6. SPECTRAL DECOMPOSITION

In this section we develope a powerful method of decomposing an operator $T \in BL(X)$ in such a way that the spectrum $\sigma(T)$ of T becomes the *disjoint* union of the spectra of the restrictions of T. It also allows us to determine the coefficients in the Laurent expansion of the resolvent operator R(z). We start with a simple result.

PROPOSITION 6.1 Let $T \in BL(X)$ be decomposed by (Y,Z). Then

(6.1)
$$\rho(T) = \rho(T_Y) \cap \rho(T_Z) ,$$

or, equivalently

(6.2)
$$\sigma(T) = \sigma(T_v) \cup \sigma(T_{\tau}) .$$

In fact, for z in $\rho(T)$, we have

(6.3)
$$R(T,z)|_{Y} = R(T_{Y},z)$$
 and $R(T,z)|_{Z} = R(T_{Z},z)$,

while for $z \in \rho(T_Y) \cap \rho(T_7)$, we have

(6.4)
$$R(T_{Y},z)P + R(T_{Z},z)(I-P) = R(T,z)$$
,

where P is the projection on Y along Z.

Proof The formula (6.3) can be verified easily and since P commutes with T (Proposition 2.1) the formula (6.4) also follows. Hence the relations (6.1) and (6.2) hold. //

We remark that when $T = T_Y \oplus T_Z$, $\sigma(T)$ need not be the disjoint union of $\sigma(T_Y)$ and $\sigma(T_Z)$, since the parts T_Y and T_Z of T can, in general, have common spectral values. The simplest example is given by the identity operator I on $X = \mathbb{C}^2$, $Y = \{[z_1, 0]^t : z_1 \in \mathbb{C}\}$ and $Z = \{[0, z_2]^t : z_1 \in \mathbb{C}\}$, so that $\sigma(T) = \sigma(T_Y) = \sigma(T_Z) = \{1\}$.

To describe a special way of decomposing an operator T for which the union in (6.2) is disjoint, we introduce the following notations.

Unless otherwise stated, Γ denotes a simple closed positively oriented rectifiable curve in C. Let $T \in BL(X)$. If $\Gamma \subset \rho(T)$, define

(6.5)
$$P_{\Gamma}(T) = -\frac{1}{2\pi i} \int_{\Gamma} R(z) dz ,$$

and for $z_0 \notin \Gamma$, let

(6.6)
$$S_{\Gamma}(T,z_0) = \frac{1}{2\pi i} \int_{\Gamma} \frac{R(z)}{z-z_0} dz$$

When there is no ambiguity, we shall denote $P_{\Gamma}(T)$ simply by P_{Γ} or by P, and $S_{\Gamma}(T,z_0)$ by $S_{\Gamma}(z_0)$ or $S(z_0)$.

Cauchy's theorem (Theorem 4.5(a)) can be used to show that if Γ is continuously deformed in $\rho(T)$ to another curve $\tilde{\Gamma}$, then $P_{\Gamma} = P_{\tilde{\Gamma}}$ and if this process can be carried out in $\rho(T) \setminus \{z_0\}$, then $S_{\Gamma}(z_0) = S_{\tilde{\Gamma}}(z_0)$.

PROPOSITION 6.2 Let $T \in BL(X)$, $\Gamma \subset \rho(T)$ and $z_0 \notin \Gamma$. Denote $P_{\Gamma}(T)$ by P, and $S_{\Gamma}(T, z_0)$ by S.

(a) The operators T, P and S commute with each other.

(b) $P^2 = P$, i.e., P is a projection, and

(6.7)
$$TP = -\frac{1}{2\pi i} \int_{\Gamma} zR(z)dz .$$

(c) If $z_0 \in Int \Gamma$, then

(6.8) SP = 0 and $(T-z_0I)S = I - P$,

while if $z_0 \in \operatorname{Ext} \Gamma$, then

(6.9)
$$SP = S$$
 and $(T-z_0I)S = -P$.

Proof Since P and S are the limits in BL(X) of the respective Riemann-Stieltjes sums (4.5), and since for z and w in $\rho(T)$, R(z)commutes with R(w), we see that T, P and S commute with each other. This proves (a).

