6. SPECTRAL DECOMPOSTTION

In this section we develope a powerful method of decomposing an operator $T \in B L(X)$ in such a way that the spectrum $\sigma(T)$ of T becomes the disjoint union of the spectra of the restrictions of T. It also allows us to determine the coefficients in the Laurent expansion of the resolvent operator $R(z)$. We start with a simple result.

PROPOSITION 6.1 Let $T \in \operatorname{BL}(X)$ be decomposed by (Y, Z). Then

$$
\begin{equation*}
\rho(T)=\rho\left(T_{Y}\right) \cap \rho\left(T_{Z}\right) \tag{6.1}
\end{equation*}
$$

or, equivalently

$$
\begin{equation*}
\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{\mathrm{Y}}\right) \cup \sigma\left(\mathrm{T}_{\mathrm{Z}}\right) \tag{6.2}
\end{equation*}
$$

In fact, for z in $\rho(T)$, we have

$$
\begin{equation*}
\left.R(T, z)\right|_{Y}=R\left(T_{Y}, z\right) \text { and }\left.R(T, z)\right|_{Z}=R\left(T_{Z}, z\right) \tag{6.3}
\end{equation*}
$$

while for $z \in \rho\left(T_{Y}\right) \cap \rho\left(T_{Z}\right)$, we have

$$
\begin{equation*}
R\left(T_{Y}, z\right) P+R\left(T_{Z}, z\right)(I-P)=R(T, z) \tag{6.4}
\end{equation*}
$$

where P is the projection on Y along Z.

Proof The formula (6.3) can be verified easily and since P commutes with T (Proposition 2.1) the formula (6.4) also follows. Hence the relations (6.1) and (6.2) hold. //

We remark that when $\mathrm{T}=\mathrm{T}_{\mathrm{Y}} \oplus \mathrm{T}_{\mathrm{Z}}, \quad \sigma(\mathrm{T})$ need not be the disjoint union of $\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)$ and $\sigma\left(\mathrm{T}_{\mathrm{Z}}\right)$, since the parts T_{Y} and T_{Z} of T can, in general, have common spectral values. The simplest example is given
by the identity operator I on $X=\mathbb{C}^{2}, Y=\left\{\left[z_{1}, 0\right]^{t}: z_{1} \in \mathbb{C}\right\}$ and $\mathrm{Z}=\left\{\left[0, \mathrm{z}_{2}\right]^{\mathrm{t}}: \mathrm{z}_{1} \in \mathbb{C}\right\}$, so that $\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)=\sigma\left(\mathrm{T}_{\mathrm{Z}}\right)=\{1\}$.

To describe a special way of decomposing an operator T for which the union in (6.2) is disjoint, we introduce the following notations.

Unless otherwise stated, Γ denotes a simple closed positively oriented rectifiable curve in \mathbb{C}. Let $T \in B L(X)$. If $\Gamma \subset \rho(T)$, define

$$
\begin{equation*}
\mathrm{P}_{\Gamma}(\mathrm{T})=-\frac{1}{2 \pi i} \int_{\Gamma} \mathrm{R}(\mathrm{z}) \mathrm{dz} \tag{6.5}
\end{equation*}
$$

and for $\mathrm{z}_{0} \notin \Gamma$, let

$$
\begin{equation*}
\mathrm{S}_{\Gamma}\left(\mathrm{T}, \mathrm{z}_{0}\right)=\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\mathrm{R}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} \mathrm{dz} \tag{6.6}
\end{equation*}
$$

When there is no ambiguity, we shall denote $P_{\Gamma}(T)$ simply by P_{Γ} or by P, and $S_{\Gamma}\left(T, z_{0}\right)$ by $S_{\Gamma}\left(z_{0}\right)$ or $S\left(z_{0}\right)$.

Cauchy's theorem (Theorem 4.5(a)) can be used to show that if Γ is continuously deformed in $\rho(\mathrm{T})$ to another curve $\widetilde{\Gamma}$, then $\mathrm{P}_{\Gamma}=\mathrm{P}_{\widetilde{\Gamma}}$ and if this process can be carried out in $\rho(T) \backslash\left\{z_{0}\right\}$, then $S_{\Gamma}\left(z_{0}\right)=$ $\mathrm{S}_{\tilde{\Gamma}}\left(\mathrm{z}_{0}\right)$ 。

PROPOSITION 6.2 Let $T \in \operatorname{BL}(\mathrm{X}), \Gamma \subset \rho(\mathrm{T})$ and $\mathrm{z}_{0} \nsubseteq \Gamma$. Denote $P_{\Gamma}(T)$ by P, and $S_{\Gamma}\left(T, z_{0}\right)$ by S.
(a) The operators T, P and S commute with each other.
(b) $P^{2}=P$, i.e., P is a projection, and

$$
\begin{equation*}
\mathrm{TP}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{zR}(\mathrm{z}) \mathrm{d} \mathrm{z} \tag{6.7}
\end{equation*}
$$

(c) If $z_{0} \in$ Int Γ, then

$$
\begin{equation*}
S P=0 \quad \text { and } \quad\left(T-z_{0} I\right) S=I-P \tag{6.8}
\end{equation*}
$$

while if $z_{0} \in \operatorname{Ext} \Gamma$, then

$$
\begin{equation*}
S P=S \text { and }\left(T-z_{0} I\right) S=-P \tag{6.9}
\end{equation*}
$$

Proof Since P and S are the limits in $B L(X)$ of the respective Riemann-Stieltjes sums (4.5), and since for z and w in $\rho(T), R(z)$ commutes with $R(w)$, we see that T, P and S commute with each other. This proves (a).

