b +a.)

o) 0
ltl N[ tV.R (20 0

o 22 maxl|i[ 0 O(Z)] - oy

B

which is less than 1 by assumption. This completes the proof.

"

s
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We shall later show that in many practical situations the

hypothesis a

ot (a0+bo)cO <1 1is, in fact, satisfied. (See Remark

14.10.)

CORCLLARY 10.3 If

(10.15) bolbyt(1+bg)eg] <1, or by + ey <1,

then the conclusions of Proposition 10.2 hold.

Proof Since a, { b

2
o $ bg . we see that

ag + (2 +b0)c < bo[b +(1+b0)c0]

Hence the result follows in the first case; as for the second, note that

if bO + <o <1, then bO <1 and

b +(1+b0)co] < b + (1+b0)c = O(b +c0) +c¢c, <b,+c, <1. //

0[ 0 0 0

We remark that the conditions given in {10.15) are, in general,

less stringent than the condition

o(r) |, %
bo[1+ %’- llggh mex IR (z)I] < 1

stated on p.143 of [C], since 1 ¢ dist(k ,I') max IR (Z)H and
z€l

HVO¢o dist(AO,T)b ,  when Hwoﬂ =1 . See Problem 10.2 for a
concrete illustration.

In order to estimate the domain of amalyticity of the function
A(t) . we wish to find a lower bound for the radius of ar , at least
for some particular curve I' . As far as the function ¢(t) = P(t)wo /
<P(t)¢o,¢§> is concerned, both the numerator and the denominator are

analytic on ar . However, ¢(t) would have a pole at to if the
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denominator has a zero of a higher order than the order of the zero of
the numerator. We do not know whether, in fact, ¢(t) can have a pole
in 6F . We shall, therefore, content ourselves by finding a disk (with
centre 0 ) in ar which is pole-free. Our results are in terms of

the following quantities:

%
p = Wapgll + By = logll . sy = S,
(10.16)
@y = HVOSOH s Mg = max{noposo, ao} .
Let T (t) =n,+ =el®, 0<t<2r, where 0<e< 1. Since
e 0 S
r (S.) = L SISl = s
ot%) = Estrg (TN © "0 = %

by (7.3), we see that the circle Te lies in p(TO) and separates XO

from the rest of the spectrum of To . We note that the quantities

given in (10.16) do not depend on the curve Fe .

LEMMA 10.4 ILet 0<e <1.

(a) If el < e(l—e)/vo . then t €3,
e

(b) If It] < 1/2a

0 ° and we let Z0 = (I—PO)(X) then

{zeC: lzagl < 1725} C p((I—PO)T(t)|ZO) .

Proof (a) For O < lz—kol < dist(AO,a(TO)\{AO}) ., we have by (7.8),

e Po
z - AO ’

[+ 4]
k+1
R.(z) = ) S. (z-A
0 k=0 © 0

since AO is simple, so that Ro(z) has a simple pole at =z = AO .

Hence if Iz—kol = e/s0 , we have
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HVOSOH HVOPOHSO

W R(Z) § ==+ —=

= [eao+(1-e)noposo]/e(1—e) ,

e * e
since HVOPOH = HVO¢OH H¢OH = MyPg - But % < o as well as

M5PoS0 < o 'by the definition of T » SO that

max ra(VORO(Z)) < max HVORO(Z)H < 70/6(1—6) .
z€l z€l

Since 8, = {t€C: It] < 1/max ra(VORO(z))} , we see that [t] <

e Z€l
3
e(l—e)/vo implies t € are
{(b) Let |t] < 1/2aO and Iz—kol {1/2s; . Then z lies inside
the circle Fl with centre at Ao and radius l/sO . Now, with
ZO = (I—PO)X .
a(TO|ZO) = U(TO) N Ext Fl .

This shows that z € p(T

OIZO) . To show =z € p((I—Po)T(t)lzo) , it is

then enough to prove that ro(A(z)) <1, where
-1
A(z) = [T -(I-P,)T(t) ][T -zI ] .
olz, (I F)T(z | (Tolz =z,

(See Theorem 9.1.) As T(t) = TO + tVo . we have
-1
< Az) = —t(I~PO)VO{TOIZO~zIIZo] = —t(I—PO)VORO(z)IZO.

