1. ADJOINT CONSIDERATIONS

A useful way of studying a complex Banach space X and a bounded

linear operator T on X 1is to consider the adjoint space

P % E3
X" ={x :X->C, x 1is conjugate linear and continuous}
¢
of X and the adjoint operator T  associated with T . In this

section we develop these concepts. This is done in such a way as to

make the well-known Hilbert space situation a particular case of our

development.

3¢ > 3

For x €X and x € X, we denote the value of x at x by
&%

. »* % 2
Then we easily see that for x and y in X , x and y in X
and t € C ,

(x*,x+y> = <x*,x> + (x*,y> .
(x*,tx> = E(x*,x> s

(1.1)

<x*+y*,x> = <x*,x> + <y*,x> .

LK = tEK KD .

We say that < , > 1is the scalar product on X* x X . For the sake

of convenience, we introduce the following notation:

(1.2) <x,x*> = <x*,x> , ¥ in X and X in X

% >
For x in X , let

Il = sup{l<x x>l + x in X, lxll < 1} .



This defines a norm on X* and makes it a Banach space. We have the

fundamental inequality:
(1.3) Kol = Ikl < Il Ikl , %+ in X° and x in X .
Many books on functional analysis consider the dual spoce
X' = {x'" : X=C : x' is linear and continuous}

of X instead of the adjoint space X* . Ve prefe"r the framework of
the adjoint space because in case X 1is a Hilbert space, X* can be
linearly identified with X itself, as we shall see later. In any
event, we remark that x' € X' iff its complex conjugate x' € X* .
*

This allows us to transfer many well-known results about X' to X ,

such as the following basic extension result.

PROPOSITION 1.1 (Hahn-Banach theorem) Let Y be a subspace of X and

% % - % %
y €Y . Then there is x. € X' such that x Y=y* and

sl = iy 0 -

xR . : x
Proof Since y €Y' , there is x' € X' with x IY =y and
Ix'll = Ily*ll = lly*ll ., by the Hahn-Banach extension theorem ([L], 7.6).
The proof is complete if we let x* =x' . //

COROLLARY 1.2 If O #a € X, then there is x € X with
(x*,a> = llall and le*ll =1 . More generally, if Y is a closed
subspace of X and a € Y , then there is x* € X* such that

2> = dist(a,Y) , WKl =1 and x|, =0.



Proof The first result follows by letting Y = span{a} and

<y*,ta> = tllall in Proposition 1.1. The second part can be proved by
considering the quotient space X / Y with the quotient norm

lix+ylll = inf{lix+yll : y € Y} = dist(x,Y) for x € X, and then using the

first part. //

The above result is useful in expressing the duality between X
and X* ¢ Just as (x*,x> =0 for all x € X implies, by definition,
that x* =0, we see that <x,x*> =0 for all x* € X* implies, by

the above corollary, that x = O . Moreover, just as we have by

definition, for x* e x* .
Nl = sup{I(x*,x>| rx €X, Ixlt £ 1},
we see by (1.3) and the above corollary that for .x € X,
Il = sup{I<x.x>1 : x° € X+, I < 1} .

For a subset E of X , we define the annihilator El f E to

be the following subset of X* :

El= (X eX’: x> =0 forall x €E} .

It is easy to see that El

is, in fact, a closed subspace of X* . The
concept of an annihilator will be used later in relating the range of a

bounded linear map to the zero space of its adjoint.

Let X and Y be complex Banach spaces, and let BL(X,Y) denote
the set of all bounded linear maps from X to Y . For T € BL(X) ,

the operator norm of T is defined as follows:

ITI = sup{lITxll : x € X , lIxll <1} .



Two important subspaces related to T are the null space of T :
Z(T) = {x€X : Tx = 0} ,
and the range of T :
R(T) ={y €Y : y =Tx for some x € X} .