To calculate P^{2}, let us consider a curve $\tilde{\Gamma}$ in. $\rho(\mathrm{T})$ which can be continuously deformed in $\rho(\mathrm{T})$ to Γ, and which encloses Γ in its interior. This is possible since $\Gamma \subset \rho(T)$ and $\rho(T)$ is open. Then $\mathbb{P}_{\Gamma}=\mathbb{P}_{\widetilde{\Gamma}}$.

Figure 6.1

By using (4.17) and (5.5), we have

$$
\begin{aligned}
\mathbb{P}^{2}=P_{\Gamma} P_{\tilde{\Gamma}} & =\frac{1}{(2 \pi i)^{2}} \int_{\Gamma} R(z) d z \int_{\widetilde{\Gamma}} R(\tilde{z}) d \tilde{z} \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\Gamma}\left[\int_{\widetilde{\Gamma}} R(z) R(\tilde{z}) d \tilde{z}\right] d z \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\Gamma}\left[\int_{\tilde{\Gamma}} \frac{R(z)-R(\tilde{z})}{z-\tilde{z}} d \tilde{z}\right] d z \\
& =\frac{1}{(2 \pi i)^{2}} \int_{\Gamma} R(z)\left[\int_{\tilde{T}} \frac{d \tilde{z}}{z-\tilde{z}}\right] d z
\end{aligned}
$$

since $\int_{\Gamma}\left[\int_{\widetilde{\Gamma}} \frac{R(\tilde{z}) d \tilde{z}}{z-\tilde{z}}\right] d z=\int_{\tilde{\Gamma}}\left[R(\tilde{z}) \int_{\Gamma} \frac{d z}{z-\tilde{z}}\right] d \tilde{z}$ by (4.10), and
$\int_{\Gamma} \frac{\mathrm{dz}}{\mathrm{z}-\tilde{\mathrm{z}}}=0$ for every $\tilde{\mathrm{z}} \in \tilde{\Gamma}$ by Cauchy's theorem. But as $\int_{\widetilde{\Gamma}} \frac{d \tilde{z}}{z-\tilde{z}}=-2 \pi i$ for every $z \in \Gamma$, we see that

$$
\mathrm{P}^{2}=-\frac{1}{2 \pi \mathrm{i}} \int_{\Gamma} \mathrm{R}(\mathrm{z}) \mathrm{dz}=\mathrm{P}
$$

This proves (b). Now, by (4.17) and (5.4),

$$
\begin{aligned}
\mathrm{TP} & =-\frac{1}{2 \pi i} \int_{\Gamma} \mathrm{TR}(\mathrm{z}) \mathrm{dz} \\
& =-\frac{1}{2 \pi i} \int_{\Gamma}[\mathrm{I}+\mathrm{zR}(\mathrm{z})] \mathrm{d} \mathrm{z} \\
& =-\frac{1}{2 \pi i} \int_{\Gamma} \mathrm{zR}(\mathrm{z}) \mathrm{dz}
\end{aligned}
$$

which proves (6.7).
As for the part (c), let $z_{0} \mathbb{\Gamma}$, and $\tilde{\Gamma}$ be a curve which encloses Γ in its interior and can be continuously deformed to Γ in $\rho(T) \backslash\left\{z_{0}\right\}$. Thus, $z_{0} \in \operatorname{Int} \Gamma$ if and only if $z_{0} \in \operatorname{Int} \tilde{\Gamma}$. Also, $S_{\tilde{T}}\left(z_{0}\right)=S$. Again as before,

$$
\begin{aligned}
\mathrm{PS} & =\frac{-1}{(2 \pi i)^{2}} \int_{\Gamma} \mathrm{R}(\mathrm{z}) \mathrm{d} \mathrm{z} \int_{\tilde{\Gamma}} \frac{\mathrm{R}(\tilde{z})}{\tilde{z}-\mathrm{z}_{0}} \mathrm{~d} \tilde{z} \\
& =\frac{-1}{(2 \pi i)^{2}} \int_{\Gamma}\left[\int_{\tilde{\Gamma}} \frac{\mathrm{R}(\mathrm{z})-\mathrm{R}(\tilde{\mathrm{z}})}{(\mathrm{z}-\tilde{\mathrm{z}})\left(\tilde{\mathrm{z}}-\mathrm{z}_{0}\right)} \mathrm{d} \tilde{z}\right] \mathrm{d} z \\
& =\frac{-1}{(2 \pi \mathrm{i})^{2}} \int_{\Gamma} \mathrm{R}(\mathrm{z})\left[\int_{\widetilde{\Gamma}} \frac{\mathrm{d} \tilde{z}}{(\mathrm{z}-\tilde{z})\left(\tilde{\mathrm{z}}-\mathrm{z}_{0}\right)}\right] \mathrm{dz}
\end{aligned}
$$

