1. ADJOINT CONSIDERATIONS

A useful way of studying a complex Banach space X and a bounded linear operator T on X is to consider the adjoint space

$$
\mathrm{X}^{*}=\left\{\mathrm{x}^{*}: \mathrm{X} \rightarrow \mathbb{C}, \mathrm{x}^{*} \text { is conjugate linear and continuous }\right\}
$$

of X and the adjoint operator T^{*} associated with T. In this section we develop these concepts. This is done in such a way as to make the well-known Hilbert space situation a particular case of our development.

For $x^{*} \in X^{*}$ and $x \in X$, we denote the value of x^{*} at x by

$$
\left\langle x^{*}, x\right\rangle .
$$

Then we easily see that for x^{*} and y^{*} in x^{*}, x and y in X and $t \in \mathbb{C}$ 。

$$
\begin{align*}
\left\langle\mathrm{x}^{*}, \mathrm{x}+\mathrm{y}\right\rangle & =\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle+\left\langle\mathrm{x}^{*}, \mathrm{y}\right\rangle \\
\left\langle\mathrm{x}^{*}, \mathrm{tx}\right\rangle & =\overline{\mathrm{t}}\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle \tag{1.1}\\
\left\langle\mathrm{x}^{*}+\mathrm{y}^{*}, \mathrm{x}\right\rangle & =\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle+\left\langle\mathrm{y}^{*}, \mathrm{x}\right\rangle \\
\langle\mathrm{tx}, \mathrm{x}\rangle & =\mathrm{t}\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle
\end{align*}
$$

We say that \langle,$\rangle is the scalar product on X^{*} \times X$. For the sake of convenience, we introduce the following notation:

$$
\begin{equation*}
\left\langle x, x^{*}\right\rangle=\overline{\left\langle x^{*}, x\right\rangle}, x \text { in } x \text { and } x^{*} \text { in } x^{*} \text {. } \tag{1.2}
\end{equation*}
$$

For x^{*} in X^{*}, let

$$
\left\|x^{*}\right\|=\sup \left\{\left|\left\langle x^{*}, x\right\rangle\right|: x \text { in } X,\|x\| \leq 1\right\}
$$

This defines a norm on X^{*} and makes it a Banach space. We have the fundamental inequality:

$$
\begin{equation*}
\left|\left\langle x^{*}, x\right\rangle\right|=\left|\left\langle x, x^{*}\right\rangle\right| \leq\left\|x^{*}\right\|\|x\|, x^{*} \text { in } x^{*} \text { and } x \text { in } x \text {. } \tag{1.3}
\end{equation*}
$$

Many books on functional analysis consider the dual space

$$
X^{\prime}=\left\{x^{\prime}: X \rightarrow \mathbb{C}: X^{\prime} \text { is linear and continuous }\right\}
$$

of X instead of the adjoint space X^{*}. We prefer the framework of the adjoint space because in case X is a Hilbert space, X^{*} can be linearly identified with X itself, as we shall see later. In any event, we remark that $X^{\prime} \in X^{\prime}$ iff its complex conjugate $\overline{x^{\prime}} \in X^{*}$. This allows us to transfer many well-known results about X^{\prime} to X^{*}, such as the following basic extension result.

PROPOSITION 1.1 (Hahn-Banach theorem) Let Y be a subspace of X and $y^{*} \in Y^{*}$. Then there is $X^{*} \in X^{*}$ such that $\left.X^{*}\right|_{Y}=y^{*}$ and $\left\|x^{*}\right\|=\left\|y^{*}\right\|$.

Proof Since $\mathrm{y}^{*} \in \mathrm{Y}^{\prime}$, there is $\mathrm{x}^{\prime} \in \mathrm{X}^{\prime}$ with $\left.\mathrm{x}^{\prime}\right|_{\mathrm{Y}}=\overline{y^{*}}$ and $\|x '\|=\left\|\overline{{ }^{*}}\right\|=\left\|y{ }^{*}\right\|$, by the Hahn-Banach extension theorem ([L], 7.6). The proof is complete if we let $\mathrm{x}^{*}=\overline{\mathrm{x}^{\prime}}$.

COROLLARY 1.2 If $0 \neq a \in X$, then there is $x^{*} \in X^{*}$ with $\left\langle x^{*}, a\right\rangle=\|a\|$ and $\left\|x^{*}\right\|=1$. More generally, if Y is a closed subspace of X and $a \notin Y$, then there is $X^{*} \in X^{*}$ such that $\left\langle\mathrm{x}^{*}, \mathrm{a}\right\rangle=\operatorname{dist}(\mathrm{a}, \mathrm{Y}),\left\|\mathrm{x}^{*}\right\|=1$ and $\left.\mathrm{x}^{*}\right|_{\mathrm{Y}} \equiv 0$.

