## 1. ADJOINT CONSIDERATIONS

A useful way of studying a complex Banach space X and a bounded linear operator T on X is to consider the <u>adjoint space</u>

$$X^{\bigstar} = \{x^{\bigstar} : X \rightarrow \mathbb{C} \text{ , } x^{\bigstar} \text{ is conjugate linear and continuous} \}$$

of X and the *adjoint operator*  $T^*$  associated with T. In this section we develop these concepts. This is done in such a way as to make the well-known Hilbert space situation a particular case of our development.

For 
$$x^* \in X^*$$
 and  $x \in X$ , we denote the value of  $x^*$  at x by  $\langle x^*, x \rangle$ .

Then we easily see that for  $x^{\bigstar}$  and  $y^{\bigstar}$  in  $X^{\bigstar}$  , x and y in X and  $t\in\mathbb{C}$  ,

$$\langle \mathbf{x}^{*}, \mathbf{x} + \mathbf{y} \rangle = \langle \mathbf{x}^{*}, \mathbf{x} \rangle + \langle \mathbf{x}^{*}, \mathbf{y} \rangle ,$$

$$\langle \mathbf{x}^{*}, \mathbf{t} \mathbf{x} \rangle = \overline{\mathbf{t}} \langle \mathbf{x}^{*}, \mathbf{x} \rangle ,$$
(1.1)
$$\langle \mathbf{x}^{*} + \mathbf{y}^{*}, \mathbf{x} \rangle = \langle \mathbf{x}^{*}, \mathbf{x} \rangle + \langle \mathbf{y}^{*}, \mathbf{x} \rangle ,$$

$$\langle \mathbf{t} \mathbf{x}^{*}, \mathbf{x} \rangle = \mathbf{t} \langle \mathbf{x}^{*}, \mathbf{x} \rangle .$$

We say that  $\langle , \rangle$  is the <u>scalar product</u> on  $X^* \times X$ . For the sake of convenience, we introduce the following notation:

(1.2) 
$$\langle \mathbf{x}, \mathbf{x}^{\bigstar} \rangle = \overline{\langle \mathbf{x}^{\bigstar}, \mathbf{x} \rangle}$$
, x in X and  $\mathbf{x}^{\bigstar}$  in  $\mathbf{X}^{\bigstar}$ .

For  $x^*$  in  $X^*$ , let

$$\|x^{*}\| = \sup\{|\langle x^{*}, x \rangle| : x \text{ in } X, \|x\| \leq 1\}.$$

1

This defines a norm on  $X^*$  and makes it a Banach space. We have the fundamental inequality:

(1.3) 
$$|\langle \mathbf{x}^{*}, \mathbf{x} \rangle| = |\langle \mathbf{x}, \mathbf{x}^{*} \rangle| \leq ||\mathbf{x}^{*}|| ||\mathbf{x}|| , \mathbf{x}^{*} \text{ in } \mathbf{X}^{*} \text{ and } \mathbf{x} \text{ in } \mathbf{X}.$$

Many books on functional analysis consider the dual space

$$X' = \{x' : X \to \mathbb{C} : x' \text{ is linear and continuous}\}$$

of X instead of the adjoint space  $X^*$ . We prefer the framework of the adjoint space because in case X is a Hilbert space,  $X^*$  can be *linearly* identified with X itself, as we shall see later. In any event, we remark that  $x' \in X'$  iff its complex conjugate  $\overline{x'} \in \overline{X}^*$ . This allows us to transfer many well-known results about X' to  $\overline{X}^*$ , such as the following basic extension result.

**PROPOSITION 1.1** (Hahn-Banach theorem) Let Y be a subspace of X and  $y^* \in Y^*$ . Then there is  $x^* \in X^*$  such that  $x^*|_Y = y^*$  and  $||x^*|| = ||y^*||$ .

**Proof** Since  $\overline{y^*} \in Y'$ , there is  $x' \in X'$  with  $x'|_Y = \overline{y^*}$  and  $\|x'\| = \|\overline{y^*}\| = \|y^*\|$ , by the Hahn-Banach extension theorem ([L], 7.6). The proof is complete if we let  $x^* = \overline{x'}$ . //

**COROLLARY 1.2** If  $0 \neq a \in X$ , then there is  $x^* \in X^*$  with  $\langle x^*, a \rangle = ||a||$  and  $||x^*|| = 1$ . More generally, if Y is a closed subspace of X and  $a \notin Y$ , then there is  $x^* \in X^*$  such that  $\langle x^*, a \rangle = \text{dist}(a, Y)$ ,  $||x^*|| = 1$  and  $x^*|_Y \equiv 0$ .

**Proof** The first result follows by letting  $Y = \text{span}\{a\}$  and  $\langle y^{\bigstar}, ta \rangle = \overline{t} \|a\|$  in Proposition 1.1. The second part can be proved by considering the quotient space X / Y with the quotient norm  $\|\|x+y\|\| = \inf\{\|x+y\| : y \in Y\} = \text{dist}(x,Y)$  for  $x \in X$ , and then using the first part. //

The above result is useful in expressing the duality between X and  $X^*$ : Just as  $\langle x^*, x \rangle = 0$  for all  $x \in X$  implies, by definition, that  $x^* = 0$ , we see that  $\langle x, x^* \rangle = 0$  for all  $x^* \in X^*$  implies, by the above corollary, that x = 0. Moreover, just as we have by definition, for  $x^* \in X^*$ ,

$$\|\mathbf{x}^{\mathbf{x}}\| = \sup\{|\langle \mathbf{x}^{\mathbf{x}}, \mathbf{x} \rangle| : \mathbf{x} \in \mathbf{X}, \|\mathbf{x}\| \leq 1\},\$$

we see by (1.3) and the above corollary that for  $x \in X$  ,

$$\|\mathbf{x}\| = \sup\{|\langle \mathbf{x}, \mathbf{x}^{*} \rangle| : \mathbf{x}^{*} \in \mathbf{X}^{*}, \|\mathbf{x}^{*}\| \leq 1\}$$