since $\int_{\Gamma}\left[\int_{\tilde{\Gamma}} \frac{\mathrm{R}(\tilde{z}) \mathrm{d} \tilde{z}}{(\mathrm{z}-\tilde{z})\left(\tilde{z}-z_{0}\right)}\right] \mathrm{dz}=\int_{\tilde{\Gamma}}\left[\frac{\mathrm{R}(\tilde{z})}{\tilde{z}-\mathrm{z}_{0}} \int_{\Gamma} \frac{\mathrm{dz}}{\mathrm{z}-\tilde{z}}\right] \mathrm{d} \tilde{z}$ by (4.10), and $\int_{\Gamma} \frac{\mathrm{dz}}{\mathrm{z}-\tilde{\mathrm{z}}}=0$ for every $\tilde{\mathrm{z}} \in \widetilde{\Gamma}$ by Cauchy's theorem. But

$$
\begin{aligned}
\int_{\tilde{\Gamma}} \frac{d \tilde{z}}{(z-\tilde{z})\left(\tilde{z}-z_{0}\right)} & =\frac{1}{z-z_{0}}\left[\int_{\tilde{\Gamma}} \frac{d \tilde{z}}{z-\tilde{z}}+\int \frac{d \tilde{z}}{\tilde{\Gamma}} \frac{\tilde{z}-z_{0}}{\tilde{z}}\right] \\
& =\left\{\begin{array}{cl}
0 & , \text { if } z_{0} \in \operatorname{Int} \Gamma \\
\frac{-2 \pi i}{z-z_{0}}, & \text { if } z_{0} \in \operatorname{Ext} \Gamma
\end{array}\right.
\end{aligned} .
$$

Hence

$$
P S=S P=\left\{\begin{array}{ll}
0, & \text { if } z_{0} \in \operatorname{Int} \Gamma \\
S, & \text { if } z_{0} \in \operatorname{Ext} \Gamma
\end{array} .\right.
$$

Finally, since $T R(z)=I+z R(z)$, we have

$$
\begin{aligned}
\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{S} & =\frac{1}{2 \pi i} \int_{\Gamma} \frac{\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{R}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} d z \\
& =\frac{1}{2 \pi i} \int_{\Gamma} \frac{I+\left(\mathrm{z}-\mathrm{z}_{0}\right) \mathrm{R}(\mathrm{z})}{\mathrm{z}-\mathrm{z}_{0}} d z \\
& =\left\{\begin{array}{rl}
\mathrm{I}-\mathrm{P}, & \text { if } \mathrm{z}_{0} \in \operatorname{Int} \Gamma \\
-P, & \text { if } z_{0} \in \operatorname{Ext} \Gamma
\end{array} .\right.
\end{aligned}
$$

Thus, (6.8) and (6.9) are proved. //

The commutation relations of part (a) of the above proposition can be used to characterize $P_{\Gamma}(T)$ and $S_{\Gamma}\left(z_{0}\right), z_{0} \in$ Int Γ. See Problem 6.5.

Now we come to the major result of this section.

THEORIM 6.3 (Spectral decomposition theorem) Let $T \in B L(X)$ and $\Gamma \subset \rho(\mathrm{T})$. Then T is decomposed by $\mathrm{Y}=\mathrm{R}\left(\mathrm{P}_{\Gamma}\right)$ and $\mathrm{Z}=\mathrm{Z}\left(\mathrm{P}_{\Gamma}\right)$, and $\sigma(\mathrm{T})$ is the disjoint union of $\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)$ and $\sigma\left(\mathrm{T}_{\mathrm{Z}}\right)$. In fact

$$
\begin{equation*}
\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)=\sigma(\mathrm{T}) \cap \operatorname{Int} \Gamma \tag{6.10}
\end{equation*}
$$

$$
\sigma\left(\mathrm{T}_{\mathrm{Z}}\right)=\sigma(\mathrm{T}) \cap \operatorname{Ext} \Gamma
$$

Also, for $\mathrm{z}_{0} \in \operatorname{Int} \Gamma$,

$$
\begin{equation*}
R\left(T_{Z}, z_{0}\right)=\left.S_{\Gamma}\left(z_{0}\right)\right|_{Z} \tag{6.11}
\end{equation*}
$$

and for $z_{0} \in \operatorname{Ext} \Gamma$,

$$
\begin{equation*}
\mathrm{R}\left(\mathrm{~T}_{\mathrm{Y}}, \mathrm{z}_{0}\right)=-\left.\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right)\right|_{\mathrm{Y}} \tag{6.12}
\end{equation*}
$$

Proof By Proposition 6.2, $P_{\Gamma} \equiv \mathrm{P}$ is a projection and it commutes with T. Hence T is decomposed by $Y=R(P)$ and $Z=Z(P)$ (Proposition 2.1). Also, by Proposition 6.1,

$$
\begin{equation*}
\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{\mathrm{Y}}\right) \cup \sigma\left(\mathrm{T}_{\mathrm{Z}}\right) \tag{6.13}
\end{equation*}
$$

For $z_{0} \notin$, the operator $S_{\Gamma}\left(z_{0}\right) \equiv S\left(z_{0}\right)$ commutes with P, and hence maps Y into Y, and Z into Z.