Proof The first result follows by letting $Y=\operatorname{span}\{a\}$ and $\left\langle\mathrm{y}^{*}, \mathrm{ta}\right\rangle=$ Etlall in Proposition 1.1. The second part can be proved by considering the quotient space X / Y with the quotient norm $\|\|x+y\| l \mid=\inf \{\|x+y\|: y \in Y\}=\operatorname{dist}(x, Y)$ for $x \in X$, and then using the first part. //

The above result is useful in expressing the duality between X and X^{*} : Just as $\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle=0$ for all $\mathrm{x} \in \mathrm{X}$ implies, by definition, that $\mathrm{X}^{*}=0$, we see that $\left\langle\mathrm{x}, \mathrm{x}^{*}\right\rangle=0$ for all $\mathrm{x}^{*} \in \mathrm{X}^{*}$ implies, by the above corollary, that $\mathrm{x}=0$. Moreover, just as we have by definition, for $x^{*} \in X^{*}$.

$$
\left\|x^{*}\right\|=\sup \left\{\left|\left\langle x^{*}, x\right\rangle\right|: x \in X,\|x\| \leq 1\right\},
$$

we see by (1.3) and the above corollary that for $\mathrm{x} \in \mathrm{X}$,

$$
\|x\|=\sup \left\{\left|\left\langle x, x^{*}\right\rangle\right|: x^{*} \in X^{*},\left\|x^{*}\right\| \leq 1\right\} .
$$

For a subset E of X, we define the annihilator E^{\perp} of E to be the following subset of X^{*} :

$$
E^{\perp}=\left\{x^{*} \in X^{*}:\left\langle x^{*}, x\right\rangle=0 \text { for all } x \in E\right\}
$$

It is easy to see that E^{\perp} is, in fact, a closed subspace of X^{*}. The concept of an annihilator will be used later in relating the range of a bounded linear map to the zero space of its adjoint.

Let X and Y be complex Banach spaces, and let $\mathrm{BL}(\mathrm{X}, \mathrm{Y})$ denote the set of all bounded linear maps from X to Y. For $T \in B L(X)$, the operator norm of T is defined as follows:

$$
\|T\|=\sup \{\|T x\|: x \in X,\|x\| \leq 1\} .
$$

Two important subspaces related to T are the null space of T :

$$
Z(T)=\{x \in X: T x=0\}
$$

and the range of T :

$$
R(T)=\{y \in Y: y=T x \text { for some } x \in X\}
$$

For $T \in B L(X, Y)$ and $y^{*} \in Y^{*}$, we see that $y^{*} T \in X^{*}$. We denote this element of X^{*} by $T^{*} y^{*}$. Thus, the following diagram commutes:

The adioint T^{*} of T is the map from Y^{*} to X^{*} defined by

$$
\left\langle T^{*} y^{*}, x\right\rangle=\left\langle y^{*}, T x\right\rangle \text { for } y^{*} \in Y^{*}, x \in X
$$

Taking conjugates, and using the notation (1.2), we have

$$
\begin{equation*}
\left\langle\mathrm{Tx}, \mathrm{y}^{*}\right\rangle=\left\langle\mathrm{x}, \mathrm{~T}^{*} \mathrm{y}^{*}\right\rangle \text { for } \mathrm{x} \in \mathrm{X}, \mathrm{y}^{*} \in \mathrm{Y}^{*} \tag{1.4}
\end{equation*}
$$

Proposition 1.3 (a) For $T \in \operatorname{BL}(X, Y)$, we have $T^{*} \in \operatorname{BL}\left(Y^{*}, X^{*}\right)$ and $\left\|T^{*}\right\|=\|T\|$.
(b) For $T, S \in \operatorname{BL}(X, Y)$ and $t \in \mathbb{C}$, we have

$$
(T+S)^{*}=T^{*}+S^{*} \text { and }(t T)^{*}=\overline{\mathrm{t}} T^{*}
$$

Thus, $T \Leftrightarrow T^{*}$ is a conjugate linear isometry of $\operatorname{BL}(X, Y)$ into $\operatorname{BL}\left(Y^{*}, X^{*}\right)$.
(c) The null space of T^{*} equals the annihilator of the range of T :

$$
\mathrm{Z}\left(\mathrm{~T}^{*}\right)=\mathrm{R}(\mathrm{~T})^{\perp} .
$$

(d) Let Z be a complex Banach space, and $U \in B L(Y, Z)$. Then

$$
(U T)^{*}=T^{*} U^{*} .
$$

Proof (a) T^{*} is clearly linear. Also,

$$
\begin{aligned}
\left\|T^{*}\right\| & =\sup \left\{\left\|T^{*} y^{*}\right\|: y^{*} \in Y^{*},\left\|y^{*}\right\| \leq 1\right\} \\
& =\sup \left\{\left|\left\langle y^{*}, T x\right\rangle\right|: y^{*} \in Y^{*},\left\|y^{*}\right\| \leq 1, x \in X ;\|x\| \leq 1\right\} \\
& =\sup \{\|T x\|: x \in X,\|x\| \leq 1\} \\
& =\|T\|
\end{aligned}
$$