To calculate \mathbb{P}^2 , let us consider a curve $\widetilde{\Gamma}$ in $\rho(T)$ which can be continuously deformed in $\rho(T)$ to Γ , and which encloses Γ in its interior. This is possible since $\Gamma \subset \rho(T)$ and $\rho(T)$ is open. Then $\mathbb{P}_{\Gamma} = \mathbb{P}_{\widetilde{\Gamma}}$.

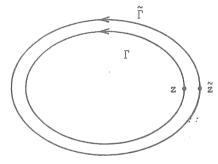


Figure 6.1

By using (4.17) and (5.5), we have

since

$$\begin{split} \mathbb{P}^{2} &= \mathbb{P}_{\Gamma} \mathbb{P}_{\widetilde{\Gamma}}^{2} = \frac{1}{(2\pi i)^{2}} \int_{\Gamma} \mathbb{R}(z) dz \int_{\widetilde{\Gamma}} \mathbb{R}(\widetilde{z}) d\widetilde{z} \\ &= \frac{1}{(2\pi i)^{2}} \int_{\Gamma} \left[\int_{\widetilde{\Gamma}} \mathbb{R}(z) \mathbb{R}(\widetilde{z}) d\widetilde{z} \right] dz \\ &= \frac{1}{(2\pi i)^{2}} \int_{\Gamma} \left[\int_{\widetilde{\Gamma}} \frac{\mathbb{R}(z) - \mathbb{R}(\widetilde{z})}{z - \widetilde{z}} d\widetilde{z} \right] dz \\ &= \frac{1}{(2\pi i)^{2}} \int_{\Gamma} \mathbb{R}(z) \left[\int_{\widetilde{\Gamma}} \frac{d\widetilde{z}}{z - \widetilde{z}} \right] dz , \\ \int_{\Gamma} \left[\int_{\widetilde{\Gamma}} \frac{\mathbb{R}(\widetilde{z}) d\widetilde{z}}{z - \widetilde{z}} \right] dz = \int_{\widetilde{\Gamma}} \left[\mathbb{R}(\widetilde{z}) \int_{\Gamma} \frac{dz}{z - \widetilde{z}} \right] d\widetilde{z} \quad \text{by} \quad (4.10), \text{ and} \end{split}$$

 $\int_{\Gamma} \frac{dz}{z - \tilde{z}} = 0 \quad \text{for every} \quad \tilde{z} \in \tilde{\Gamma} \quad \text{by Cauchy's theorem. But as}$ $\int_{\tilde{\Gamma}} \frac{d\tilde{z}}{z - \tilde{z}} = -2\pi i \quad \text{for every} \quad z \in \Gamma , \text{ we see that}$

$$P^2 = -\frac{1}{2\pi i} \int_{\Gamma} R(z) dz = P .$$

This proves (b). Now, by (4.17) and (5.4),

$$TP = -\frac{1}{2\pi i} \int_{\Gamma} TR(z) dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} [I+zR(z)] dz$$
$$= -\frac{1}{2\pi i} \int_{\Gamma} zR(z) dz ,$$

which proves (6.7).

As for the part (c), let $z_0 \notin \Gamma$, and $\tilde{\Gamma}$ be a curve which encloses Γ in its interior and can be continuously deformed to Γ in $\rho(T) \setminus \{z_0\}$. Thus, $z_0 \in Int \Gamma$ if and only if $z_0 \in Int \tilde{\Gamma}$. Also, $S_{\tilde{\Gamma}}(z_0) = S$. Again as before,

$$PS = \frac{-1}{(2\pi i)^2} \int_{\Gamma} R(z) dz \int_{\widetilde{\Gamma}} \frac{R(\widetilde{z})}{\widetilde{z} - z_0} d\widetilde{z}$$
$$= \frac{-1}{(2\pi i)^2} \int_{\Gamma} \left[\int_{\widetilde{\Gamma}} \frac{R(z) - R(\widetilde{z})}{(z - \widetilde{z})(\widetilde{z} - z_0)} d\widetilde{z} \right] dz$$
$$= \frac{-1}{(2\pi i)^2} \int_{\Gamma} R(z) \left[\int_{\widetilde{\Gamma}} \frac{d\widetilde{z}}{(z - \widetilde{z})(\widetilde{z} - z_0)} \right] dz ,$$

