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4. BANACH SPArn-VAUJID ANALYI'IC FUNCTimB 

In this section we generalize the theory of complex-valued analytic 

functions of a complex variable by considering functions with values in 

a complex Banach space Y . The reason for considering the letter Y 

instead of the usual letter X is that we shall later consider 

Y = BL(X) , where X is a given complex Banach space. 

Throughout this section D will denote a nonempty open connected 

set in IC . 

A function f D ~y is said to be analytic on D if for every 

exists in Y ; it then will be denoted by f'{z0) and called the 

derivative of f 

If f is analytic on D and if y* € y* , then it follows from 

the conjugate linearity and the continuity of * y that the map 

* z ~ <f(z) ,y > is a complex-valued analytic function for z i·n D , 

and 

(4.1) * * <f(•),y >'(z) = <f'(z),y > 

Dunford's theorem states the amazing fact that if * z ~ <f{z),y > 

analytic for z in D * * for every y € Y then, in fact, f is 

is 

analytic on D ([L], 9.5). This result will allow us to transfer many 

interesting formulae from the theory of IC-valued functions to the case 

of Y-valued functions. 

Before we discuss the integration of Y-valued functions, we deduce 

some useful results for Y-valued analytic functions. 
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PROP<EITI(J'( 4.1 (a) (Liouville's theorem) If f is analytic on ~ 

and is bounded there, then f is a constant function. 

(b) (Maximum norm theorem) Let f be analytic on D and let 

z0 € D be such that llf(z)ll $; llf(z0 )n for all z € D . Then 

llf(z)ll = llf(z0 )n , z E D 

if Y is strictly convex, then, in fact, we have 

f(z) = f(z0 ) , z E D . 

(c) Let a sequence (f ) of analytic functions on D converge to n 

a function f , uniformly on every compact subset of D Then f is 

analytic on D . 

Proof (a) Let z0 € D , and consider. 

g(z) = f(z) - f(z0 ) , z E D 

* * Let y E Y * Since the function z ~ <g(z),y > is bounded and 

analytic for z in ~ , and has value 0 at z = z0 , we see by the 

* usual Liouville theorem that <g(z),y > = 0 for all z € D . 

Since this is true for every y* € y* we obtain g(z) = 0, i.e., 

f(z) = f(z0 ) for all z E D 

(b) * * By Corollary 1.2, there is y0 € Y such that 

By the fundamental inequality (1.3), we see that for all z € D . 

(4.2) 
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* Since the function z ~ <f(z).y0> is analytic for z in D • we 

conclude by the usual maximum modulus theorem that 

(4.3) 

Hence equality relations hold in (4.2). i.e., 

llf(z)ll = llf(z0)n for all z € D 

Now. let Y be strictly convex. If f(z0) = 0 . then clearly 

Assume then f(z0 ) ~ 0 • and let 

z € D . Now. the functional * Yo attains its norm at 

(4.3) at y = f(z)/llf(z0 )11 • where 

lly0 11 = 1 = llyll . Since y; attains its norm also at (y0+y)/2 • we 

must have, in fact, ll(y0+y)/211 = 1 Then the strict convexity of Y 

implie~ that y = y0 i.e .• f(z) = f(z0 ) 

(c) * * For y € Y . the sequence * (<fn(z),y >) converges 

* <f(z),y} , uniformly on every compact subset of D 

function * z ~ <f(z) .y > is analytic for z in D . 

theorem, we see that f is analytic on D . // 

Hence the 

By Dunford's 

Remark 4.2 The condition of strict convexity in the part (b) of the 

above proposition is merely sufficient to obtain the strong version 

to 

f(z) = f(z0) of the maximum norm theorem. While it is not necessary, 

it cannot be dropped either. The space Y = c2 is not strictly convex 

under either of the norms 
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That the strong version does not hold for Y with the II norm 

follows by considering D"' {z : lzl < 1} , z0 = 0 and f(z} = [z,l]t 

On the other hand, the stro:n..g version does hold for Y with the II !1 1 

norm. We omit the proof, but refer the reader to a necessary and 

sufficient condition for the strong version to hold given in [nq]. 

