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1. ADJOINT <D'fSIDERATim8 

A useful way of studying a complex Banach space X and a bounded 

linear operator T on X is to consider the adjoint space 

* * * X = {x : X ~ C , x is conjugate linear and continuous} 

of X and the adjoint operator T* associated with T . In this 

section we develop these concepts. This is done in such a way as to 

make the well-known Hilbert space situation a particular case of our 

development. 

For x* E x* and x E X , we denote the value of * X at X by 

Then we easily see that for 

and tEC, 

* <x ,x+y) 

<x*, tx) 
(1.1) 

* * <x +y .x> 

(tx* ,x) 

<x*,x> 

x* and * y 

= <x*,x> + 

- * 
= t<x ,x) . 

in x* • 

* <x ,y) . 

<x*,x> + * <y .x> 

t<x*,x> 

x and y in X 

We say that < , > is the scalar product on x* x X For the sake 

of convenience, we introduce the following notation: 

(1.2) <x.x*> <x*,x> X in X and * 
X in x*. 

For * x*. let X in 

nx*n * llxll ~ 1} = sup{ l<x .x> I X in X, 
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This defines a norm on x* and makes it a Banach space. We have the 

fundamentaL inequaLity: 

{1.3) l<x*.x>l = l<x,x*>l ~ llx*ll llxll ' * X in x* and X in X . 

Many books on functional analysis consider the duaL space 

X' {x' X~~ x' is linear and continuous} 

of X * instead of the adjoint space X We prefer the framework of 

LinearLy identified with X itself, as we shall see later. In any 

event, we remark that x' € X' - * iff its complex conjugate x' € X . 

This allows us to transfer many well-known results about X' to x* , 

such as the following basic extension result. 

PR.OI'(EITIM 1.1 {Hahn-Banach theorem) Let Y be a subspace of X and 

* * y € y . Then there is x* € x* such that * * x jy = y and 

* * . llx II= lly II·. 

Proof Since * y E Y' ' there is x' € X' * with x' jy = y and 

* * llx'll = lly II= lly II , by the Hahn-Banach extens.ion theorem ([L], 7.6). 

The proof is complete if we let x* = X' . // 

<DR.OLLA:RY 1. 2 If O;taEX, then there is x* € x* with 

<x*,a> = II all and llx*ll = 1 More generally, if y is a closed 

subspace of X and a€. Y, then there is * Ex* such that X 

<x*,a> = dist(a,Y) llx*ll = 1 * 
' and X jy:: 0 . 
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Proof The first result follows by letting Y = span{a} and 

,ta> = tllall in Proposition lolo The second part can be proved by 

considering the quotient space X/ Y with the quotient norm 

lllx+ylll = inf { llx+yll : y E Y} = Y) for x E X , and then using the 

first part. // 

The above result is useful in expressing the duality between X 

and x* : Just as ,x) = 0 for all X E X implies, by definition, 

that * 0 that X we see (x,x = 0 for all * X E implies, 

the above corollary, that x = 0 . Moreover, just as we l~ve by 

defin:i tion, for * X E 

* sup{ I <x ,x) I x E X , llxli ~ 1} , 

we see by (lo3) and the above corollary that for x EX , 

llxll sup{ l<x, x* E x* , ilx*ll ~ 1} . 

by 

For a subset E of X , we define the mL~ihilator El of E to 

be the following subset of x* : 

~ = {x* Ex* : <x*,x> 0 for all x E E} . 

It is easy to see that El is, in fact, a closed subspace of x* The 

concept of an annihilator will be used later in relating the range of a 

bounded linear map to the zero space of its adjoint. 

Let X and Y be complex Banach spaces, and let BL(X,Y) denote 

the set of all bounded linear maps from X to Y For T E BL(X) , 

the operator norm of T is defined as follows: 

liT!! sup{IITxil x E X , llxll ~ 1} . 
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Two important subspaces related to T are the null space of T 

Z(T) = {x € X Tx = 0} , 

and the range of T 

R(T) = {y € Y : y = Tx for some x € X} . 

For T € BL(X,Y) * * and y € Y , * * we see that y T € X . We denote 

th1·s 'element of x* by T*y* . Th h f ll · d" us, t e o ow1ng 1agram commutes: 

The .adjoint T* of T is the map from y* to x* defined by 

* * * * * <T y ,x) = (y , Tx> for y € Y , x € X . 

Taking conjugates, and using the notation (1.2), we have 

(1.4) * * * * * <Tx,y ) = (x,T y > for x € X , y € Y . 

Proposition 1.3 (a) For T € BL(X,Y) , * . * * we have T € BL(Y ,X ) and 

IIT*II = IITII . 

(b) For T , S € BL(X,Y) and t € ~ , we have 

(T + S)* = T* + s* and * -* (tT) = tT 

Thus, T ~ T* is a conjugate linear isometry of BL(X,Y) into 

BL(Y*.x*) . 