(b) The proof of this part is easy. For example, one quickly shows that for every $y^{*} \in Y^{*}$, and $x \in X$,

$$
\left\langle(\mathrm{T}+\mathrm{S})^{*} \mathrm{y}^{*}, \mathrm{x}\right\rangle=\left\langle\left(\mathrm{T}^{*}+\mathrm{S}^{*}\right) \mathrm{y}^{*}, \mathrm{x}\right\rangle
$$

(c) We have $y^{*} \in Z\left(T^{*}\right)$ if and only if $\left\langle y^{*}, T x\right\rangle=\left\langle T^{*} y^{*}, x\right\rangle=0$ for every $x \in X$ if and only if $y^{*} \in R(T)^{\perp}$.
(d) For $z^{*} \in Z^{*}$ and $x \in X$, we have

$$
\left\langle(U T)^{*} z^{*}, x\right\rangle=\left\langle z^{*}, U T x\right\rangle=\left\langle U^{*} z^{*}, T x\right\rangle=\left\langle T^{*} U^{*} z^{*}, x\right\rangle \text {. }
$$

Hence the result. //

Special Case of a Hilbert Space.

Let X be a Hilbert space with the inner product \langle,\rangle_{X}, and let $\|x\|=\left(\langle x, x\rangle_{X}\right)^{1 / 2}$ for $x \in X$. Given $x^{*} \in X^{*}$, define $f: X \rightarrow$ \mathbb{C} by

$$
f(x)=\left\langle x, x^{*}\right\rangle, x \in X .
$$

Then f is a continuous linear functional on X of norm $\left\|x{ }^{*}\right\|$. The Riesz representation theorem ([L], 24.2) shows that there is unique $y \in X$ such that

$$
\left\langle x, x^{*}\right\rangle=f(x)=\langle x, y\rangle_{X}
$$

for all $x \in X$; moreover, $\|y\|=\|f\|=\|x\|$. The correspondence $X^{*} \Leftrightarrow y$ of X^{*} with X is, thus, a linear isometry onto. Whenever X is a Hilbert space, we shall, from now on, identify X^{*} with X via the above correspondence, and drop the suffix X in the inner product notation $<,\rangle_{X}$ without any ambiguity.

Let $A: X \rightarrow X$ be a linear map. The generalized polarization identity

$$
\begin{aligned}
4\langle A x, y\rangle= & \langle\mathbb{A}(x+y), x+y\rangle-\langle\mathbb{A}(x-y), x-y\rangle \\
& +i\langle\mathbb{A}(x+i y), x+i y\rangle-i\langle A(x-i y), x-i y\rangle
\end{aligned}
$$

where x and y belong to X, is often useful.

For a subset E of the Hilbert space X, the annihilator

$$
E^{\perp}=\{y \in X:\langle x, y\rangle=0 \quad \text { for all } x \in E\}
$$

consists of all elements of X which are orthogonal to E. The double annihilator $E^{\perp 1}$ has a nice characterization: If F denotes the closure of the linear span of E, then

$$
\begin{equation*}
\mathbb{E}^{\Perp}=F \tag{1.5}
\end{equation*}
$$

It is easy to check that F is contained in E^{\perp}. On the other hand, suppose for a moment that there is some a in $E^{\perp 1}$, but not in F. Then by Corollary 1.2, there is $x^{*} \in X^{*}$ such that $\left.x^{*}\right|_{F}=0$ but $\left\langle\mathrm{x}^{*}, \mathrm{a}\right\rangle=1$, i.e., there is $\mathrm{y} \in \mathrm{X}$ such that $\langle\mathrm{z}, \mathrm{y}\rangle=0$ for all $z \in F$, but $\langle a, y\rangle=1$. This is impossible since $y \in E^{\perp}$ and $a \in E^{\perp}$ so that $\langle a, y\rangle=0$.