We now consider the integration of a Banach space-valued function 

on a rectifiable curve f in ~ i.e.' when r is a continuous 

complex-valued f<n~ction on [a,b] for which the total variation 

n 

I if( 
i=l 

) - f(t. 1 ) I : n a positive 
1-

a t 0 < t 1< ... <tn = b} 
integer, 

is finite. Note that a piece'tlfise continuously differentiable function 

r has finite total variation; in fact, 

(4. V(r) = i 11\ ldt , 
a 

where dot denotes differentiation lli th respect to t 

Let f : f ...,. Y be continuous. For a partition 

n>: a= to< tl<. .. <tn = b and points $ = {sl, ... ,sn} with 

s. E [t. 1 ,t.] , i = l, ... ,n, we let 
1 1- l 

M(IP) =max{ lt.-t. 1 1 : i = 1, ... ,n} 
1 1-

n 
2(11',$) = I f(f(s.))[f(t.)-f{t~ 1)] 

i=l l 1 1-

M(IP} is the mesh of the partition IP and ~(IP,$) is a 

Riemann-Stielties sum. 

When no ambig-uity is likely to arise we denote the image f([a. bJ) 

of [a, b] under r by f itself. 
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fiHBOKEK 4.3 Let r be a rectifiable curve in ~ and f : r ~y be 

continuous. Then there is a unique y0 € Y with the following 

property: for every e > 0 , there is 5 ) 0 such that whenever 

~(W) < 5 , we have 

II};(W,$) - y011 < e 

We denote this y0 by Jr f{z}dz and call it the integral of f over 

r. If (W ) n 
is a sequence of partitions with 

denotes" a set of corresponding points, then 

(4.5} l f{z}dz = lim };(W ,$ ) 
r n-!llO n n 

Proof For a partition W of [a,b] , let 

~(W ) ~ 0 , n 

M(W) = max{llf{T(t) .,.. f{T{s}}ll It-s I ~ ll(W)} . 

If W is a refinement of W and $ is a set of corresponding points, 

then one can check that 

II};{W,$) - };(W,$)11 ~ M(W) V(r) 

Let ~ denote the partition of [a,b] into 2n equal parts at 

Now, if m > n , then ~ 

is a refinement of ~ . Hence 

But since for is uniformly continuous on [a,b] , we see that 

M{~) ~ 0 as n ~ro. Thus, (};(~.Yn)) is a Cauchy sequence in Y, 

and since Y is complete, it converges to some y0 in Y . 

If W is any partition of [a,b], let ~ denote the partition 

obtained by considering the nodes of W as well as ~ , and let 1f 
n 

be any set of corresponding points between the nodes of ~- Then 
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II};(JP,$) - y0 11 ~ II};(JP,$) - };(~.ln)ll 

+ ll};{~.ln) - };(~,'ll'n)ll 

+ ll};{~.'ll'n) - y0n 

~ [M{IP)+M{~)] V(f) + ll};{~.'ll'n) - y0 11 

From this relation we obtain the desired result. The uniqueness of y0 

and the validity of (4.5) are immediate. // 

OOROLLARY 4.4 With the notations of Theorem 4.3, we have 

(4.6) <Jr f{z)dz,y*> = Jr <f{z),y*>dz 

* * r for every y € Y . Also, Jr f{z)dz is the unique element of Y 

which satisfies (4.6). 

Proof The statement follows from (4.5) by using the continuity and the 

. 1' f * y* conJugate 1nearity o y € • // 

J f{z)dz can be proved by using 
r . 

Many properties of the integral 

either (4.5) or (4.6). We enumerate some of them for later use. Let f 

be a rectifiable curve in ~ . 

{i) If f is continuous on r , and M{f) = max{llf{z)ll z € f} , 

then 

(4.7) 

{ii) If a sequence 

II Jr f{z)dzll ~ M{f) V(f) . 

{f ) of continuous functions converges to f 
n 

uniformly on r , then 

(4.8) lim r f (z)dz = I f{z)dz . 
n~ Jr n r 



50 

(iii) Let -f denote the reversed curve of f defined by 

t) = f(a+b--1:} , a :S; t ::;; b 

If f is continuous on f then 

(iv) 

I f(z)dz ~ -I f(z}dz 
-r r 

and r 2 are rectifiable curves in (C and 

~ Y is continuous, then 

If f is a simple closed curve, then by Int T and Ext f we 

shall denote the interior region and the exterior :region of the curve 

traced out by r Such a curve f is said to be positively oriented, 

if as the parameter t increases from a to b , Int f lies on the 

left of the curve being traced out in (C . Unless otherwise is stated 

explicitly, we shall denote by f a simple closed positively oriented 

rectifiable curve. 

We now state the main results in the integration theory. 