Hence by (5.11) and (5.12),

r_(A(z)) Itlra((I—Po)VORO(z)(I—PO))

ltir (VoRy(z)(I-Py)) -

]

But by the expression for Ro(z) given in the proof of (a).
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[+ 03
k+1 k
VoRy(2) (I-Fy) = kzo VoSp (zAy) .

for all z € C with Izkol < 1/2s so that

0
HVORO(Z)(I-PO)H < HVOSOH/(1—1/2) = 2a0 .

Thus, r_(A(z)) < It|2a0 <1, and the proof is complete. 7/

THEOREM 10.5 (Cf. [LR], Theorem 2.3.) The disk

D={tecC: |t]l < 1/410}

is contained in & and the function ¢(t) = P(t)wo/<P(t)¢O,¢;> is

Lo

analytic on D . For |t| < 1/4~ the two Rayleigh-Schrodinger

0
series (10.4) and (10.7) converge respectively to a simple eigenvalue

A(t) and a corresponding eigenvector ¢(t) of T(t) which satisfies

<¢(t),w:> =1 . Further,

1 - Jl—4|tl70

2s ’

(10.17) IA(£)A | €
0

and A(t) 1is the only spectral value of T(t) in the disk

2s

1+ Jl—4lt|10
5 .

(10.18) {% €C : lz=agl <

Proof Letting € = 1/2 in Lemma 10.4(a), we see that |[t]| < /4,

implies t € Br . Thus, DC ar . To show that ¢(t) is
172 1/2
analytic on D we argue as follows. Let to € D . Since
t » P(t)p, € X 1is analytic on 8 , we have
° T1re

P(t)¢0 = (t—to)kx(t) ,

for t near to o where the function t ®» x(t) is analytic on a
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neighbourhood N of to and does not vanish there. Since,

o]

P(t)oy 09> = (t-ty)x(t).op> . tEN, t# ¢

0
the only possible singularity of ¢(t) at t = to is a pole, and this

happens only if <x(to),¢:> =0 . Also, for t €N, t # ty x(t)

P(t)<po/(t—to)k is an eigenvector of T(t) corresponding to the

eigenvalue A(t) . But by the continuity of P(t) and x(t) at ¢t

tO , we have

P(t,)x(t,) = lim P(t)x(t) = lim x(t) = x(t,) .
0 0 0
t-t t-t
(0} 0
i.e., x(to) # 0 1is an eigenvector of T(to) corresponding to the

eigenvalue k(to) . Let <x(t0),¢3> =0 . Since x(to) € Z(PO) =2

0

we see that A(t,) € o({I-P.)T(t )| ) . But since A(t lies inside
0 0] 071z,

o)

F1/2 . we have Ik(to)—kol < 1/2s, , and since ItOI < 14y < 1720

0 0

Lemma 10.4(b) shows that A(t,) € p((I-P,)T(t )l ) . This

0 0 0 Z0
contradiction allows us to conclude the analyticity of ¢(t) at
t=t, . Hence for |[t] < 1/410 .

analytic, and as such have convergent Taylor expansions around O .

the functions A(t) and ¢(t) are

That A(t) 1is a simple eigenvalue of T(t) , A(t) lies inside F1/2 ,
i.e., IA(t)—AOl < 1/2s0 and it is the only spectral value of T(t)
inside T1/2 follows directly from Corollary 9.9. But we now give
better estimates.

For 0<e <1, we see that |t] < e(l—e)/wo if and only if

rl(t) el r2(t) . where

1 - 12Tt 1+ {14l
ri(t) = ——5—— and ry(t) = ———.
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Lemma 10.4(2) now shows that t € ar for every e with
I3

rl(t) el r2(t) . Again by Corollary 9.9, we note that (i) A(t)
lies inside T_, i.e., Ik(t)—kol < e/sy and (ii) it is the only
spectral point of T(t) inside Fe . Letting e = rl(t) in (i) and
e = r2(t) in (ii) we see that Ix(t)—kol < rl(t)/sO , and that A(t)
is the only spectral point of T(t) in {z € C : Iz—AOI < r2(t)/so} .