* (c) The null space of T equals the annihilator of t,he range of T 

Z(T*) = R(T).l . 
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(d) Let Z be a complex Banach space, and U E 

T* l is c early linear. 

** sup{IIT y II * y E 

Also, 

,Z} . Then 

sup{ I * * * * , Tx> I : y E Y , lly II S: 1 , x E X ·, llxll ~ 1} 

sup{ IITxll : x € X , llxll S: 1} 

= IITI! . 

The proof of this part is easy. For example, one quickly 

shows that for every * * y E y and xEX, 

* * * * * <(T+S) y .x> = <(T +S )y ,x> 

for every x E X if and only if 

if and only if 

* . .1 y E R.(T) 

(d) For z* E z* &~d X € X ' we have 

Hence the result. // 

Special case of a Hilbert Spac~. 

* (y ,Tx> ,x> = 0 

Let X be a Hilbert space with the inner product < , >x and 

let llxll 
l/2 (<x,x>v) for x EX . 

Li 

Given x* E x* , define f : X -i> 

[; by 

f(x} <x,x*> , x E X . 

* Then f is a continuous linear functional on X of norm llx II . The 

Riesz represcnt.!:tHon. the;orerrt ([L], 24.2} shows that there is unique 



<x,x f(x) = <x,y>x 

for all x € X moreover, llyl! = lifl! = llx*l! The correspondence 

~~ y of with X is, thus, a linear isometry onto. Whenever X 

is a Hilbert space, we shall, from now on, identify with X via 

the above correspondence, and drop the suffix X in the inner product 

notation < >x without any ambiguity. 

Let A X ~X be a linear map. The ~neralized polarization 

identity 

4<Ax,y) = <A(x+y),x+y) - <A(x-y),x-y) 

+ i<A(x+iy),x+iy)- i<A(x-iy),x-iy) 

where x and y belong to X is often useful. 

For a subset E of the Hilbert space X , the annihilator 

E.i = {y € X <x,y> 0 for all x € E} 

consists of all elements of X which are orthogonal to E The 

double annihilator E.i.i has a nice characterization: If F denotes 

the closure of the linear span of E , then 

(1.5) 

It is easy to check that F is contained in E.il . On the other hand, 

suppose for a moment that there is some a in Eli but not in F . 

Then by Corollary 1.2, there is x* € x* such that * X IF= 0 but 

*-
<x ,a) = 1 ' i.e., there is y E X such that (z,y) = 0 for all 

z E F ' but (a,y) = 1 This is impossible since y € E.l and 

a € E.il so that (a,y) 0 
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For T E BL(X) the adjoint operator E BL(X) is 

characterized by 

<Tx, for all x and y in X . 

In addition to Z(T*) = R(T)l. as noted in Proposition 1.3(c), we also 

have 

(1. 6) 

when X is a Hilbert space. This follows since X € Z(T) if and only 

if * *l. 0 <Tx,y> = <x.T fo:c all y € X if and only if x E: R(T ) 

(resp., * Thus, T T ) is one to one if and only if the :range of 

(resp., T) is dense in X . 

Tl<e norms of the operators T and r* are related by the 

* B -algebra condition 

(1. 7} 

This can be proved as follows. 

IIT~~T!! ~ liT*!! IITI! 

I!Tii2 

2 sup{IITxii x € X , !!xll ~ 1} 

sup{<Tx,Tx> : x € X , l!xl! ~ 1} 

* sup{ <T Tx, x> : x E X , llxll 5: 1} 

:::: nr*ru 

If r* commutes with T * * i.e., T T = TT , we say that T is 

normal; and if r* = T , we say that T is self-adjoint. It is 

clear that every self-adjoint operator is normal. 
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For x € X and T € BL(X) , we have 

* * = <{T T-TT )x,x> . 

Hence it follows by using the generalized polarization identity that 

{1.8) T € BL{X) is normal if and only if IITxll = IIT*xll 

for all x € X • 

For a self-adjoint operator T , we have 

<Tx.x> = <x.T*x> 

= <x.Tx> 

= <Tx,x> 

for all x € X , so that <Tx,x) is real. Conversely, let <Tx,x> 

be real for all x € X . Then for x,y € X , the generalized 

polarization identity shows that, 

Hence 

{1.9) 

4<Tx,y) = <T(x+y),x+y)- <T(x-y),x-y) 

+ i<T(x+iy),x+iy) - i<T(x-iy),x-iy) 

<x+y,T(x+y)> - <x-y,T(x-y)> 

+ i<x+iy,T(x+iy)> - i{x-iy,T(x-iy)> 

(since <Tz,z) is real for all z € X) 