Let $z_{0} \in$ Int Γ. By the part (c) of Proposition 6.2, we have

$$
\mathrm{S}\left(\mathrm{z}_{0}\right)\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)=\mathrm{I}-\mathrm{P}=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{S}\left(\mathrm{z}_{0}\right)
$$

Considering restrictions to the closed subspace Z, we obtain

$$
\left.S\left(z_{0}\right)\right|_{Z}\left(T_{Z}-z_{0} I_{Z}\right)=I_{Z}=\left.\left(T_{Z}-z_{0} I_{Z}\right) S\left(z_{0}\right)\right|_{Z}
$$

This shows that $z_{0} \in \rho\left(T_{Z}\right)$ and $S\left(z_{0}\right)_{\mid Z}$ is the inverse of $T_{Z}-z_{0} I_{Z}$. This proves (6.11) and we have

$$
\begin{equation*}
\text { Int } \Gamma \subset \rho\left(\mathrm{T}_{\mathrm{Z}}\right) \tag{6.14}
\end{equation*}
$$

Next, let $z_{0} \in \operatorname{Ext} \Gamma$. Then, by (6.9) we have

$$
-S\left(\mathrm{z}_{0}\right)\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)=\mathrm{P}=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)\left(-\mathrm{S}\left(\mathrm{z}_{0}\right)\right)
$$

Considering now restrictions to the closed subspace Y, we see that $z_{O} \in \rho\left(T_{Y}\right)$ and $-\left.S\left(z_{0}\right)\right|_{Y}$ is the inverse of $T_{Y}-z_{O} I_{Y}$. This proves (6.12) and we have

Ext $\Gamma \subset \rho\left(\mathrm{T}_{\mathrm{Y}}\right)$.

The relations (6.13), (6.14) and (6.15) imply (6.10) since $\Gamma \subset \rho(T)$. It shows, in particular, that $\sigma(\mathrm{T})$ is the disjoint union of $\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)$ and $\quad \sigma\left(\mathrm{T}_{\mathrm{Z}}\right)$. 11

The above theorem tells us that if we wish to study only a part of the spectrum $\sigma(T)$ of T, which is separated by a closed curve Γ from the rest of $\sigma(T)$, then we need to study only a part of the operator T, namely T_{Y}, where Y is the range of P_{Γ}.

We now investigate the range of P_{Γ}. Let $\mathbb{Z}_{0} \in \operatorname{Int} \Gamma$, and $x \in X$ with $\left(T-z_{0} I\right)^{n} x=0$ for some nonnegative integer n. Then

$$
0=\left(I-P_{\Gamma}\right)\left(T-z_{0}\right)^{n} x=\left(T-z_{0} I\right)^{n}\left(I-P_{\Gamma}\right) x
$$

But by (6.11), $\left(T_{Z}{ }_{Z}^{-Z_{0}} I_{Z}\right)$ and hence $\left(T_{Z}{ }^{-Z_{0}} I_{Z}\right)^{n}$ are invertible, where $\mathrm{Z}=\left(\mathrm{I}-\mathrm{P}_{\Gamma}\right)(\mathrm{X})$. In particular, $\left.\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)^{\mathrm{n}}\right|_{\mathrm{Z}}$ is one to one. Hence

$$
\left(I-P_{\Gamma}\right) \mathrm{x}=0, \quad \text { or } \quad \mathrm{x}=\mathrm{P}_{\Gamma} \mathrm{x}
$$

i.e., $x \in \mathbb{R}\left(P_{\Gamma}\right)$. Thus, if for some $z_{0} \in \operatorname{Int} \Gamma$ and some nonnegative integer $n,\left(T-z_{O} I\right)^{n} x=0$, then x is in the range of P_{Γ}. Of course, such an element x is nonzero only if $z_{0} \in \sigma(T) \cap$ Int Γ. The case $n=1$ is of particular importance. If $x \neq 0$ and $T x=z_{0} x$, then x is called an eigenvector of T corresponding to the eigenvalue z_{0}. More generally, a nonzero element x with $\left(T-z_{O} I\right)^{n} x=0$ for some $n \geq 1$ is called a generalized eigenvector of T corresponding to z_{0} and it is said to be of grade n if $\left(T-z_{0} I\right)^{n-1} \neq 0$; in this case, z_{0} is an eigenvalue of T with a
eigenvalue of T with a corresponding eigenvector $\left(T-z_{0}\right)^{n-1} x$. When z_{0} is an eigenvalue of T, the space $Z\left(T-z_{0} I\right)$ is called the corresponding eigenspace and the space $\left\{x \in X:\left(T-z_{0} I\right)^{n} x=0\right.$ for some $\mathrm{n}=1,2, \ldots\}$ is called the corresponding generalized eigenspace. As a trivial example, let $X=\mathbb{C}^{2}$, T be represented by the matrix $\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$, and Γ be a closed curve enclosing the point 1 . Then $P_{\Gamma}(X)=X$, which is spanned by the eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and the generalized eigenvector $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ of T corresponding to the only eigenvalue 1 of T. Thus, the range of \mathbb{P}_{Γ} contains all generalized eigenspaces corresponding to the eigenvalues of T in Int Γ.