Thus, (10.17) and (10.18) hold. 7/

We illustrate Theorem 10.5 schematically as follows

a .
Ty/2 174,

z—-plane t-plane

Figure 10.2

Note that for |t| < 1/470 ., we have
0 < Pl(t) <172 <€ Y2(t) {1

rl(t) 10 and r2(t) 11 as [tl =20, while rl(t) 1 1/2 and
r2(t) l1/2 as |t] = 1/470 . As |tl becomes smaller, we get a

better estimate for lk(t)—hol and a larger region of isolation for

A(t) .
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Since o < HVOH HSOH MPOH , the above theorem shows that if the

norms of the spectral projection PO and the reduced resolvent S0

associated with TO and A, are small, then we can allow a large

0
perturbation Vo and obtain eigenelements AN and ¢ of T = TO + VO ,

as long as we have HVOH HPOH HSOH { 1/4 . We now consider a special

case where "POH =1 (the smallest possible value)} and

ISl = dist(A,o(TeINAG}) -

THEOREM 10.6 (Cf. [LR], Theorem 3.5.} Let TO be a normal operator on

a Hilbert space X , let AO be a simple eigenvalue of TO and let

dy = dist(N\y.o(TMAG}) . If 0% V) € BL(X) and Itl < dy/20V01

then T(t) = TO + tVb has a simple eigenvalue A(t) such that

IA(£)-2gl < WVGHTED .

and A(t) 1is the only spectral value of T(t} lying in the disk

{z€C: lz7yl <d

o - WVolel} .

Also, the Rayleigh-Schriodinger series (10.4) and (10.7) converge to

eigenelements of T(t) for [t] < d0/2HVOH .

Proof Since To is normal, we have for =z € p(TO) .

IRy (2)1l = 1/dist(z.0(Ty)) and HSyll = 1/d, ,

by (8.13) and (8.14). Let 0<e <1, and I (1) =A,+edge'",
O0<t<2r . Then

max 1t (V.R.(z)) < WV, Il max IR, (z)l
ZGFe o 00 0 ZGFE 0

VLI max S —
0 ZGTe dist(z,a(TO))

HVOH/d min{e,1-e} .

0
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Thus, [tf < dy min{e,1-e}/IV il implies that t € 8. , so that T(t)
e

has a simple eigenvalue A(t) inside Fe and it is the only spectral

value of T(t)} inside Fe . Now for 0 < e <1, we note that

el < d min{e,l—e}/HVOH if and only if rl(t) el r2(t) , Where

ri(t) = Wyllel/d, and ry(t) = 1 - Wllelsd, .

. Letting e = rl(t) and e = r2(t) we obtain the statements regarding
INEA R

Finally, if |t0I < dO/2HVOH , then since dO = 1/HSOH , we have

ltoi < 1/2HVOSOH = 1/2aO .

By Lemma 10.4(b). we conclude that A(t.) € p((I-P,)T(t )l )} . The
0 0 0”1z,

proof of Theorem 10.5 now shows that ¢(t) = P(t)¢0/<P(t)¢o,¢§> cannot
have a singularity at t = tO . Thus, the Rayleigh-Schrodinger series

{(10.4) and (10.7) converge for |t]| < do/2HVOH . Va4

We see from the above result that if the simple eigenvalue AO of
a normal operator T0 is well separated from the rest of the spectrum
of To , i.e., if dO is large, then even for a large perturbation

VO , we can obtain eigenelements of T

o + VO by the Rayleigh-

Schrodinger procedure.

Remark 10.7 We conclude this section by remarking that Theorems 10.5
and 10.6 would prove to be useful for finding eigenelements of TO + VO

only if a. = IV, S .l is small: @, < 1/4 or a, < 1/2 . 1If this were

0 070 0 0
not so, one has to look for sharper estimates of ra(VORO(Z)) for =z

2,1/2
near AO . such as H(VORO(Z)) il .
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Theorem 10.5 holds if we replace ~, by {6 , where

0 0O
6. = maX{NPrS~Tns Tnt (£ 72)
0 000 0 'O = 07
(10.19)
= sup{lVSiv s i/sKl s k= 1.2, (D) .
0 0000770 2 =70

We leave the proof of this result to Problem 10.4. See also [LR],
Theorem 2.3.