For $T \in B L(X)$, the adjoint operator $T^{*} \in B L(X)$ is
characterized by

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle \text { for all } x \text { and } y \text { in } x \text {. }
$$

In addition to $Z\left(T^{*}\right)=R(T)^{\perp}$, as noted in Proposition 1.3(c), we also have

$$
\begin{equation*}
\mathrm{Z}(\mathrm{~T})=\mathrm{R}\left(\mathrm{~T}^{*}\right)^{\perp} \tag{1.6}
\end{equation*}
$$

when X is a Hilbert space. This follows since $x \in Z(T)$ if and only if $0=\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$ for all $y \in X$ if and only if $x \in R\left(T^{*}\right)^{\perp}$. Thus, T (resp. . T^{*}) is one to one if and only if the range of T^{*} (resp., T) is dense in X.

The norms of the operators T and T^{*} are related by the B^{*}-algebra condition

$$
\begin{equation*}
\left\|T^{*} T\right\|=\|T\|^{2} \tag{1.7}
\end{equation*}
$$

This can be proved as follows.

$$
\begin{aligned}
\left\|T^{*} T\right\| & \leq\left\|T^{*}\right\|\|T\| \\
& =\|T\|^{2} \\
& =\sup \left\{\|T x\|^{2}: x \in X,\|x\| \leq 1\right\} \\
& =\sup \{\langle T x, T x\rangle: x \in X,\|x\| \leq 1\} \\
& =\sup \left\{\left\langle T^{*} T x, x\right\rangle: x \in X,\|x\| \leq 1\right\} \\
& \leq\left\|T^{*} T\right\| .
\end{aligned}
$$

If T^{*} commutes with T, i.e., $T^{*} T=T T^{*}$, we say that T is normal: and if $T^{*}=T$, we say that T is self-adjoint. It is clear that every self-adjoint operator is normal.

For $x \in X$ and $T \in B L(X)$, we have

$$
\begin{aligned}
\|T x\|^{2}-\left\|T^{*} \mathrm{x}\right\|^{2} & =\langle\mathrm{Tx}, \mathrm{Tx}\rangle-\left\langle\mathrm{T}^{*} \mathrm{x}, \mathrm{~T}^{*} \mathrm{x}\right\rangle \\
& =\left\langle\left(\mathrm{T}^{*} \mathrm{~T}-\mathrm{TT}^{*}\right) \mathrm{x}, \mathrm{x}\right\rangle
\end{aligned}
$$

Hence it follows by using the generalized polarization identity that
(1.8) $T \in \operatorname{BL}(X)$ is normal if and only if $\|T x\|=\left\|T^{*} x\right\|$

$$
\text { for all } x \in \mathbb{X} \text {. }
$$

For a self-adjoint operator T, we have

$$
\begin{aligned}
\langle\mathrm{Tx}, \mathrm{x}\rangle & =\left\langle\mathrm{x}, \mathrm{~T}^{*} \mathrm{x}\right\rangle \\
& =\langle\mathrm{x}, \mathrm{Tx}\rangle \\
& =\overline{\langle\mathrm{Tx}, \mathrm{x}\rangle}
\end{aligned}
$$

for all $x \in X$, so that $\langle T x, x\rangle$ is real. Conversely, let 〈Tx, $x\rangle$ be real for all $x \in X$. Then for $x, y \in X$, the generalized polarization identity shows that,

$$
\begin{aligned}
4\langle T x, y\rangle= & \langle T(x+y), x+y\rangle-\langle T(x-y), x-y\rangle \\
& +i\langle T(x+i y), x+i y\rangle-i\langle T(x-i y), x-i y\rangle \\
= & \langle x+y, T(x+y)\rangle-\langle x-y, T(x-y)\rangle \\
& +i\langle x+i y, T(x+i y)\rangle-i\langle x-i y, T(x-i y)\rangle \\
& \quad(\text { since }\langle T z, z\rangle \text { is real for all } z \in X) \\
= & \left\langle T^{*}(x+y), x+y\right\rangle-\left\langle T^{*}(x-y), x-y\right\rangle \\
& \quad+i\left\langle T^{*}(x+i y), x+i y\right\rangle-i\left\langle T^{*}(x-i y), x-i y\right\rangle \\
= & 4\left\langle T^{*} x, y\right\rangle .
\end{aligned}
$$

Hence $T^{*}=T$, i.e., T is self-adjoint. Thus,
(1.9) $T \in B L(X)$ is self-adjoint if and only if $\langle T x, x\rangle$ is real for all $\mathrm{x} \in \mathrm{X}$.