* * = <T (x+y),x+y) - <T (x-y),x-y> 

+ i<T*(x+iy),x+iy) - i<T*(x-iy),x-iy) 

* = 4<T x,y) 

* T = T, i.e., T is self-adjoint. Thus, 

T € BL{X) is self-adjoint if and only if <Tx,x> 

is real for all x € X . 
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Examples of adjoint spaces and operators 

(i) Let X be an n dimensional space with 1 ~ n < oo , and let 

x1 .... ,xn be an ordered basis for X. Then for x in X, we have 

where j 1, ... ,n , is uniquely determined by x . 

let 

j = 1, ... ,n 

then is an ordered basis for x* and we have 

{j. • 
l,J 

i,j = 1, ... ,n , 

where o. . is· the Kronecker symbol 
l,J 

6. . equals 0 if i ¢. j 
l,J 

and equals 1 if i = j . This basis is called the basis of x* 

which is adjoint to the given basis x1 , ... ,xn of X. 

(1.9) 

For X in X and X* in x* we have 

x = < *> + + <x.x"">x , x,x1 x1 · · · n n 

* X 

Let, now, Y be an m-dimensional space with 1 ~ m < 00 • Let 

Y1 •... ,ym be an ordered basis for Y, 

If we 

corresponding adjoint basis for y* . If T : X ~ Y is linear, and we 

let 

i,j=1, ... ,n, 
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then we see that for j 1,.,. ,n 

Tx. 
J 

Thus, for x in X , 

Tx 
n 

I 
j=l 

* (x,x.>Tx. 
J J 

The operator T can be represented by the 

with respect to the bases 

respectively, in the fol 

1 

t 
l,n 

t 
m,n J 

and 

sense: 

r 
* 

I 
(x,x1> 

l (x,x*> 
n 

m x n matrix A = [t .. ] 
l' J 

, ... ,ym of X and y 

* <Tx,y1> 

:::: 

*· <Tx,ym> 

Now consider the adjoint operator * * : Y -l> X . It can be easily 

seen that (x*}* can be identHied with X and we can regard 

xl' ... ,xn as the basis of 

* * xl' ... ,xn x* . of Since 

for i = 1, ... ,m and j 

T* is represented by the 

with respect to the bases 

respectively. 

which is adjoint to the basis 

'i 

1, ... ,n, we see that the adjoint operator 

conjugate transpose matrix 

and 

H -
A = [t .. ] 

J,l 

of .y* and * X 
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A commonly occurring situation is when X= !f!l 

column vectors with n entries of complex numbers. 

the column vector whose i-th entry equals 

the set of all 

Let 

{j. . 
l,J 

(n) 
e. denote 

J 

To save 

space, let x [
x(l)l 

x~n) 
in !Ln be denoted by [x(l), ... ,x(n}]t where 

the superscript t denotes the transpose. Note that H x denotes the 

conjugate transpose of x , i.e., the row vector [x(l), ... ,x(n)] . 

For x € !Ln , we have 

so that 

If 

then 

n 
X I 

j=l 

is a basis of X , the so called 

* * x € X and we let 

* fn} (x .e~ > = y(j) , 
J 

j 1, ... ,n , 

n 
I x(j) y(j) 

j=l 

standard 

so that x* CaL~ be identified again with the set ~~ of column vectors 

[y{l), ... ,y(n)]t , and we can consider * (n) 
xj = ej , j = 1, ... ,n, 

the corresponding adjoint basis. Then we have for all x € X and 

y € 

If Y=ICm 

<y,x> 
n H 

= I x(j} y(j} = x y 
j=l 

and T ICn ~ ~ is linear, then 

t 
i,j 

as 
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is simply the i-th entry of the m-vector for j = l, ... ,n and 

i = 1, ... ,m . Thus, Tx is given by the product of the m x n n-..atrix 

with the n x 1 matrix x € U::n . Conversely, an m " n 

matrix defines a linear map :from u:;ll to c:;ffi in a natural way. We 

shall denote an operator and the corresponding matrix by the same letter 

T . 

The i-th entry of the n-vector T*e~m) 
J 

is 

<T*e~m),e!n}) = (e~m),Te~n)) 
~ & J 1 ,1 

for i 1, ... ,n and j 1, ... ,m Thus, the adjoint T* of an 

operator T is given by the conjugate transpose TH of the 

corresponding matrix T . 

(ii) Let X = 2P , 1 ~ p < oo the space of all p-summable 

sequences of complex numbers, with the norm 

ll[x(l) ,x(2), ... ]t!l = [I lx(j) 1/p 
j=l 

for t x = [x(l),x(2), ... ] in X Then can be identified with 

eq ' where 1/p + 1/q = 1 via the map 1-,} y with 

<x*,e.> '") J = Y\J ' 

where t 
ej = [0, ... ,0, 1,0, ... J , the entry 1 occurring only in the 

j-th place ([L], 13.4(b)) . 