~ 4.5 Let D be a simply connected domain and f D ~ Y be 

analytic. 

(a) (Cauchy's theorem) For every r in • D, 

Jr f(z)dz = 0 . 

(b) (Cauchy's integral formulae) Let f = f ' and for 

n l 1 let f(n) denote the n-th derivative of f For r in D 

and z E Int T, 



{c) 

{w E [; 
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(Cauchy's inequalities) If z E D and the disk 

lw-zi ~ r} lies in D , then 

llf(n) (z)ll :::; n! max{llf(w}ll 
r 

lw-zi r} 

Proof The results in (a) and (b) follow from the corresponding results 

for complex-valued functions by using Corollary 4.4. The part (c) 

follows from the part (b) by taking f(t} = t 
t € [0,211] I/ 

We now study the convergence of series in a Banach space and obtain 

the important result that analytic functions are precisely the functions 

which have convergent power series e:hrpansions. 

PROPOSITION 4.6 For s in a set S and k = 0,1,2, ... , let 

00 

"{ lim rsup 
k-JOO lsES 

s)U < 1 

then I ck(s) converges absolutely in Y , the convergence being 
k:::O 

uniform for s € S . 

Proof Find ~ such that 7 ( ~ < 1 . Then there is k0 such that 

for all k 2 k0 and s E S 

00 

Since I ~k converges, we see that 
k=O 

for s E S Since Y is Banach, 

for s E S . ([L], 8.2) // 

00 

00 

I lick(s)!l converges uniformly 
k::::O 

I ck(s) also converges uniformly 
k=O 
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<DROl.l.ARY 4. 7 Let '\: € Y for k = 0,1,2, ... , 
- 1/k and -r = 1 im 11'\:11 

. k-!00 
co 

Then I '\: converges in Y if -r < 1 , and it diverges if -r > 1 . 
k=O 

Proof If -r < 1 , then the result follows from the above proposition. 

If -r > 1 , then there is a subsequence ('\:.) such that 
J 

1/k. 
11'\:." J ~ 1 so that 

J 
11'\:.11 ~ 1 

J 
for all j Hence ('\:) does not 

co 
tend to zero as k ~co , showing that I '\: diverges. // 

k=O 

Before we consider the power series expansions of analytic 

functions, let us note that if ao·····an € y. then the polynomial 

p{z) = a0 + a 1z + ... + anzn is an analytic Y-valued function for z 

in 0:: . 

11IJ.DIEII 4. 8 (Taylor) Let zo € a:: and aO,a1, ... be in Y. Let 

a= 1 / lim 11~11 1/k 
k-iOO 

The series 

co 
I ~(z-zo)k 

k=O 

converges absolutely in y for all z in the disk 

D = {z : lz-z0 I < a} • 

the convergence is uniform on every closed subset of D , and the sum 

f is an analytic function on D with 
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Conversely, if f is analytic on a disk D = {z = lz-z0 1 < ~} then 

for z € D , we have 

f{z) 

Proof Let r < a . The first part follows by letting 

S = { z : I z-z0 I ~ r} and 

4.6, since 

Cl() 

k 
~(z) = ~(z-z0) for z € s in Proposition 

Also, the sum f{z) = I ~(z-z0)k is analytic for z in D because 
k=O 

n k 
it is the uniform limit of analytic functions I ~(z-z0) on every 

k=O 

compact subset of D (Proposition 4.1{c)). The remaining parts of the 

theorem follow from the usual Taylor's theorem by noting that 

if and only if for every 

Cl() 

f(z} I ~(z-z0)k 
k=O 

* * y € y • 

Cl() 

* ~ * k <f{z},y > = L <~.y >(z-z0 ) 
k=O 

and by using.(4.1} repeatedly. // 

Cl() 

The above result says that the power series I ~(z-z0}k 
k=O 

converges if lz-z0 1 < a , while it follows from Corollary 4.7 that it 

- 1/k diverges if lz-z0 I > a . For this reason, a = 1/lim 11~11 is 
k-..oo 

Cl() k 
called the radius of convergence of the power series I ~(z-z0} 

k=O 
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- 1/k 
a= 1 / lim 11~11 , 

k-liXI 

- 1/k f3 = lim 11~11 • 
k-liXI 

The series 

00 
~ -k 
L ~(z-zo) 

k=1 

both converge absolutely in Y for all z in the annulus 

D = { z : f3 < I z-z0 'I < a} ; 

the convergence is uniform on every closed subset of D . Let 

00 00 

( 4.11) ~ k ~ -k f{z) = L ~(z-z ) + L ~(z-z0) . 
k=O 0 k=1 

Then f is analytic on D and 

( 4.12) __ 1_ J f(w) a. - 2 . k 1 dw , k = 0,1,2, ... , 
K 11'1 f (w-z0) + 

(4.13) 1 J k-1 ~ = 21Ti r f{w)(w-zo) dw. k = 1,2, ... , 

it , where f{t) = re 0 ~ t ~ 211' , f3 < r < a . 