since $\int_{\Gamma} \left[\int_{\widetilde{\Gamma}} \frac{\mathbb{R}(z)dz}{(z-\widetilde{z})(\widetilde{z}-z_0)} \right] dz = \int_{\widetilde{\Gamma}} \left[\frac{\mathbb{R}(z)}{\widetilde{z}-z_0} \int_{\Gamma} \frac{dz}{z-\widetilde{z}} \right] d\widetilde{z}$ by (4.10), and $\int_{\Gamma} \frac{dz}{z-\widetilde{z}} = 0$ for every $\widetilde{z} \in \widetilde{\Gamma}$ by Cauchy's theorem. But

$$\int_{\widetilde{\Gamma}} \frac{d\widetilde{z}}{(z-\widetilde{z})(\widetilde{z}-z_0)} = \frac{1}{z-z_0} \left[\int_{\widetilde{\Gamma}} \frac{d\widetilde{z}}{z-\widetilde{z}} + \int_{\widetilde{\Gamma}} \frac{d\widetilde{z}}{\widetilde{z}-z_0} \right]$$
$$= \begin{cases} 0 , \text{ if } z_0 \in \text{Int } \Gamma \\ \frac{-2\pi i}{z-z_0} , \text{ if } z_0 \in \text{Ext } \Gamma \end{cases}$$

Hence

$$PS = SP = \begin{cases} 0, & \text{if } z_0 \in Int \Gamma \\ S, & \text{if } z_0 \in Ext \Gamma \end{cases}$$

Finally, since TR(z) = I + zR(z), we have

$$(T-z_0I)S = \frac{1}{2\pi i} \int_{\Gamma} \frac{(T-z_0I)R(z)}{z-z_0} dz$$
$$= \frac{1}{2\pi i} \int_{\Gamma} \frac{I + (z-z_0)R(z)}{z-z_0} dz$$
$$= \begin{cases} I - P, & \text{if } z_0 \in \text{Int } \Gamma \\ - P, & \text{if } z_0 \in \text{Ext } \Gamma \end{cases}$$

Thus, (6.8) and (6.9) are proved. //

The commutation relations of part (a) of the above proposition can be used to characterize $P_{\Gamma}(T)$ and $S_{\Gamma}(z_0)$, $z_0 \in Int \Gamma$. See Problem 6.5.

Now we come to the major result of this section.

THEOREM 6.3 (Spectral decomposition theorem) Let $T \in BL(X)$ and $\Gamma \subset \rho(T)$. Then T is decomposed by $Y = R(P_{\Gamma})$ and $Z = Z(P_{\Gamma})$, and $\sigma(T)$ is the disjoint union of $\sigma(T_{Y})$ and $\sigma(T_{Z})$. In fact (6.10)

 $\sigma(T_{Y}) = \sigma(T) \cap \text{Int } \Gamma$ $\sigma(T_{Z}) = \sigma(T) \cap \text{Ext } \Gamma$

Also, for $z_0 \in Int \Gamma$,

(6.11)
$$R(T_Z, z_0) = S_{\Gamma}(z_0)|_Z$$
,

and for $z_0 \in Ext \Gamma$,

(6.12)
$$\mathbb{R}(\mathsf{T}_{\mathsf{Y}},\mathsf{z}_{\mathsf{O}}) = -\mathbb{S}_{\mathsf{\Gamma}}(\mathsf{z}_{\mathsf{O}})|_{\mathsf{Y}} .$$

Proof By Proposition 6.2, $P_{\Gamma} \equiv P$ is a projection and it commutes with T. Hence T is decomposed by Y = R(P) and Z = Z(P)(Proposition 2.1). Also, by Proposition 6.1,

(6.13)
$$\sigma(T) = \sigma(T_Y) \cup \sigma(T_Z) .$$

For $z_0 \notin \Gamma$, the operator $S_{\Gamma}(z_0) \equiv S(z_0)$ commutes with P , and hence maps Y into Y , and Z into Z .