<x*,x> 

00 

Now, for x = I x(j 
j=l 

()() 

I x(j) y(j) 
j=l 

.1 
in X we have 



so that 
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t Te . = [ t 1 . , t 2 . , ... ] , 
J • J • J 

t .. l,J Since 

(X) 

Tx = I x{j)Te. , 
j=1 J 

we have for i = 1,2, ... , 

(X) 

Tx{i) = I x{j)t ... 
j=1 l,J 

- - t 
=[t.1,t.2 .... ]. 

J. J. 

since We note that T and T* are 

thus given by the infinite matrices [t .. ] and [t .. ] , l,J J,l 

i,j = 1,2, ... , respectively. 

(iii) Let X = LP{[a,b]) , 1 ~ p < oo , the set of all p-integrable 

complex-valued functions on [a,b] with the norm 

llxll 
p 

where m is the Lebesgue measure. Then x* can be identified with 

where 1/p + 1/q = 1 , since for every x* € x* , there 

is a unique y € Lq{[a,b]) such that 

{See [L], 14.3.) 

<x*.x> = J:x{t)y(t)dm{t) , x € X . 
a 
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Consider, for simplicity, p = 2 = q , 2 and let T € BL(L ([a,b])) 

be the integral operator 

Tx(s) = J:k(s,t)x(t)dm(t) , x € X . 
a 

where J:J:Ik(s,t)l 2dm(s)dm(t) < ro 
a a 

Then for all x,y € X , 'we have 

so that for a ~ s ~ b , 

* <T y.x> = (y,Tx> 

= J:Tx(t)y(t)dm(t) 
a 

= J:U:k(t,s) x(s) dm(s)]y(t)dm(t) 
a a 

~ J:x(s) U: k(t, s) y(t)dm(t) ]dm(s) 
a a 

T*y(s) = ik(t,s) y(t}dm{t) 
a 

Thus, T* is again an integral operator with kernel k*(s,t) = k(t,s) 

(iv) Let X = C([a,b]) , the set of all complex-valued continuous 

functions on the closed and bounded interval [a,b] of the real line, 

with the supremum norm. * * Then for every x € X there is a unique 

normalized function of bounded variation, say y such that 

<x*.x> = J:x(t)dy(t) for all x € X . 
a 

(See [L], l4.6) . 

Let T be an integral operator as in (iii) above, with k(s,t) 

continuous for s,t € [a,b] Then for every x € C([a,b]) and every 

normalized function y of bounded variation on [a,b] , we have, as 

earlier, 
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* i-b-1~-~, ] 
<T y,x) = jax(s) uak(t,s)dy(t) ds 

= tx(s}dz(s) , 
a 

where 

rS U'b l z(s) = j I k(t,u)dy(t) ,du, 
a a J 

Since this is true for every x € X we see that for a ~ s ~ b 

* T y(s) = z(s) 

= t [ [ k(t,u}du]dy(t) 

Problems 

1.1 Let Y be a closed subspace of X , and x0 € X but 

xo If y Then there is E such that 

<x* . 0 fo:r all y E. y <x"'' ,xo> 1 and l!x 1/dist(x0 , Y) . 

1.2 For fixed x EX define f 
X 

-l> [; by * f fx ) = <x,x X\ . 

Then € 

E c X Then 

Identify x with f 
X 

** xcx . 

the closure of span{E} in X , 

If T E BL(X,Y) , then 

Z(T) = X n R(T*)~ 
(1.10) 

the closure of R(T) in X = X n Z(T*)~ 

Let 
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If is closed, then 

(L 11) 
.1 

= Z(T) . 

In , does the closure of in equal Z(T)J_ ? 

1.3 Let X and Y be Hilbert spaces and T € BL(X,Y) . Then the 

M _l . l 
closure of R(T) (resp., ) equals Z(T) {resp., Z(T)-) 

Also, "' Z{T) and the closure of R(T*T) equals the closure 

of I:f is closed, then is closed and 

Further, T*T is invertible if and only if T 

is one to one ru~d R(T) is closed. (Hint: R(T) is closed if and only 

if v(T) = I!Txl! : x € Z(T)l. , ilxll = > 0 ) 

L4 If T € BL(X,Y) is invertible, then T* € BL(Y*.x*) is 

invertible and (T-1)* = (T*)-l . The converse also holds. 

(See .1).) 

or C( 

xEX, 

If X= L2([a,b]) , then T* = T , while if X= C([a,b]) , then 

* j~ ts ta 
T y(s) = e ~e dy(t) 

a 

for every normalized function y of bounded variation on [a,b] in 

1 particular, if y € C ([a,b]) then 

y(s) = l 
a 

ts ta e -e 
t 

y'(t)dt 