Conversely, if f is analytic on some annulus 

then for every z E D , we have the 

expansion (4.11) of f , where the ~·s and the ~·s are given by 

{4.12) and {4.13), with p < r < ~ . 

The proof of this theorem is similar to that of Taylor's theorem 

and hence we omit it. Note that to obtain the formulae (4.12) and 

(4.13) we should use (4.6). Taylor's theorem is, in fact, a· special 

case of this theorem since if f is analytic in {z : lz-z0 1 <a} , 

then by Cauchy's theorem and integral formulae, 
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1 I . k-1 bk = 2~i r f{w)(w-zo) dw = 0' k = 1,2, ... , 

and 

1 I' f(w) dw 
~ 2~i ~r ( ,k+l w-z01 

k! 
k "'0,1,2, ... 

If f is analytic on {z € [; : 0 < lz-z0 i ( a} then zo is 

called an isolated singularity of f It is removable if all bk 

0 k = 1,2, ... ; it is a pole :if there is a positive integer !! 

such that be ¢ 0 but bk = 0 for all k z !! + 1 . e being the 

order of the pole; otherwise it is 'called an In 

this case, Jr f(w)dw , where f(t) = 0 < r < a , is 

called the residue of f Another special case occurs when 

f is analytic on €[;: 13 < !zl} a11d also at infinity, i.e., if 

lim f(!.} exists, so that the function g defined by 
w~1J w 

g(w) 

f , if 0 < lw I < 1//3 . 

ll• lim f(l/w) , if w = 0 . 
w->0 

is anzdytic at 0 . In this case, 

14) 

where a 0 = g(O) and 

f(z) 
00 

=a11 -!- Y b 
v k::O k 

-1 I k-'-1 b - - [g(w)/w · Jdw 
k - 2r.i -1 

r 

where -it = e /r , r > /3 

· (4 14} · ~: 1z 1 > l1'm llb..il 1/k ser1es · . · converges 1,. 1 1 - k 
k-llX> 

(See Problem 4.8.) The 



(i) Let Y = ~ . If f : D ~ ~m , then 

f(z} 

where f . : D ~ ~ , j 
J 

l, ... ,m. It is easily seen thzt f is 

analytic on D if and if each is analytic on D ac'ld then 

r· = [ '(z) ..... r~(z>f. 

Also, f is continuous on f if and only if each f. is, and then 
J 

I f(z)dz = [ J f 1(z)dz, ... , I 
r r r 

fm(z)dz]t 

as can be seen by using (4.6). 

(ii) Let Y = BL(X) , where X is a complex Banach space. Let 

f : D ~ BL(X) be analytic. For a fixed x € X , consider 

given by 

f (z) = f(z)x , z € D . 
X 

Then since convergence in the norm of BL(X) implies pointwise 

convergence, we see that each f 
X 

is analytic and 

( 4. 15) 

It is interesting to note that the converse is true ([TL], p.267, 

Theorem 1. 2). 

Let f r ~ BL(X) be continuous and fix X € X . Then 

f r ~x is continuous, and it follows by (4.5) that 
X 

( 4. 16) 

D ->X 
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This can also be proved by using (4.6) as follows. Let x* € x* , and 

consider F € (BL(X))* given by 

<T,F> = <Tx,x*> , T € BL(X) . 

Then 

<I f (z)dz,x*> =I (f (z),x*>dz =I <f(z),F>dz 
r x r x r 

= < Jr f{z)dz,F> = < [ Jr f(z)dz Jx.x*> 

Since this is true for all x* € x* , we obtain (4.16). As an example, 

let X= C([0,1]) and f : ~ ~BL(X) be given by 

zu f -zs (f(z)x)(u) = e Joe x(s)ds , x € X , u € [0,1] . 