Examples of adjoint spaces and operators

(i) Let X be an n dimensional space with $1 \leq \mathrm{n}<\infty$, and let x_{1}, \ldots, x_{n} be an ordered basis for X. Then for x in X, we have

$$
x=t_{1}(x) x_{1}+\ldots+t_{n}(x) x_{n},
$$

where $t_{j}(x) \in \mathbb{C}, j=1, \ldots, n$, is uniquely determined by x. If we let

$$
\left\langle x_{j}^{*}, x\right\rangle=\overline{t_{j}(x)}, j=1, \ldots, n,
$$

then $x_{1}^{*}, \ldots, x_{n}^{*}$ is an ordered basis for x^{*} and we have

$$
\left\langle\mathrm{x}_{\mathrm{i}}^{*}, \mathrm{x}_{\mathrm{j}}\right\rangle=\delta_{\mathrm{i}, \mathrm{j}}, \quad \mathrm{i}, \mathrm{j}=1, \ldots, \mathrm{n},
$$

where $\delta_{i, j}$ is the Kronecker symbol : $\delta_{i, j}$ equals 0 if $i \neq j$, and equals 1 if $i=j$. This basis is called the basis of X^{*} which is ad,joint to the given basis x_{1}, \ldots, x_{n} of X.

For x in x and x^{*} in x^{*}, we have

$$
\begin{align*}
\mathrm{x} & =\left\langle\mathrm{x}, \mathrm{x}_{1}^{*}\right\rangle \mathrm{x}_{1}+\ldots+\left\langle\mathrm{x}, \mathrm{x}_{\mathrm{n}}^{*}\right\rangle \mathrm{x}_{\mathrm{n}} \\
\mathrm{x}^{*} & =\left\langle\mathrm{x}^{*}, \mathrm{x}_{1}\right\rangle \mathrm{x}_{1}^{*}+\ldots+\left\langle\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right\rangle \mathrm{x}_{\mathrm{n}}^{*} \tag{1.9}\\
\left\langle\mathrm{x}^{*}, \mathrm{x}\right\rangle & =\left\langle\mathrm{x}^{*}, \mathrm{x}_{1}\right\rangle\left\langle\mathrm{x}_{1}^{*}, \mathrm{x}\right\rangle+\ldots+\left\langle\mathrm{x}^{*}, \mathrm{x}_{\mathrm{n}}\right\rangle\left\langle\mathrm{x}_{\mathrm{n}}^{*}, \mathrm{x}\right\rangle
\end{align*}
$$

Let, now, Y be an m-dimensional space with $1 \leq m<\infty$. Let y_{1}, \ldots, y_{m} be an ordered basis for Y, and $y_{1}^{*} \ldots, y_{m}^{*}$ be the corresponding adjoint basis for Y^{*}. If $T: X \rightarrow Y$ is linear, and we let

$$
t_{i, j}=\left\langle T x_{j}, y_{i}^{*}\right\rangle, \quad i, j=1, \ldots, n,
$$

then we see that for $j=1, \ldots, n$,

$$
\begin{aligned}
T x_{j} & =\left\langle T x_{j}, y_{1}^{*}\right\rangle y_{1}+\ldots+\left\langle\mathrm{Tx}_{j}, \mathrm{y}_{\mathrm{m}}^{*}\right\rangle \mathrm{y}_{\mathrm{m}} \\
& =\sum_{i=1}^{m} \mathrm{t}_{\mathrm{i}, \mathrm{j}} \mathrm{y}_{\mathrm{i}} .
\end{aligned}
$$

Thus, for x in X.

$$
\begin{aligned}
T x & =\sum_{j=1}^{n}\left\langle x, x_{j}^{*}\right\rangle T x_{j} \\
& =\sum_{i=1}^{m}\left[\sum_{j=1}^{n} t_{i, j}\left\langle x, x_{j}^{*}\right\rangle\right] y_{i} .
\end{aligned}
$$

The operator T can be represented by the $m \times n$ matrix $A=\left[t_{i, j}\right]$, with respect to the bases x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{m} of X and Y respectively, in the following sense:

$$
\left[\begin{array}{lll}
t_{1,1} & \cdots & t_{1, n} \\
\vdots & & \vdots \\
t_{m, 1} & \cdots & t_{m, n}
\end{array}\right]\left[\begin{array}{c}
\left\langle x, x_{1}^{*}\right\rangle \\
\vdots \\
\left\langle x, x_{n}^{*}\right\rangle
\end{array}\right]=\left[\begin{array}{c}
\left\langle T x, y_{1}^{*}\right\rangle \\
\vdots \\
\left\langle T x, y_{m}^{*}\right\rangle
\end{array}\right]
$$