Let $z_0 \in Int \Gamma$. By the part (c) of Proposition 6.2, we have

$$S(z_0)(T-z_0I) = I - P = (T-z_0I)S(z_0)$$

Considering restrictions to the closed subspace $\ensuremath{\,Z}$, we obtain

$$S(z_0)|_Z(T_Z^{-z_0}I_Z) = I_Z = (T_Z^{-z_0}I_Z)S(z_0)|_Z$$

This shows that $z_0 \in \rho(T_Z)$ and $S(z_0)_{|Z}$ is the inverse of $T_Z - z_0 I_Z$. This proves (6.11) and we have

(6.14) Int $\Gamma \subset \rho(T_7)$.

Next, let $z_0 \in Ext \Gamma$. Then, by (6.9) we have

$$-S(z_0)(T-z_0I) = P = (T-z_0I)(-S(z_0))$$

79

Considering now restrictions to the closed subspace Y, we see that $z_0 \in \rho(T_Y)$ and $-S(z_0)|_Y$ is the inverse of $T_Y - z_0 I_Y$. This proves (6.12) and we have

(6.15) Ext
$$\Gamma \subset \rho(T_v)$$
.

The relations (6.13), (6.14) and (6.15) imply (6.10) since $\Gamma \subset \rho(T)$. It shows, in particular, that $\sigma(T)$ is the disjoint union of $\sigma(T_Y)$ and $\sigma(T_7)$. //

The above theorem tells us that if we wish to study only a part of the spectrum $\sigma(T)$ of T, which is separated by a closed curve Γ from the rest of $\sigma(T)$, then we need to study only a part of the operator T, namely T_Y , where Y is the range of P_{Γ} .

We now investigate the range of P_{Γ} . Let $z_0 \in Int \Gamma$, and $x \in X$ with $(T-z_0I)^n x = 0$ for some nonnegative integer n. Then

$$0 = (I-P_{\Gamma})(T-z_{0})^{n}x = (T-z_{0}I)^{n}(I-P_{\Gamma})x .$$

But by (6.11), $(T_Z - z_0 I_Z)$ and hence $(T_Z - z_0 I_Z)^n$ are invertible, where $Z = (I - P_{\Gamma})(X)$. In particular, $(T - z_0 I)^n |_Z$ is one to one. Hence

 $(I-P_{\Gamma})x = 0$, or $x = P_{\Gamma}x$,

i.e., $x \in \mathbb{R}(\mathbb{P}_{\Gamma})$. Thus, if for some $z_0 \in \operatorname{Int} \Gamma$ and some nonnegative integer n, $(T-z_0I)^n x = 0$, then x is in the range of \mathbb{P}_{Γ} . Of course, such an element x is nonzero only if $z_0 \in \sigma(T) \cap \operatorname{Int} \Gamma$. The case n = 1 is of particular importance. If $x \neq 0$ and $Tx = z_0 x$, then x is called <u>an eigenvector of</u> T corresponding to the <u>eigenvalue</u> z_0 . More generally, a nonzero element x with $(T-z_0I)^n x = 0$ for some $n \ge 1$ is called <u>a generalized eigenvector of</u> T corresponding to z_0 and it is said to be of <u>grade</u> n if $(T-z_0I)^{n-1} \ne 0$; in this case, z_0 is an eigenvalue of T with a eigenvalue of T with a corresponding eigenvector $(T-z_0I)^{n-1}x$. When z_0 is an eigenvalue of T, the space $Z(T-z_0I)$ is called the corresponding <u>eigenspace</u> and the space $\{x \in X : (T-z_0I)^n x = 0 \text{ for some } n = 1, 2, ...\}$ is called the corresponding <u>generalized eigenspace</u>. As a trivial example, let $X = \mathbb{C}^2$, T be represented by the matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, and Γ be a closed curve enclosing the point 1. Then $P_{\Gamma}(X) = X$, which is spanned by the eigenvector $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and the generalized eigenvalue 1 of T. Thus, the range of P_{Γ} contains all generalized eigenspaces corresponding to the eigenvalues of T in Int Γ .