For T € BL(X,Y) and y* ey , Wwe see that y*T ex . We denote

this ‘element of X* by T*y* . Thus, the following diagram commutes:

X @ — Y
% % %
T y\\\\N ¢///;v
C
. . L] . 3% % R
The .adjoint T of T 1is the map from Y to X defined by
(T*y*,x> = (y*,Tx> for y* € Y* , x €X .
Taking conjugates, and using the notation (1.2), we have
(1.4) T,y > = <x,Ty> for x€X .,y €Y .
> % %
Proposition 1.3 (a) For T € BL(X,Y) , we have T € BL(Y ,X') and
i = 0T .
(b) For T , S € BL(X,Y) and t € C, we have

(T+8) =T+ and (t7)° = T

Thus, T w» T isa conjugate linear isometry of BL(X.,Y) into

BL(Y X .
(c) The null space of T* equals the annihilator of the range of T :

Z(TY) = R(T)‘F .



(d) Let Z be a complex Banach space, and U € BL(Y.Z) . Then
wn)* = T .

Proof (a) T is clearly linear. Also,

T = sup{IT Y0 : ¥y~ €Y', uy’n < 1}
= sup{l<y . Tl ty ey Ly <1, xexX, ikl 1)
= sup{liTxll : x € X, lixll < 1}

= NITI .

(b) The proof of this part is easy. For example, one quickly

shows that for every y* € Y* , and x € X ,
(T+8)y 0 = (T4s™)y 0 .

(c) We have y: € Z(T') if and only if <y . Tx> = Ty x> = 0

for every x € X if and only if y* € R(T)'L .
(d) For z €7 and x € X , we have
LUTY*Z %0 = <2 UTw> = Uz, T = <TUZ L% .

Hence the result. //

Special Case of a Hilbert Space.

Let X be a Hilbert space with the inmer product < , >X , and

let lixll = (Ge,309)? for x€X . Given X" €X', defime f :X -
C by
%
f(x) =<x.x>,x€X.
%
Then f is a continuous linear functional on X of norm Iix Il . The

Riesz representation theorem ([L], 24.2) shows that there is unique

. - %7 ezt 41
¥y € A sucn wal



<x.x*> = f(x) = <x,y>X

for all x € X ; moreover, liyll = lifll = "X*“ . The correspondence
x* »y of X* with X 1is, thus, a linear isometry onto. Whenever X
is a Hilbert space, we shall, from now on, identify X* with X via
the above correspondence, and drop the suffix X in the inner product
notation < , >X without any ambiguity.

Let A : X->X be a linear map. The generalized polarization

identity

4<Ax,y> = <A(x+y).x+y> - LA(x-y).x-y>

+ i<A(x+iy).x+iy> - i<A(x-iy).x-iy> ,

where x and y belong to X , is often useful.

For a subset E of the Hilbert space X , the annihilator

El ={y €X: <x,9> =0 for all x € E}

consists of all elements of X which are orthogonal to E . The

double annihilator Ell has a nice characterization: If F denotes

the closure of the linear span of E , then

(1.5) ' e oF .

It is easy to check that F is contained in Ell . On the other hand,
suppose for a moment that there is some a in Ell , but not in F .

Then by Corollary 1.2, there is x* € X* such that x* F= 0 but
<x*;é> =1, 1i.e., there is y € X such that <z,y> =0 for all
z€F , but <a,y> =1 . This is impossible since y € E'L and

a € E so that <a,y> =0 .



For T € BL(X) . the adjoint operator T € BL(X) is

characterized by
Tx,y> = <x,T*y) for all x and y in X .

In addition to Z(T*) = R(T)'L , as noted in Proposition 1.3(c), we also

have
(1.6) Z(T) = R(TH" ,

when X 1is a Hilbert space. This follows since x € Z(T) if and only
if 0 = <Tx,y> = <x,T*y> for all y € X if and only if x € R(T*)l .
Thus, T (resp., T*) is one to one if and only if the range of T

(resp., T) is dense in X .