Now consider the adjoint operator $T^{*}: Y^{*} \rightarrow X^{*}$. It can be easily seen that $\left(X^{*}\right)^{*}$ can be identified with X, and we can regard x_{1}, \ldots, x_{n} as the basis of $\left(X^{*}\right)^{*}$ which is adjoint to the basis $x_{1}^{*}, \ldots, x_{n}^{*}$ of x^{*}. Since

$$
\left\langle\mathrm{T}^{*} \mathrm{y}_{\mathrm{j}}^{*}, \mathrm{x}_{\mathrm{i}}\right\rangle=\left\langle\mathrm{y}_{\mathrm{j}}^{*}, \mathrm{Tx}_{\mathrm{i}}\right\rangle=\overline{\left\langle\mathrm{Tx}_{\mathrm{i}}, \mathrm{y}_{\mathrm{j}}^{*}\right\rangle}=\overline{\mathrm{t}}_{\mathrm{j}, \mathrm{i}}
$$

for $i=1, \ldots, m$ and $j=1, \ldots, n$, we see that the adjoint operator T^{*} is represented by the conjugate transpose matrix $A^{H}=\left[\bar{t}_{j, i}\right]$, with respect to the bases $\mathrm{y}_{1}^{*}, \ldots, \mathrm{y}_{\mathrm{m}}^{*}$ and $\mathrm{x}_{1}^{*}, \ldots, \mathrm{x}_{\mathrm{n}}^{*}$ of Y^{*} and X^{*} respectively.

A commonly occurring situation is when $X=\mathbb{C}^{n}$, the set of all column vectors with n entries of complex numbers. Let $e_{j}^{(n)}$ denote the column vector whose i-th entry $e_{j}^{(n)}(i)$ equals $\delta_{i, j}$. To save space, let $x=\left[\begin{array}{c}x(1) \\ \vdots \\ x(n)\end{array}\right]$ in \mathbb{C}^{n} be denoted by $[x(1), \ldots, x(n)]^{t}$, where the superscript t denotes the transpose. Note that x^{H} denotes the conjugate transpose of x, i.e., the row vector $[\overline{x(1)}, \ldots, \overline{x(n)}]$. For $x \in \mathbb{C}^{n}$, we have

$$
x=\sum_{j=1}^{n} x(j) e_{j}^{(n)}
$$

so that $e_{1}^{(n)}, \ldots, e_{n}^{(n)}$ is a basis of X, the so called standard basis. If $X^{*} \in X^{*}$ and we let

$$
\left\langle x^{*}, e_{j}^{(n)}\right\rangle=y(j), \quad j=1, \ldots, n
$$

then

$$
\left\langle x^{*}, x\right\rangle=\sum_{j=1}^{n} \overline{x(j)} y(j)
$$

so that X^{*} can be identified again with the set \mathbb{C}^{n} of column vectors $[y(1), \ldots, y(n)]^{t}$, and we can consider $x_{j}^{*}=e_{j}^{(n)}, j=1, \ldots, n$, as the corresponding adjoint basis. Then we have for all $x \in X$ and $y \in X^{*}$.

$$
\langle y, x\rangle=\sum_{j=1}^{n} \overline{x(j)} y(j)=x^{H} y
$$

If $Y=\mathbb{C}^{m}$, and $T: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ is linear, then

$$
t_{i, j}=\left\langle T e_{j}^{(n)}, e_{i}^{(m)}\right\rangle=\left(e_{i}^{(m)}\right)^{H} T e_{j}^{(n)}
$$

is simply the i-th entry of the m-vector $\mathrm{Te}_{\mathrm{j}}^{(\mathrm{n})}$ for $\mathrm{j}=1, \ldots, \mathrm{n}$ and $i=1, \ldots, m$. Thus, $T x$ is given by the product of the $m \times n$ matrix $\left[\left\langle T e_{j}^{(n)}, e_{i}^{(m)}\right\rangle\right]$ with the $n \times 1$ matrix $x \in \mathbb{C}^{n}$. Conversely, an $m \times n$ matrix defines a linear map from \mathbb{C}^{n} to \mathbb{C}^{m} in a natural way. We shall denote an operator and the corresponding matrix by the same letter T.