For $z_{0} \in \operatorname{Int} \Gamma$, we have by (6.8) and (6.11),

$$
\mathrm{s}_{\Gamma}\left(\mathrm{z}_{0}\right)=\mathrm{S}_{\mathrm{Y}} \oplus \mathrm{~s}_{\mathrm{Z}}
$$

where $S_{Y}=0$, and $S_{Z}=\left(T_{Z}-Z_{0} I_{Z}\right)^{-1}$.

These considerations allow us to give appropriate names to the operators which we have introduced: $P_{\Gamma}(T)$ is called the spectral projection associated with T and Γ, and the closed subspace $Y=R\left(P_{\Gamma}\right)$ is called the associated spectral subspace. For $z_{0} \in \operatorname{Int} \Gamma$, the operator $S_{\Gamma}\left(z_{0}\right)$ is called the reduced resolvent of $\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)$ on the closed subspace $\mathrm{Z}=\mathrm{Z}\left(\mathrm{P}_{\Gamma}\right)$.

We introduce another operator which vanishes on $\mathrm{Z}\left(\mathrm{P}_{\Gamma}\right)$ and which tells us how T differs from a scalar multiple of the identity operator on $R\left(P_{\Gamma}\right)$.

$$
\text { For } z_{0} \in \mathbb{C}, \text { let }
$$

$$
\begin{equation*}
\mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right)=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{P}_{\Gamma} \tag{6.16}
\end{equation*}
$$

Then it follows that $D_{\Gamma}\left(z_{0}\right)$ commutes with P_{Γ}, so that

$$
\mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right)=\mathrm{D}_{\mathrm{Y}} \oplus \mathrm{D}_{\mathrm{Z}},
$$

where $D_{Y}=T_{Y}-z_{0} I_{Y}$ and $D_{Z}=0$.
Also, it can be seen that

$$
\begin{equation*}
\mathrm{D}_{\Gamma}^{2}\left(\mathrm{z}_{0}\right)=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right) \tag{6.17}
\end{equation*}
$$

We now characterize the spectra of $\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right)$ and $\mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right)$.

PROPOSITION 6.4 Let $\Gamma \subset \rho(T)$.
(a) $P_{\Gamma}=0$ if and only if $\sigma(\mathrm{T}) \subset \operatorname{Ext} \Gamma$, and then

$$
\begin{aligned}
& S_{\Gamma}\left(z_{0}\right)=R\left(z_{0}\right) \text { for } z_{0} \in \operatorname{Int} \Gamma \\
& D_{\Gamma}\left(z_{0}\right)=0 \text { for } z_{0} \in \mathbb{C} .
\end{aligned}
$$

(b) $\mathrm{P}_{\Gamma}=\mathrm{I}$ if and only if. $\sigma(\mathrm{T}) \subset$ Int Γ, and then

$$
\begin{aligned}
& S_{\Gamma}\left(z_{0}\right)=0 \text { for } z_{0} \in \operatorname{Int} \Gamma \\
& D_{\Gamma}\left(z_{0}\right)=T-z_{0} I \quad \text { for } z_{0} \in \mathbb{C}
\end{aligned}
$$

(c) Let $0 \neq \mathrm{P}_{\Gamma} \neq \mathrm{I}$. Then for $\mathrm{z}_{0} \in \operatorname{Int} \Gamma$, we have

$$
\begin{equation*}
\sigma\left(\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right)\right)=\{0\} \cup\left\{\frac{1}{\lambda-\mathrm{z}_{0}}: \lambda \in \sigma(\mathrm{T}) \cap \operatorname{Ext} \Gamma\right\} \tag{6.18}
\end{equation*}
$$

Also, for $z_{0} \in \mathbb{C}$, we have

$$
\begin{equation*}
\sigma\left(\mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right)\right)=\left\{\lambda-\mathrm{z}_{0}: \lambda \in \sigma(\mathrm{T}) \cap \operatorname{Int} \Gamma\right\} \cup\{0\} \tag{6.19}
\end{equation*}
$$

Proof Let $Y=R\left(P_{\Gamma}\right)$ and $Z=Z\left(P_{\Gamma}\right)$. Then we know by (6.2) that

$$
\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{\mathrm{Y}}\right) \cup \sigma\left(\mathrm{T}_{\mathrm{Z}}\right)
$$

Now, $P_{\Gamma}=0$ if and only if $Y=\{0\}$, i.e., $\sigma\left(\mathrm{T}_{\mathrm{Y}}\right)=\varnothing$, by Theorem 5.2. This is the case if and only if $\sigma(\mathrm{T})=\sigma\left(\mathrm{T}_{\mathrm{Z}}\right)=\{\lambda \in \sigma(\mathrm{T}): \lambda \in$ Ext $\Gamma\}$, by Theorem 6.3. In this case, we have for $\mathrm{z}_{0} \in \operatorname{Int} \Gamma$, $\left(T-z_{0} I\right) S_{\Gamma}\left(z_{0}\right)=I-P=I$ by (6.8), so that $S_{\Gamma}\left(z_{0}\right)=R\left(z_{0}\right)$. Also, $\mathrm{D}_{\Gamma}\left(\mathrm{z}_{0}\right)=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) \mathrm{P}_{\Gamma}=\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right) 0=0$. This proves (a). The proof of (b) is exactly similar.