For $z_0 \in Int \Gamma$, we have by (6.8) and (6.11),

$$S_{\Gamma}(z_0) = S_{\gamma} \oplus S_{\gamma}$$
,

where $S_Y = 0$, and $S_Z = (T_Z - z_0 I_Z)^{-1}$.

These considerations allow us to give appropriate names to the operators which we have introduced: $P_{\Gamma}(T)$ is called the <u>spectral</u> <u>projection associated with</u> T and Γ , and the closed subspace $Y = R(P_{\Gamma})$ is called the <u>associated spectral subspace</u>. For $z_0 \in Int \Gamma$, the operator $S_{\Gamma}(z_0)$ is called the <u>reduced resolvent of</u> $(T-z_0I)$ on the closed subspace $Z = Z(P_{\Gamma})$.

We introduce another operator which vanishes on $Z(P_{\Gamma})$ and which tells us how T differs from a scalar multiple of the identity operator on $R(P_{\Gamma})$.

For $z_0 \in \mathbb{C}$, let

(6.16)
$$D_{\Gamma}(z_0) = (T-z_0I)P_{\Gamma}$$
.

Then it follows that $D^{}_{\Gamma}(z^{}_{0})$ commutes with $P^{}_{\Gamma}$, so that

 $D_{\Gamma}(z_0) = D_Y \oplus D_Z$,

where $\mathbf{D}_{\mathbf{Y}}$ = $\mathbf{T}_{\mathbf{Y}}$ - $\mathbf{z}_{\mathbf{0}}\mathbf{I}_{\mathbf{Y}}$ and $\mathbf{D}_{\mathbf{Z}}$ = 0 .

Also, it can be seen that

(6.17)
$$D_{\Gamma}^{2}(z_{0}) = (T-z_{0}I)D_{\Gamma}(z_{0})$$
.

We now characterize the spectra of $S_{\Gamma}(z_0)$ and $D_{\Gamma}(z_0)$.

PROPOSITION 6.4 Let $\Gamma \subset \rho(T)$.

(a) $\mathbb{P}_{\Gamma}=0$ if and only if $\sigma(T)\subset \operatorname{Ext}\,\Gamma$, and then

$$S_{\Gamma}(z_0) = R(z_0)$$
 for $z_0 \in Int \Gamma$,
 $D_{\Gamma}(z_0) = 0$ for $z_0 \in \mathbb{C}$.

(b) $P_{\Gamma} = I$ if and only if $\sigma(T) \subset Int \Gamma$, and then

$$\begin{split} &\mathbf{S}_{\Gamma}(\mathbf{z}_0) = 0 \quad \text{for} \quad \mathbf{z}_0 \in \operatorname{Int} \Gamma , \\ &\mathbf{D}_{\Gamma}(\mathbf{z}_0) = \mathrm{T} - \mathbf{z}_0 \mathrm{I} \quad \text{for} \quad \mathbf{z}_0 \in \mathbb{C} . \end{split}$$

(c) Let $0 \neq P_{\Gamma} \neq I$. Then for $z_0 \in Int \Gamma$, we have

(6.18)
$$\sigma(S_{\Gamma}(z_0)) = \{0\} \cup \{\frac{1}{\lambda - z_0} : \lambda \in \sigma(T) \cap \text{Ext } \Gamma\}$$

Also, for $z_0 \in \mathbb{C}$, we have

(6.19)
$$\sigma(\mathbb{D}_{\Gamma}(z_0)) = \{\lambda - z_0 : \lambda \in \sigma(T) \cap \text{Int } \Gamma\} \cup \{0\} .$$