The i-th entry of the n-vector $T^{*} e_{j}^{(m)}$ is

$$
\left\langle T^{*} e_{j}^{(m)}, e_{i}^{(n)}\right\rangle=\left\langle e_{j}^{(m)}, T e_{i}^{(n)}\right\rangle=\bar{t}_{j, i}
$$

for $i=1, \ldots, n$ and $j=1, \ldots, m$. Thus, the adjoint T^{*} of an operator T is given by the conjugate transpose T^{H} of the corresponding matrix T.
(ii) Let $X=\ell^{p}, 1 \leq p<\infty$, the space of all p-summable sequences of complex numbers, with the norm

$$
\left\|[x(1), x(2), \ldots]^{t}\right\|=\left[\sum_{j=1}^{\infty}|x(j)|^{p}\right]^{1 / p}
$$

for $x=[x(1), x(2), \ldots]^{t}$ in X. Then X^{*} can be identified with ℓ^{q}, where $1 / p+1 / q=1$, via the map $x^{*} \mapsto y$ with

$$
\left\langle x^{*}, e_{j}\right\rangle=y(j)
$$

where $e_{j}=[0, \ldots, 0,1,0, \ldots]^{t}$, the entry 1 occurring only in the j-th place ([L], 13.4(b)). Now, for $x=\sum_{j=1}^{\infty} x(j) e_{j}$ in x we have

$$
\left\langle x^{*}, x\right\rangle=\sum_{j=1}^{\infty} \overline{x(j)} y(j)
$$

Let $T \in \operatorname{BL}\left(\ell^{\mathrm{p}}, \ell^{\mathrm{q}}\right)$, and

$$
T e_{j}=\left[t_{1, j}, t_{2, j}, \ldots\right]^{t}
$$

so that $\left\langle T e_{j}, e_{i}\right\rangle=t_{i, j}$. Since

$$
T x=\sum_{j=1}^{\infty} x(j) T e_{j},
$$

we have for $i=1,2, \ldots$,

$$
\operatorname{Tx}(i)=\sum_{j=1}^{\infty} x(j) t_{i, j}
$$

Now, $\mathrm{T}^{*} \in \operatorname{BL}\left(\ell^{\mathrm{p}}, \ell^{\mathrm{q}}\right)$, and

$$
T^{*} e_{j}=\left[\bar{t}_{j, 1}, \bar{t}_{j, 2}, \ldots\right]^{t},
$$

since $\left\langle T^{*} e_{j}, e_{i}\right\rangle=\left\langle e_{j}, T e_{i}\right\rangle=\bar{t}_{j, i}$. We note that T and T^{*} are thus given by the infinite matrices $\left[t_{i, j}\right]$ and $\left[\bar{t}_{j, i}\right]$. i, $\mathrm{j}=1,2, \ldots$ respectively.
(iii) Let $X=L^{P}([a, b]), 1 \leq p<\infty$, the set of all p-integrable complex-valued functions on [a,b] with the norm

$$
\|x\|_{p}=\left[\int_{a}^{b}|x(t)|^{p} d m(t)\right]^{1 / p}
$$

where m is the Lebesgue measure. Then X^{*} can be identified with $L^{q}([a, b])$, where $1 / p+1 / q=1$, since for every $x^{*} \in X^{*}$, there is a unique $y \in L^{q}([a, b])$ such that

$$
\left\langle x^{*}, x\right\rangle=\int_{a}^{b} \overline{x(t) y}(t) d m(t), x \in X
$$

(See [L], 14.3.)

Consider, for simplicity, $p=2=q$, and let $T \in \operatorname{BL}\left(L^{2}([a, b])\right)$ be the integral operator

$$
T x(s)=\int_{a}^{b} k(s, t) x(t) d m(t), \quad x \in X
$$

where $\int_{a}^{b} \int_{a}^{b}|k(s, t)|^{2} d m(s) d m(t)<\infty$. Then for all $x, y \in X$, we have

$$
\begin{aligned}
\left\langle T^{*} y, x\right\rangle & =\langle y, T x\rangle \\
& =\int_{a}^{b} \overline{\operatorname{Tx}(t) y}(t) d m(t) \\
& =\int_{a}^{b}\left[\int_{a}^{b} \overline{k(t, s)} \overline{x(s)} d m(s)\right] y(t) d m(t) \\
& =\int_{a}^{b} \overline{x(s)}\left[\int_{a}^{b} \overline{k(t, s)} y(t) d m(t)\right] d m(s)
\end{aligned}
$$

so that for $\mathrm{a} \leq \mathrm{s} \leq \mathrm{b}$,

$$
T^{*} y(s)=\int_{a}^{b} \overline{k(t, s)} y(t) d m(t)
$$

Thus, T^{*} is again an integral operator with kernel $k^{*}(s, t)=\overline{k(t, s)}$.
(iv) Let $X=C([a, b])$, the set of all complex-valued continuous functions on the closed and bounded interval $[a, b]$ of the real line, with the supremum norm. Then for every $\mathrm{X}^{*} \in \mathrm{X}^{*}$, there is a unique normalized function of bounded variation, say y, such that

$$
\left\langle x^{*}, x\right\rangle=\int_{a}^{b} \overline{x(t)} d y(t) \text { for all } x \in X
$$

(See [L], 14.6).