Let, now, $0 \neq P_{\Gamma} \neq I$. For $z_{0} \in \operatorname{Int} \Gamma$, we have

$$
s_{\Gamma}\left(z_{0}\right)=s_{Y} \oplus S_{Z},
$$

where $S_{Y}=0$ and $S_{Z}=\left(T_{Z}-Z_{0} I_{Z}\right)^{-1}$ by (6.8) and (6.11). Since $Y \neq\{0\}$, we see that $\sigma\left(S_{Y}\right)=\{0\}$, and

$$
\begin{aligned}
\sigma\left(\mathrm{S}_{\mathrm{Z}}\right) & =\left\{\frac{1}{\lambda-\mathrm{Z}_{0}}: \lambda \in \sigma\left(\mathrm{T}_{\mathrm{Z}}\right)\right\} \\
& =\left\{\frac{1}{\lambda-\mathrm{z}_{0}}: \lambda \in \sigma(\mathrm{T}) \cap \operatorname{Ext} \Gamma\right\}
\end{aligned}
$$

by (6.10). Since $\sigma\left(\mathrm{S}_{\Gamma}\left(\mathrm{z}_{\mathrm{O}}\right)\right)=\sigma\left(\mathrm{S}_{\mathrm{Y}}\right) \cup \sigma\left(\mathrm{S}_{\mathrm{Z}}\right)$, we obtain (6.18). The proof of (6.19) is very similar. //

We are now in a position to find the coefficients in the Laurent exansion of $R(z)$ in an annulus about z_{0}.

THEOREM 6.5 (Laurent expansion of $R(z)$) Let $\Gamma \subset \rho(T), z_{0} \in$ Int Γ, and write $P=P_{\Gamma}, S=S_{\Gamma}\left(z_{0}\right), D=D_{\Gamma}\left(z_{0}\right)$. Then

$$
\begin{equation*}
\max \left\{\left|\lambda-z_{0}\right|: \lambda \in \sigma(T) \cap \operatorname{Int} \Gamma\right\}=r_{\sigma}(D) \equiv r_{1} \tag{6.20}
\end{equation*}
$$

$$
\begin{equation*}
\min \left\{\left|\lambda-z_{0}\right|: \lambda \in \sigma(\mathrm{T}) \cap \operatorname{Ext} \Gamma\right\}=\frac{1}{\mathrm{r}_{\sigma}(\mathrm{S})} \equiv \mathrm{r}_{2} \tag{6.21}
\end{equation*}
$$

Let $r_{1}<r_{2}$. The resolvent operator $R(z)$ is analytic on the annulus $\left\{z \in \mathbb{C}: r_{1}<\left|z-z_{0}\right|<r_{2}\right\}$, and we have

$$
\begin{equation*}
R(z)=\sum_{k=0}^{\infty} s^{k+1}\left(z-z_{0}\right)^{k}-\frac{P}{z-z_{0}}-\sum_{k=1}^{\infty} \frac{D^{k}}{\left(z-z_{0}\right)^{k+1}} \tag{6.22}
\end{equation*}
$$

Proof The expressions for $r_{\sigma}(D)$ and $1 / r_{\sigma}(S)$ follow immediately from Proposition 6.4 upon making use of the convention that if a set of nonnegative numbers reduces to the empty set, then its maximum is 0 , while its minimum is infinity.

Now, assume that $z \in \mathbb{C}$ is such that the two infinite series on the right hand side of (6.22) converge in BL(X) . Let $f(z)$ denote the right hand side of (6.22) and for $n=1,2, \ldots$ let

$$
f_{n}(z)=\sum_{k=0}^{n} S^{k+1}\left(z-z_{0}\right)^{k}-\frac{P}{z-z_{0}}-\sum_{k=1}^{n} \frac{D^{k}}{\left(z-z_{0}\right)^{k+1}}
$$

Since $z_{0} \in \operatorname{Int} \Gamma$, we see by (6.8) that $\left(T-z_{0} I\right) S=I-P$. Also, by (6.16) and (6.17), we have $\left(T-z_{0} I\right) P=D,\left(T-z_{0} I\right) D=D^{2}$. Hence

$$
\begin{aligned}
f_{n}(z)(T-z I)= & (T-z I) f_{n}(z) \\
= & \left(T-z_{0} I\right) f_{n}(z)-\left(z-z_{0}\right) f_{n}(z) \\
= & \sum_{k=0}^{n}(I-P) S^{k}\left(z-z_{0}\right)^{k}-\frac{D}{z-z_{0}}-\sum_{k=1}^{n} \frac{D^{k+1}}{\left(z-z_{0}\right)^{k+1}} \\
& -\sum_{k=0}^{n} s^{k+1}\left(z-z_{0}\right)^{k+1}+P+\sum_{k=1}^{n} \frac{D^{k}}{\left(z-z_{0}\right)^{k}} \\
= & (I-P)-\frac{D^{n+1}}{\left(z-z_{0}\right)^{n+1}}-S^{n+1}\left(z-z_{0}\right)^{n+1}+P \\
= & I-\left[\frac{D}{z-z_{0}}\right]^{n+1}-\left[\left(z-z_{0}\right) S\right]^{n+1}
\end{aligned}
$$

which tends to I as $n \rightarrow \infty$, since the latter two terms are the $(n+1)$-st terms of convergent series. This shows that $z \in \rho(T)$ and $R(z)=f(z)$.