Proof Let $Y = R(P_{\Gamma})$ and $Z = Z(P_{\Gamma})$. Then we know by (6.2) that

$$\sigma(T) = \sigma(T_Y) \cup \sigma(T_Z) .$$

Now, $P_{\Gamma} = 0$ if and only if $Y = \{0\}$, i.e., $\sigma(T_Y) = \emptyset$, by Theorem 5.2. This is the case if and only if $\sigma(T) = \sigma(T_Z) = \{\lambda \in \sigma(T) : \lambda \in Ext \ \Gamma\}$, by Theorem 6.3. In this case, we have for $z_0 \in Int \ \Gamma$, $(T-z_0I)S_{\Gamma}(z_0) = I - P = I$ by (6.8), so that $S_{\Gamma}(z_0) = R(z_0)$. Also, $D_{\Gamma}(z_0) = (T-z_0I)P_{\Gamma} = (T-z_0I)0 = 0$. This proves (a). The proof of (b) is exactly similar.

Let, now, $0 \neq P_{\Gamma} \neq I$. For $z_0 \in Int \Gamma$, we have

$$S_{\Gamma}(z_0) = S_Y \oplus S_Z$$

where $S_Y = 0$ and $S_Z = (T_Z - z_0 I_Z)^{-1}$ by (6.8) and (6.11). Since $Y \neq \{0\}$, we see that $\sigma(S_Y) = \{0\}$, and

$$\sigma(S_{Z}) = \{ \frac{1}{\lambda - z_{0}} : \lambda \in \sigma(T_{Z}) \}$$
$$= \{ \frac{1}{\lambda - z_{0}} : \lambda \in \sigma(T) \cap \text{Ext } \Gamma \}$$

by (6.10). Since $\sigma(S_{\Gamma}(z_0)) = \sigma(S_Y) \cup \sigma(S_Z)$, we obtain (6.18). The proof of (6.19) is very similar. //

We are now in a position to find the coefficients in the Laurent exansion of R(z) in an annulus about z_0 .

THEOREM 6.5 (Laurent expansion of R(z)) Let $\Gamma \subset \rho(T)$, $z_0 \in Int \Gamma$, and write $P = P_{\Gamma}$, $S = S_{\Gamma}(z_0)$, $D = D_{\Gamma}(z_0)$. Then

(6.20)
$$\max\{|\lambda - z_0| : \lambda \in \sigma(T) \cap \text{Int } \Gamma\} = r_{\sigma}(D) \equiv r_1$$
,

(6.21)
$$\min\{|\lambda - z_0| : \lambda \in \sigma(T) \cap \text{Ext } \Gamma\} = \frac{1}{r_{\sigma}(S)} \equiv r_2$$

Let $r_1 < r_2$. The resolvent operator R(z) is analytic on the annulus $\{z \in \mathbb{C} : r_1 < |z-z_0| < r_2\}$, and we have

(6.22)
$$R(z) = \sum_{k=0}^{\infty} S^{k+1} (z-z_0)^k - \frac{P}{z-z_0} - \sum_{k=1}^{\infty} \frac{D^k}{(z-z_0)^{k+1}}$$

Proof The expressions for $r_{\sigma}(D)$ and $1/r_{\sigma}(S)$ follow immediately from Proposition 6.4 upon making use of the convention that if a set of nonnegative numbers reduces to the empty set, then its maximum is 0, while its minimum is infinity.

Now, assume that $z \in \mathbb{C}$ is such that the two infinite series on the right hand side of (6.22) converge in BL(X). Let f(z) denote the right hand side of (6.22) and for n = 1, 2, ..., let

$$f_{n}(z) = \sum_{k=0}^{n} S^{k+1} (z-z_{0})^{k} - \frac{P}{z-z_{0}} - \sum_{k=1}^{n} \frac{D^{k}}{(z-z_{0})^{k+1}}.$$