The norms of the operators T and T* are related by the

B*—algebra condition
(1.7) It = TN .
This can be proved as follows.

ITSTH < WT0 NTH
= utn?
2 .
= sup{ITxli® : x € X , Ixll < 1}
= sup{<Tx,Tx> : x € X , lixll {1}
= sup{<T"Tx,x> : x € X , lxll < 1}

<ITTH

If T* commutes with T , 1i.e., T*T = TT* , we say that T is
normal, and if T* =T, we say that T is sgelf-adjoint. It is

clear that every self-adjoint operator is normal.



For x € X and T € BL(X) , we have

2 2

ITxNZ - IT%IZ = <Tx,Tx> - <Tx,T x>

YT T-TT Yx. x> .

Hence it follows by using the generalized polarization identity that

(1.8) T € BL(X) is normal if and only if ITxIl = 1T ¢l

for all x € X .

For a self-adjoint operator T , we have

(Tx, x> = <x,T x>

<x,Tx>

<Tx, %>

for all x € X, so that <Tx,x> 1is real. Conversely, let <Tx,x>
be real for all x € X . Then for x,y € X, the generalized

polarization identity shows that,

KT, y> = <T(x+y).x+y> - {T(x-y).x-y>
+ i<T(x+iy),x+iy> - i<T(x-iy).x-iy>
= <x+y,T(x+y)> - <x~y,T(x-y)>
+ ilx+iy, T(x+iy)> - i<x-iy,T(x-iy)>
(since <Tz,z> is real for all =z € X)
= (T*(x+y),x+y> - <T*(x—y),x—y>
+ KT (x+iy)  xHy> — i<T (x-1y) . x~iy>
= KTx,y> .
Hence T* =T, i.e., T is self-adjoint. Thus,
(1.9) T € BL(X) is self-adjoint if and only if <Tx,x>

is real for all x € X .



Examples of adjoint spaces and operators

(i) Let X be an n dimensional space with 1 {( n < ® , and let
LS EREERE. be an ordered basis for X . Then for x in X , we have
x = tl(x)x1 + ...+ tn(x)xn ,
where tj(x) e€eC, j=1,...,n, 1is uniquely determined by x . If we
let
x> = T (x) j =1 n
X =ty . j=1.....,n,
% 3¢ 3%
then Kyswe X is an ordered basis for X and we have
x> =6, ., i,j=1,....n,
i ] 1,J

where 61 j is- the Kronecker symbol : 61 j equals O if i # j ,

B s

and equals 1 if i = j . This basis is called the basis of X*

which is adjoint to the given basis S SERERRE of X .
. 3¢ 3¢
For x in X and x in X , we have
X = <x,x*>x S R <x,x*>x .
1771 n n
3% 3¢ 3 3 3¢
(1.9) x =<x ,x1>x1 + .00+ X ,xn>xn s
<x*,x> = <x*,x ><x*,x> + ...+ <x*,x ><x*,x> .
1 1 n T n
Let, now, Y be an m-dimensional space with 1 { m < ® . Let
Vieeooo¥p be an ordered basis for Y , and yT,...,y: be the
corresponding adjoint basis for Y* . If T:X->Y is linear, and we
let

* -
ti,j = <ij,yi> . i,j=1,....n,
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then we see that for j=1,....,n ,
3¢ E
ij = (ij,y1>y1 + ...+ (ij,ym>ym
g .
= t, . V. -
;o 1,371

Thus, for x in X ,

Tx = x,xOTx,
375

Ccdo
ey

a 3¢
.zl ti j<x,xj>]yi .

o

1}
| M8 1 8
=t
N

The operator T can be represented by the m x n matrix A = [ti j] s
with respect to the bases S EERERE N and LSRRI AN of X and Y

respectively, in the following sense:

3% 3

tl,l e tl,n <x,x1> <Tx,y1>

t ot KD T,y

m, 1 m,n n m

£ E E .
Now consider the adjoint operator T : Y =X . It can be easily
seen that (X*)* can be identified with X , and we can regard
Kpse-o¥X,  as the basis of (X*)* which is adjoint to the basis
XT,...,X* of X* . Since
n
3 3% % % -
<T yj,xi> = <yj,Txi> = <Txi,yj> = tj,i

for i=1,...,m and j=1,...,n, we see that the adjoint operator
T* is represented by the conjugate transpose matrix AH = [Ej i] s
with respect to the bases yT,...,y: and xT,...,x: of fY* and X*

respectively.
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A commonly occurring situation is when X = c* , the set of all

. . n
column vectors with n entries of complex numbers. Let eg ) denote

the column vector whose i-th entry e(n)(i) equals 6i j- To save

x(1)
space, let x = | ! in €% be denoted by [x(l),...,x(n)]t , Wwhere
x(n)
the superscript t denotes the transpose. Note that xH denotes the
conjugate transpose of x , i.e., the row vector [x(1),....x(n)] .
For x € C" , we have

n
x= ) x(j)egn) .
j=1

so that egn),...,egn) is a basis of X , the so called standard

basis. If x €X' and we let
<x*,e§n)> =y(i) . j=1,....n,

then

x(3) ¥(3) .
1

<x*,x> =

%]

J

¢
so that X can be identified again with the set C" of column vectors

[y(l),...,y(n)]t , and we can consider x? = egn) L, j=1,....,n, as

the corresponding adjoint basis. Then we have for all x € X and

y € X* .

n

If Y=C", and T : C -

->C is linear, then

t, . = <Te(n),e€m)> = (e(m))HTe(n)
J J 1 1 J

i,
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is simply the i-th entry of the m—vector Tegn) for j=1,...,n and

i=1,...,m . Thus, Tx is given by the product of the m Xx n matrix

[(Tegn),e§m)>] with the n x 1 matrix x € €° . Conversely, anm X n
matrix defines a linear map from €" to €" in a natural way. We

shall denote an operator and the corresponding matrix by the same letter

T .
The i-th entry of the n-vector T*egm) is
<T*e§m),e§n)> = <e§m)’Te§n)> = Ej,i
for i=1,...,n and j =1,...,m . Thus, the adjoint T* of an

operator T 1is given by the conjugate transpose TH of the

corresponding matrix T .

(ii) Let X =26P , 1 {p <® , the space of all p-summable

sequences of complex numbers, with the norm

0

"[x(l):x(z),...]t" = [z |X(J)|P]1/p .

3=1

for x = [%(1),x(2),...7% in X . Then X can be identified with

T , where 1/p + 1/q = 1 , via the map x* »y with
(x*,ej> = y{(3j) .
where e'j = [O,...,O,l,O,...]t , the entry 1 occurring only in the
[ee]
j-th place ([L]. 13.4(b)) . Now, for x = ) x(j)ej in X we have
j=1

& = Y %) y(i) -
i=1

Let T € BL(£P,29) , and
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t
Tej = [tl,j’t2,j""] s

so that <Te.,e.,> = t. . . Since
jti i,j

Tx = 3 x(j)Te. ,
j=1 J

we have for i =1,2,...,

[+4]
Tx(1) = T x(i)ty ;-
j=1 :
Now, T: € BL(¢P,2%) ., and
3¢ - - t
Te, = [tj,l’ tj,2" 1,
% - 3
since <T'e,,e.> =Xe.,,Te.> =t, ., . We note that T and T are
J 1 J 1 Js.1

thus given by the infinite matrices [ti j] and [Ej i] .

i,j =1,2,..., respectively.