Now, we know from Theorem 4.9 that the series $\sum_{k=0}^{\infty} S^{k+1}\left(z-z_{0}\right)^{k}$ and $\sum_{k=1}^{\infty} \frac{D^{k}}{\left(z-z_{0}\right)^{k+1}}$ both converge if

$$
r_{\sigma}(D)=\varlimsup_{k \rightarrow \infty}\left\|\left.D^{k_{1}} 1\right|^{1 / k}<\left|z-z_{0}\right|<1 / \overline{\lim }_{k \rightarrow \infty}\right\| S^{k_{\|}} \|^{1 / k}=\frac{1}{r_{\sigma}(S)}
$$

Thus, for $r_{1}<\left|z-z_{0}\right|<r_{2}$, the expansion (6.22) of $R(z)$ is valid and $R(z)$ is analytic there. //

We remark that the coefficients in the Laurent expansion of $R(z)$ around z_{0} are given by

$$
\begin{align*}
& a_{k}=S^{k+1}\left(z_{0}\right), \quad k=0,1,2, \ldots \\
& b_{1}=-P \tag{6.23}\\
& b_{k}=-D^{k-1}\left(z_{0}\right), \quad k=2,3, \ldots
\end{align*}
$$

Thus, they are determined by three operators: $S\left(z_{0}\right), P$ and $D\left(z_{0}\right)$. In fact, since $D\left(z_{0}\right)=\left(T-z_{0} I\right) P$ and $P=I-\left(T-z_{0} I\right) S\left(z_{0}\right)$, we see that the single operator $S\left(z_{0}\right)$ determines all these coefficients. Another noteworthy feature of these coefficients is as follows: If some $a_{j}=S^{j+1}\left(z_{0}\right)=0$, then for all $k>j$, we have $a_{k}=S^{k+1}\left(z_{0}\right)=0$; and if some $b_{j}=-D^{j-1}\left(z_{0}\right)=0$, then for all $k>j$, we have $b_{k}=$ $-D^{k-1}\left(z_{0}\right)=0$. This fact would be used quite fruitfully in the sequel.

We also note that if $0 \in \operatorname{Int} \Gamma$ and $\sigma(T) \subset \operatorname{Int} \Gamma$, then $\mathrm{P}_{\Gamma}=\mathrm{I}, \mathrm{D}_{\Gamma}(0)=\mathrm{T}$ and $\mathrm{S}_{\Gamma}(0)=0$. Hence the Laurent expansion (6.22) reduces to

$$
R(z)=-\sum_{k=0}^{\infty} T^{k} z^{-(k+1)} \text { for }|z|>r_{\sigma}(T)
$$

This coincides with the first Neumann expansion (5.8), which we have obtained earlier.

Problems Let Γ be a simple closed positively oriented rectifiable curve in $\rho(T)$.
6.1 Let $\tilde{\Gamma}$ be another closed rectifiable curve in $\rho(T)$. If Int $\Gamma \cap$ Int $\tilde{\Gamma}=\varnothing$, then $P_{\tilde{\Gamma}} \mathbb{P}_{\Gamma}=0$. If Int $\Gamma \subset$ Int $\tilde{\Gamma}$, then $\mathrm{P}_{\bar{\Gamma}} \mathrm{P}_{\Gamma}=\mathrm{P}_{\Gamma}$, and $\mathrm{P}=\mathrm{P}_{\widetilde{\Gamma}}-\mathrm{P}_{\Gamma}$ is a projection. If $\mathrm{Y}=\mathrm{R}(\mathrm{P})$ and $Z=Z(P)$, then

$$
\begin{aligned}
& \sigma\left(\mathrm{T}_{\mathrm{Y}}\right)=\sigma(\mathrm{T}) \cap(\operatorname{Int} \tilde{\Gamma} \cap \operatorname{Ext} \Gamma) \\
& \sigma\left(\mathrm{T}_{\mathrm{Z}}\right)=\sigma(\mathrm{T}) \cap(\operatorname{Ext} \widetilde{\Gamma} \cup \operatorname{Int} \Gamma)
\end{aligned}
$$

6.2 Let $\mathrm{z}_{0} \in \operatorname{Int} \Gamma$. Then for $\mathrm{n}=1,2, \ldots$.

$$
\mathrm{Z}\left(\mathrm{P}_{\Gamma}\right) \subset \mathbb{R}\left(\left(\mathrm{T}-\mathrm{z}_{0} \mathrm{I}\right)^{\mathrm{n}}\right)
$$