Since $z_0 \in Int \Gamma$, we see by (6.8) that $(T-z_0I)S = I - P$. Also, by (6.16) and (6.17), we have $(T-z_0I)P = D$, $(T-z_0I)D = D^2$. Hence

$$\begin{split} f_{n}(z)(T-zI) &= (T-zI)f_{n}(z) \\ &= (T-z_{0}I)f_{n}(z) - (z-z_{0})f_{n}(z) \\ &= \sum_{k=0}^{n} (I-P)S^{k}(z-z_{0})^{k} - \frac{D}{z-z_{0}} - \sum_{k=1}^{n} \frac{D^{k+1}}{(z-z_{0})^{k+1}} \\ &- \sum_{k=0}^{n} S^{k+1}(z-z_{0})^{k+1} + P + \sum_{k=1}^{n} \frac{D^{k}}{(z-z_{0})^{k}} \\ &= (I-P) - \frac{D^{n+1}}{(z-z_{0})^{n+1}} - S^{n+1}(z-z_{0})^{n+1} + P \\ &= I - \left[\frac{D}{z-z_{0}}\right]^{n+1} - [(z-z_{0})S]^{n+1} , \end{split}$$

 $\sum_{k=0}^{\infty} s^{k+1} (z - z_0)^k$

which tends to I as $n \to \infty$, since the latter two terms are the (n+1)-st terms of convergent series. This shows that $z \in \rho(T)$ and R(z) = f(z).

Now, we know from Theorem 4.9 that the series

and
$$\sum_{k=1}^{\infty} \frac{D^k}{(z-z_0)^{k+1}}$$
 both converge if

$$\mathbf{r}_{\sigma}(\mathbf{D}) = \overline{\lim_{k \to \infty}} \|\mathbf{D}^{k}\|^{1/k} < \|\mathbf{z} - \mathbf{z}_{0}\| < 1 \neq \overline{\lim_{k \to \infty}} \|\mathbf{S}^{k}\|^{1/k} = \frac{1}{\mathbf{r}_{\sigma}(\mathbf{S})}$$

Thus, for $r_1 < |z-z_0| < r_2$, the expansion (6.22) of R(z) is valid and R(z) is analytic there. //

We remark that the coefficients in the Laurent expansion of R(z) around $z_{\rm O}$ are given by

(6.23)
$$a_k = S^{k+1}(z_0)$$
, $k = 0, 1, 2, ..., b_1 = -P$,
 $b_k = -D^{k-1}(z_0)$, $k = 2, 3, ...$

Thus, they are determined by three operators: $S(z_0)$, P and $D(z_0)$. In fact, since $D(z_0) = (T-z_0I)P$ and $P = I - (T-z_0I)S(z_0)$, we see that the single operator $S(z_0)$ determines all these coefficients. Another noteworthy feature of these coefficients is as follows: If some $a_j = S^{j+1}(z_0) = 0$, then for all k > j, we have $a_k = S^{k+1}(z_0) = 0$; and if some $b_j = -D^{j-1}(z_0) = 0$, then for all k > j, we have $b_k = -D^{k-1}(z_0) = 0$. This fact would be used quite fruitfully in the sequel.

We also note that if $0 \in \text{Int } \Gamma$ and $\sigma(T) \subset \text{Int } \Gamma$, then $P_{\Gamma} = I$, $D_{\Gamma}(0) = T$ and $S_{\Gamma}(0) = 0$. Hence the Laurent expansion (6.22) reduces to

$$\mathbb{R}(z) = -\sum_{k=0}^{\infty} T^{k} z^{-(k+1)} \text{ for } |z| > r_{\sigma}(T) .$$

This coincides with the first Neumann expansion (5.8), which we have obtained earlier.

Problems Let Γ be a simple closed positively oriented rectifiable curve in $\rho(T)$.

6.1 Let $\widetilde{\Gamma}$ be another closed rectifiable curve in $\rho(T)$. If Int $\Gamma \cap$ Int $\widetilde{\Gamma} = \emptyset$, then $P_{\widetilde{\Gamma}}P_{\Gamma} = 0$. If Int $\Gamma \subset$ Int $\widetilde{\Gamma}$, then $P_{\widetilde{\Gamma}}P_{\Gamma} = P_{\Gamma}$, and $P = P_{\widetilde{\Gamma}} - P_{\Gamma}$ is a projection. If Y = R(P) and Z = Z(P), then

$$\begin{split} \sigma(\mathrm{T}_{\mathrm{Y}}) &= \sigma(\mathrm{T}) \ \cap \ (\mathrm{Int} \ \widetilde{\Gamma} \ \cap \ \mathrm{Ext} \ \Gamma) \ , \\ \sigma(\mathrm{T}_{\mathrm{Z}}) &= \sigma(\mathrm{T}) \ \cap \ (\mathrm{Ext} \ \widetilde{\Gamma} \ \cup \ \mathrm{Int} \ \Gamma) \ . \end{split}$$