Theorems 10.5, 10.6 and the above result say that if the
perturbation VO is small in some sense (e.g., J35'< 1/4) , then not
only the Rayleigh-Schrodinger series with initial terms as the
eigenelements (Ao,wo) of TO converge to eigenelements (A,¢) of
T = TO + V ., but the eigenvalue A is simple, and it is the unique
spectral point of T which is nearest to AO . If no conditions on VO
are put, then the Rayleigh-Schridinger series with initial term AO may

neither converge to a simple eigenvalue of T , nor to the nearest

eigenvalue of T . (See Problems 10.6 and 10.7.)

Problems

10.1 Let x(t) be given by (10.8). Then for [t] small,

~

ot k
t X t .,

[v]

A(t) =2y + Z A(k) .

where §O =P o /<PO 0% > is an eigenvector of T0 corresponding to

AO , and for k=1,2,... ,

k_
¥y = T Q)SL-VoX -1y * Z MNiyFx-1)]

(T %, 4V % *>,

A(k) = Mot k)0 (k-1) "
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and the projection QO is given by Q x = <{x, xo>xo , x €X . If

Sy = (1-Q))S, . then § =0 and S

OlQO(X) Ol(I"QO)(X) is the inverse

of (I—QO)(TO—AOI)l(I_QO)(X) . Let %(k) = Vo¥ae1) * VoXpe1y: xO>xO

k-1
+ A Then x is the unique solution of
2 Ny ) @

A, O
)
0 Al

{z + lz=agl = INgA 172}

(I—QO)(TO—AOI)X = ”(k) , <x,x§) =0 .

10.2 Let X = ®2 with the p-norm, 1 { p

I~

0 e O

Then in Corollary 10.3, b0 =cy = 2e/IkO—A1| . Also,

0 o
Vy = [ ] ,0<eX IAO—AII(J3—1)/2 , T
max HRO(Z)H = 2/|AO—A1| .
z€l

10.3 Let TO and T; be diagonable as in Example (ii). Then

%* % % 3¢
. ) g [ o <V0¢0,xm>(Voxm,xk> B (V0w0,¢0><Vo¢o,xk>
(3) 7 S w1 (R (y2) (uk-xo)2

10.4 ([LR]. Theorems 2.1 and 2.3.) Let T and 60 be defined by

(10.19). Then Lemma 10.4 can be improved as folleows: (a) If

ft] < e(l-e)/JGo , then t € ar .o (®) If el < 1/2‘11’O , then
e

{z €C : |z—n,| < 1/2s.} T p((I-P )T(t)l )} . Hence Theorem 10.5 holds
0] 0 0 Zo

by 5. .

if we replace ~ o

)

10.5 ([N]) If X is 2-dimensional, then <P(t)@o,¢§> # 0 for every
t € ar . If X is finite dimensional, then for ¢t € ar we have
<P(t)¢0,¢§> # 0 if and only if A(t) is an eigenvalue of

(I_PO)T(t)l(I—PO)(X) '
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a [} 1 b-a O
10.6 Let T, = ,a#Zb,and A, =a . If V, == s
© o » 0 0" 210 ab
then AN = N, + A; - b is a double eigenvalue of T =T, + V, = L
0 (1) 2 0 0~ 2
atb O b-a O
. If VvV, = , then A=A, + A =b is an
0 atb 0 0 a-b 0 (1)

eigenvalue of T =T

b O
0 + VO = [ ] , but it is not the nearest

0 a

eigenvalue of T to a .

10.7 1If a curve I which separates the simple eigenvalue AO from the

O) is a circle with centre AO , and if

max ra(VORO(z)) <1, then the Rayleigh-Schrodinger series with initial
z€l .

rest of o(T

term AO converges to a simple eigenvalue A of T =T

0 + Vo ,  which

is the nearest spectral point of T to AO .