Then for x € X and u € [0,1] , and f any rectifiable curve in C , 

[ J/(z)dz)x(u) = [ J/(z)x dz)(u) 

= Jr (f(z)x)(u)dz 

= Jf[ezu fa e-zsx(s)ds)dz 

Now, for fixed x and u zu f -zs z ~ e Jo e x(s)ds is a complex-valued 

analytic function. Hence if f is a simple closed curve, then by 

Cauchy's theorem 

[ Jf f(z)dz)x(u) = 0 , x € X , u € [0,1] , 

i.e., Jr f(z)dz = 0. This is true for every simple closed r in c 

and f is clearly continuous, Hence by Morera's theorem (cf. 

Problem 4.5), f is analytic on ~ . 



The Banach space Y = BL(X) has a multiplicative structure, and 

for T € BL(X), we have r* E BL(X*) We now the behaviour of 

the integral with. respect to these operations. 

Let f : f ~ BL(X) be continuous. For T € BL(X) and x E X 

[ Jr f(z)dz )Tx = fTx(z)dz = (f(z)T)x dz 

Jr f(z)T dz]x 

by (4.16). Hence 

f(z)T dz , and similarly 

(4.17) 

To consider [ Ir f(z)dz ]* ' we define the conjugate curve r of 

r as follows: 

f( = f(a+b-t) , t E [a,b] . 

Note that since f is positively oriented, so is f 

Figure 4.1 

We shall make use of the following :relation for a continuous 

function h : r ~ ~ . 

( 4. 18) ]~ h(z)dz h(w)dw 
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For x E X and x* E x* we have 

<r J' f(z)dz)x,x*> =<I r (z)dz,x*> by (4.16} ... r r x 

= Jf <fx(z).x*>dz , by (4.6) 

I ** = f (x,[f(z)] X )dz 

f - * * - <x.[f(w)] x >dw , by 18} J_ 
r 

r - * * -J <f[ (w)] x , x>dw 

r 

-< J 

(x, 

f 

- * * [f(w)] x dw, x> 

Since this is true for all x E X and * EX 

by 6) 

(4.16} . 

we have 

( 4.19} [J - * [f(w)] dv< • 
r 

Note that 18} is a special case of 19) when X IL = BL(X) . 

4.1 Let the functions z ~ c(z) E IL z ~ x(z) € X and 

z ~ f(z) E BL(X) be a.nalytic for z in D . Then the functions 

z ~ c(z)x(z) E X and z H· f(z)x(z) E X are a.nalyt:i.c for z in D . 

4.2 (Identity theorem) Let f : D ~ Y be analytic. If {zk} is a 

set in D having a limit point in D a..~d if f(zk) = 0 for all k . 

then f- 0 on D . (Note that D is open. and connected.) 

4.3 (Vitali) Let f : lJ ~ Y be analytic a..""ld 
n 

llfn(z)!l 5: a for all n 

and z E D . Suppose there is a set {zk} in D having a limit point in 

D such that for each k = 1,2, ... , Then lim f (z) 
n 

n-$0 
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exists for each z € D the convergence is uniform for z in every 

compact subset of D , and the limit function is analytic on D . 

4.4 Let a : [c,d] ~ [a,b] be strictly increasing, continuous and 

satisfy a( c) =a, a(d) = b . If f : [a,b] ~ C is rectifiable and 

I f(z)dz = I f(z)dz , 
foa r 

f =r~Y is continuous, then 
I 

showing that I f(z)dz 
r 

does not depend on the parametrization of 

4.5 (Morera's theorem) Let D be a simply connected domain and 

r . 

f : D ~ Y be continuous. If Jr f(z)dz = 0 for every simple closed 

rectifiable curve r in D , then f is analytic on D . 

4.6 Let f r ~ y be continuous. Then the function 

g(z)= I fi!l dw • z ( r . r w-z 

is -analytic for z€C\.f, and g' (z) ..i.{!l_ d 2 w 
(w-z) 

4.7 Let f r ~ y be continuous. Then for every * * y € y • 

* l r * -<y • r f(z)dz) = - Jr <y ,f(w)>dw 

4.8 Let r be a continuously differentiable curve in C and let 

f : r ~y be continuous. Let h be a complex-valued analytic function 

on a neighbourhood of f , which is one to one. If T = hof • then 

Jr f(h-1{w))dw = Jr f{z)h'{z)dz 

In particular, if z0 f r , and h(z) = 1/(z-z0 ) , then we have 

I I 1 dw · f{z)dz = - ~ f{z +-)- . 
r r 0 w w2 