Let T be an integral operator as in (iii) above, with $k(s, t)$ continuous for $s, t \in[a, b]$. Then for every $x \in C([a, b])$ and every normalized function y of bounded variation on [a,b], we have, as earlier,

$$
\begin{aligned}
\left\langle T^{*} y, x\right\rangle & =\int_{a}^{b} \overline{x(s)}\left[\int_{a}^{b} \overline{k(t, s)} d y(t)\right] d s \\
& =\int_{a}^{b} \overline{x(s)} d z(s)
\end{aligned}
$$

where

$$
z(s)=\int_{a}^{s}\left[\int_{a}^{b} \overline{k(t, u)} d y(t)\right] d u, \quad a \leq s \leq b .
$$

Since this is true for every $\mathrm{x} \in \mathrm{X}$, we see that for $\mathrm{a} \leq \mathrm{s} \leq \mathrm{b}$,

$$
\begin{aligned}
T^{*} y(s) & =z(s) \\
& =\int_{a}^{b}\left[\int_{a}^{s} \overline{k(t, u)} d u\right] d y(t)
\end{aligned}
$$

Problems

1.1 Let Y be a closed subspace of X, and $x_{0} \in X$ but $x_{0} \notin Y$. Then there is $X^{*} \in X^{*}$ such that

$$
\left\langle x^{*}, y\right\rangle=0 \text { for all } y \in Y,\left\langle x^{*}, x_{0}\right\rangle=1 \text {, and }\left\|x^{*}\right\|=1 / \operatorname{dist}\left(x_{0}, Y\right)
$$

1.2 For fixed $x \in X$, define $f_{x}: X^{*} \rightarrow \mathbb{C}$ by $f_{X}\left(x^{*}\right)=\left\langle x, x^{*}\right\rangle$. Then $f_{X} \in X^{* *}$. Identify x with f_{x}, so that $X \subset X^{* *}$. Let $E \subset X$. Then

$$
E^{\perp} \cap X=\text { the closure of } \operatorname{span}\{E\} \text { in } X
$$

If $T \in B L(X, Y)$, then

$$
\mathrm{Z}(\mathrm{~T})=\mathrm{X} \cap \mathrm{R}\left(\mathrm{~T}^{*}\right)^{\perp}
$$

$$
\begin{equation*}
\text { the closure of } R(T) \text { in } X=X \cap Z\left(T^{*}\right)^{\perp} \text {. } \tag{1.10}
\end{equation*}
$$

If $R(T)$ is closed, then

$$
\begin{equation*}
R\left(T^{*}\right)=Z(T)^{\perp} \tag{1.11}
\end{equation*}
$$

In general, does the closure of $R\left(T^{*}\right)$ in X^{*} equal $Z(T)^{\perp}$?
1.3 Let X and Y be Hilbert spaces and $T \in B L(X, Y)$. Then the closure of $R(T)$ (resp., $R\left(T^{*}\right)$) equals $Z\left(T^{*}\right)^{\perp}$ (resp., $\left.Z(T)^{\perp}\right)$.

Also, $Z\left(T^{*} T\right)=Z(T)$ and the closure of $R\left(T^{*} T\right)$ equals the closure of $R\left(T^{*}\right)$. If $R(T)$ is closed, then $R\left(T^{*}\right)$ is closed and $R\left(T^{*} T\right)=R\left(T^{*}\right)=Z(T)^{\perp}$. Further, $T^{*} T$ is invertible if and only if T is one to one and $R(T)$ is closed. (Hint: $R(T)$ is closed if and only if $v(T)=\inf \left\{\|T x\|: x \in Z(T)^{\perp},\|x\|=1\right\}>0$)
1.4 If $T \in \operatorname{BL}(X, Y)$ is invertible, then $T^{*} \in \operatorname{BL}\left(Y^{*}, X^{*}\right)$ is invertible and $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$. The converse also holds.
(See (8.1).)
1.5 Let $X=L^{2}([a, b])$ or $C([a, b])$, and

$$
T x(s)=\int_{a}^{b} e^{s t} x(t) d m(t), \quad x \in X, \quad a \leq s \leq b
$$

If $X=L^{2}([a, b])$, then $T^{*}=T$, while if $X=C([a, b])$, then

$$
T^{*} y(s)=\int_{a}^{b} \frac{e^{t s}-e^{t a}}{t} d y(t)
$$

for every normalized function y of bounded variation on $[a, b]$; in particular, if $y \in C^{1}([a, b])$, then

$$
T^{*} y(s)=\int_{a}^{b} \frac{e^{t s}-e^{t a}}{t} y^{\prime}(t) d t
$$