(iii) Let X = Lp([a,b]) , 1 {p<®, the set of all p-integrable

complex-valued functions on [a,b] with the norm

il = Ub|x(t)lpdm(t)]l/p .

a

where m 1is the Lebesgue measure. Then X* can be identified with
Lq([a,b]) , where 1/p + 1/q =1 , since for every < ex" , there

is a unique y € Lq([a,b]) such that

KL% = Jb}?(—t)y(t)dm(t) , x€X.
a

(See [L], 14.3.)
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Consider, for simplicity, p=2=q , and let T € BL(LZ([a,b]))

be the integral operator
Tx(s) = ka(s,t)x(t)dm(t) , X €X,
a

where ijblk(s,t)lzdm(s)dm(t) < ® . Then for all x,y € X , we have
a’a

(T*y,x> = Ly, Tx>

b

= | Tx(t)y(t)dm(t)
Ya
b

= k{(t,s) x(s) dm(s)]y(t)dm(t)
“a“a
b

= | x(s)|| k(t,s) y(t)dm(t)]dm(s)
Ya a

so that for a { s (b,

T*y(s) = ka(t,s) y(t)dm(t) .

a

3 _
Thus, T 1is again an integral operator with kernel k*(s,t) = k(t,s) .

(iv) Let X = C([a.b]) . the set of all complex-valued continuous
functions on the closed and bounded interval [a,b] of the real line,
with the supremum norm. Then for every x* € X* , there is a unique

normalized function of bounded variation, say y , such that

&% = be(t)dy(t) for all x € X .
a

(See [L], 14.6) .

Let T be an integral operator as in (iii) above, with k(s,t)
continuous for s,t € [a,b] . Then for every x € C([a,b]) and every
normalized function y of bounded variation on [a,b] , we have, as

earlier,



(T*y,x> = | x(s) Ubk(t,s)dy(t)]ds
a a
= | x(s)dz(s)

a

where
z(s) =r k(t,u)dy(t)]du, al{s<b.
a“a

Since this is true for every x € X, we see that for a {( s { b,

%

Ty(s) = z(s)

= Jb [ Js k(t,u)du]dy(t)
a a

Problems

1.1 Let Y be a closed subspace of X , and X0 € X but

X €Y . Then there is x* € X* such that

& ,y> =0 forall yevY, x> =1, and Il = 1/dist(x,.Y)

1.2 For fixed x € X, define fX : X s by fx(x*) = <x,x*> .
Then fx € X** . Identify x with fx , so that XCX** . Let

ECX . Then

E'LL N X = the closure of span{E} in X .

If T € BL(X,Y) ., then

Z(T) = X N R(THL .
(1.10)

the closure of R(T) in X = X N Z(T)' .
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If R(T) 1is closed, then
(1.11) R(TY = ()% .

In general, does the closure of R(T*) in X° equal Z(T)'L ?

1.3 Let X and Y be Hilbert spaces and T € BL(X,Y) . Then the

closure of R(T) (resp., R(T*)) equals Z(T*)l (resp., Z(T)l) .

Also, Z(T*T) = Z(T) and the closure of R(T*T) equals the closure
of R(T*) . If R(T) 1is closed. then R(T*) is closed and
R(T*T) = R(T*) = Z(T)'L . Further, T T is invertible if and only if T
is one to one and R(T) is closed. (Hint: R(T) is closed if and only

if »(T) = inf{ITxll : x € Z(T)* , Ixll = 1} > 0 )

1.4 If T € BL(X.Y) is invertible, then T € BL(Y .X) is
invertible and (T—l)* = (T*)—'1 . The converse also holds.

(See (8.1).)

1.5 Let X =1%([a.,b]) or C([a.b]) ., and

Tx(s) = Jb eStx(t)dm(t) , XxX€X, af{s<{b.
a

If X =1%([a.b]) . then T =T, while if X = C([a,b]) . then

ets_eta
— dy(¢)
a

for every normalized function y of bounded variation on [a,b] ; in

TY(s)

particular, if y € Cl([a,b]) , then

s oS ot2
Ty(s) = ———E———-y'(t)dt .

a