6.2 Let $z_0 \in Int \Gamma$. Then for n = 1, 2, ...,

$$Z(P_{\Gamma}) \subset R((T-z_{\Omega}I)^{n})$$

6.3 Let $z_0 \in \text{Ext } \Gamma$. If $P_{\Gamma} = 0$, then $S_{\Gamma}(z_0) = 0$; if $P_{\Gamma} = I$, then $S_{\Gamma}(z_0) = -R(z_0)$; if $0 \neq P_{\Gamma} \neq I$, then

$$\sigma(S_{\Gamma}(z_0)) = \{0\} \cup \left\{\frac{-1}{\lambda - z_0} : \lambda \in \sigma(T) \cap \operatorname{Int} \Gamma\right\}.$$

6.4 For $z_0 \in \mathbb{C}$, let $D = D_{\Gamma}(z_0)$ and for $z_0 \notin \Gamma$, let $S = S_{\Gamma}(z_0)$. Then DP = PD = D. If $z_0 \in Int \Gamma$ then DS = SD = 0, while if $z_0 \in Ext \Gamma$, then DS = SD = -P. For k = 1, 2, ...,

$$-\frac{1}{2\pi i} \int_{\Gamma} (z - z_0)^k R(z) = D^k ,$$

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{R(z)}{(z - z_0)^k} dz = \begin{cases} S^k , & \text{if } z_0 \in \text{Int } \Gamma \\ (-1)^{k - 1} S^k , & \text{if } z_0 \in \text{Ext } \Gamma \end{cases}$$

Theorem 6.5 can be proved by noting that if $r_1 < r_2$, then Γ can be continuously deformed in $\rho(T) \setminus \{z_0\}$ to $\tilde{\Gamma}$, where $\tilde{\Gamma}(t) = z_0 + re^{it}$, $t \in [0, 2\pi]$, $r_1 < r < r_2$, and showing that $a_k = S^{k+1}$ for $k = 0, 1, \ldots, b_1 = -P$ and $b_k = -D^{k-1}$, $k = 2, 3, \ldots$. (See (4.12) and (4.13).)

6.5 Let Q be a (bounded) projection such that $Q(X) = P_{\Gamma}(X)$. (i) For $x, y \in X$, we have x = y if and only if Qx = Qy and $S_{\Gamma}(z_0)x = S_{\Gamma}(z_0)y$ for some $z_0 \in Int \Gamma$. (ii) $Q = P_{\Gamma}$ if and only if Q comutes with T. (iii) Let $z_0 \in Int \Gamma$ and $A \in BL(X)$. Then $A = S_{\Gamma}(z_0)$ if and only if $AP_{\Gamma} = 0$, $A(T-z_0I) = I - P_{\Gamma}$ and A commutes with T.

6.6 Let $X = Y \oplus Z$ with $T(Y) \subset Y$. Let Q be the projection on Y along Z and $\widetilde{T}_Z = (I-Q)T|_Z$. Then $\sigma(T) \subset \sigma(T_Y) \cup \sigma(\widetilde{T}_Z)$. (Hint: If $z \in \rho(T_Y) \cap \rho(\widetilde{T}_Z)$, then $R(T_Y,z)Q + [I-R(T_Y,z)QT]R(\widetilde{T}_Z,z)(I-Q)$ is the inverse of T - zI.)

6.7 Let Y be a closed subspace of X such that $T(X) \subset Y$. Then for $0 \neq z \in \rho(T)$, $R(z)(Y) \subset Y$, and if Γ does not enclose 0, then $P_{T}(X) \subset T(X) \subset Y$. Moreover,

$$P_{\Gamma} = \frac{-T}{2\pi i} \int_{\Gamma} \frac{R(z)}{z} dz .$$