6.3 Let $z_{0} \in \operatorname{Ext} \Gamma$. If $P_{\Gamma}=0$, then $S_{\Gamma}\left(z_{0}\right)=0$; if $P_{\Gamma}=I$, then $S_{\Gamma}\left(z_{0}\right)=-\mathrm{R}\left(\mathrm{z}_{0}\right)$; if $0 \neq \mathbb{P}_{\Gamma} \neq \mathrm{I}$, then

$$
\sigma\left(\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right)\right)=\{0\} \cup\left\{\frac{-1}{\lambda-\mathrm{z}_{0}}: \lambda \in \sigma(\mathrm{T}) \cap \operatorname{Int} \Gamma\right\}
$$

6.4 For $z_{0} \in \mathbb{C}$, let $D=D_{\Gamma}\left(z_{0}\right)$ and for $z_{0} \mathbb{\Gamma}$, let $\mathrm{S}=\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right)$. Then $\mathrm{DP}=\mathrm{PD}=\mathrm{D}$. If $\mathrm{z}_{0} \in$ Int Γ then $\mathrm{DS}=\mathrm{SD}=0$, while if $z_{0} \in \operatorname{Ext} \Gamma$, then $D S=S D=-P$. For $k=1,2, \ldots$,

$$
\begin{gathered}
-\frac{1}{2 \pi i} \int_{\Gamma}\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{k}} \mathrm{R}(\mathrm{z})=\mathrm{D}^{\mathrm{k}}, \\
\frac{1}{2 \pi i} \int_{\Gamma} \frac{\mathrm{R}(\mathrm{z})}{\left(\mathrm{z}-\mathrm{z}_{0}\right)^{\mathrm{k}}} \mathrm{dz}= \begin{cases}\mathrm{S}^{\mathrm{k}}, & \text { if } \mathrm{z}_{0} \in \operatorname{Int} \Gamma \\
(-1)^{\mathrm{k}-1} \mathrm{~S}^{\mathrm{k}}, & \text { if } \mathrm{z}_{0} \in \operatorname{Ext} \Gamma .\end{cases}
\end{gathered}
$$

Theorem 6.5 can be proved by noting that if $r_{1}<r_{2}$, then Γ can be continuously deformed in $\rho(\mathrm{T}) \backslash\left\{z_{0}\right\}$ to $\tilde{\Gamma}$, where $\tilde{\Gamma}(\mathrm{t})=$ $z_{0}+r e^{i t}, t \in[0,2 \pi], r_{1}<r<r_{2}$, and showing that $a_{k}=S^{k+1}$ for $k=0,1, \ldots, b_{1}=-P$ and $b_{k}=-D^{k-1}, k=2,3, \ldots$. (See (4.12) and (4.13).)
6.5 Let Q be a (bounded) projection such that $Q(X)=P_{\Gamma}(X)$.
(i) For $\mathrm{x}, \mathrm{y} \in \mathrm{X}$, we have $\mathrm{x}=\mathrm{y}$ if and only if $\mathrm{Qx}=\mathrm{Qy}$ and $S_{\Gamma}\left(z_{0}\right) \mathrm{x}=\mathrm{S}_{\Gamma}\left(\mathrm{z}_{0}\right) \mathrm{y}$ for some $\mathrm{z}_{0} \in \operatorname{Int} \Gamma$. (ii) $\mathrm{Q}=\mathrm{P}_{\Gamma}$ if and only if Q comutes with T. (iii) Let $z_{0} \in \operatorname{Int} \Gamma$ and $A \in B L(X)$. Then $A=S_{\Gamma}\left(z_{0}\right)$ if and only if $A P_{\Gamma}=0, A\left(T-z_{0} I\right)=I-P_{\Gamma}$ and A commutes with T.
6.6 Let $X=Y \oplus Z$ with $T(Y) \subset Y$. Let Q be the projection on Y along Z and $\widetilde{T}_{Z}=\left.(I-Q) T\right|_{Z}$. Then $\sigma(T) \subset \sigma\left(T_{Y}\right) \cup \sigma\left(\widetilde{T}_{Z}\right)$. (Hint: If $z \in \rho\left(T_{Y}\right) \cap \rho\left(\widetilde{T}_{Z}\right)$, then $R\left(T_{Y}, z\right) Q+\left[I-R\left(T_{Y}, z\right) Q T\right] R\left(\widetilde{T}_{Z}, z\right)(I-Q)$ is the inverse of $T-z I$.)
6.7 Let Y be a closed subspace of X such that $T(X) \subset Y$. Then for $0 \not \equiv z \in \rho(T), R(z)(Y) \subset Y$, and if Γ does not enclose 0 , then $P_{\Gamma}(X) \subset T(X) \subset Y$. Moreover.

$$
\mathrm{P}_{\Gamma}=\frac{-\mathrm{T}}{2 \pi \mathrm{i}} \int_{\Gamma} \frac{\mathrm{R}(\mathrm{z})}{\mathrm{z}} \mathrm{~d} \mathrm{z}
$$