For a subset E of X, we define the <u>annihilator</u>  $E^{\perp}$  <u>of</u> E to be the following subset of  $X^*$ :

$$\mathbf{E}^{\perp} = \{\mathbf{x}^{\bigstar} \in \mathbf{X}^{\bigstar} : \langle \mathbf{x}^{\bigstar}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{x} \in \mathbf{E} \} .$$

It is easy to see that  $E^{\perp}$  is, in fact, a closed subspace of  $X^{*}$ . The concept of an annihilator will be used later in relating the range of a bounded linear map to the zero space of its adjoint.

Let X and Y be complex Banach spaces, and let BL(X,Y) denote the set of all <u>bounded linear maps from</u> X to Y. For  $T \in BL(X)$ , the operator norm of T is defined as follows:

$$||T|| = \sup\{||Tx|| : x \in X, ||x|| \le 1\}$$

Two important subspaces related to T are the  $\underline{\text{null space of}}$  T:

$$Z(T) = \{x \in X : Tx = 0\},\$$

and the range of T:

$$R(T) = \{y \in Y : y = Tx \text{ for some } x \in X\}.$$

For  $T \in BL(X,Y)$  and  $y^* \in Y^*$ , we see that  $y^*T \in X^*$ . We denote this element of  $X^*$  by  $T^*y^*$ . Thus, the following diagram commutes:



The <u>adjoint</u>  $T^*$  of T is the map from  $Y^*$  to  $X^*$  defined by

$$\langle T^*y^*, x \rangle = \langle y^*, Tx \rangle$$
 for  $y^* \in Y^*$ ,  $x \in X$ .

Taking conjugates, and using the notation (1.2), we have

(1.4) 
$$\langle Tx, y^{*} \rangle = \langle x, T^{*}y^{*} \rangle$$
 for  $x \in X$ ,  $y^{*} \in Y^{*}$ .

**Proposition 1.3** (a) For  $T \in BL(X,Y)$ , we have  $T^* \in BL(Y^*,X^*)$  and  $||T^*|| = ||T||$ .

(b) For T,  $S \in BL(X, Y)$  and  $t \in \mathbb{C}$ , we have

$$(T + S)^* = T^* + S^*$$
 and  $(tT)^* = \bar{t}T^*$ .

Thus,  $T \mapsto T^{\bigstar}$  is a conjugate linear isometry of BL(X,Y) into  $BL(Y^{\bigstar},X^{\bigstar})$  .

(c) The null space of  $T^*$  equals the annihilator of the range of T:

$$Z(T^*) = R(T)^{\perp}$$

(d) Let Z be a complex Banach space, and  $U \in BL(Y,Z)$ . Then

$$(UT)^* = T^*U^*$$

**Proof** (a)  $T^*$  is clearly linear. Also,

$$\begin{split} \|T^{*}\| &= \sup\{\|T^{*}y^{*}\| : y^{*} \in Y^{*}, \|y^{*}\| \leq 1\} \\ &= \sup\{|\langle y^{*}, Tx \rangle| : y^{*} \in Y^{*}, \|y^{*}\| \leq 1, x \in X, \|x\| \leq 1\} \\ &= \sup\{\|Tx\| : x \in X, \|x\| \leq 1\} \\ &= \|T\| . \end{split}$$

(b) The proof of this part is easy. For example, one quickly shows that for every  $y^{\bigstar}\in Y^{\bigstar}$  , and  $x\in X$  ,

$$\langle (T+S)^*y^*, x \rangle = \langle (T^*+S^*)y^*, x \rangle$$
.

(c) We have  $y^* \in Z(T^*)$  if and only if  $\langle y^*, Tx \rangle = \langle T^*y^*, x \rangle = 0$ for every  $x \in X$  if and only if  $y^* \in R(T)^{\perp}$ .

(d) For  $z^* \in Z^*$  and  $x \in X$ , we have

$$\langle (UT)^{*}z^{*},x\rangle = \langle z^{*},UTx\rangle = \langle U^{*}z^{*},Tx\rangle = \langle T^{*}U^{*}z^{*},x\rangle$$
.

Hence the result. //

## Special Case of a Hilbert Space.

Let X be a Hilbert space with the inner product  $\langle , \rangle_X$ , and let  $\|x\| = (\langle x, x \rangle_X)^{1/2}$  for  $x \in X$ . Given  $x^* \in X^*$ , define  $f : X \to \mathbb{C}$  by

$$f(x) = \langle x, x^* \rangle$$
,  $x \in X$ .

Then f is a continuous linear functional on X of norm  $\|x^*\|$ . The Riesz representation theorem ([L], 24.2) shows that there is unique  $y \in X$  such that

$$\langle x, x^* \rangle = f(x) = \langle x, y \rangle_X$$

for all  $x \in X$ ; moreover,  $\|\|y\|\| = \|\|f\|\| = \|x^*\|\|$ . The correspondence  $x^* \mapsto y$  of  $X^*$  with X is, thus, a linear isometry onto. Whenever X is a Hilbert space, we shall, from now on, identify  $X^*$  with X via the above correspondence, and drop the suffix X in the inner product notation  $\langle , \rangle_{Y}$  without any ambiguity.

Let  $A : X \to X$  be a linear map. The <u>generalized polarization</u> <u>identity</u>

$$4\langle Ax, y \rangle = \langle A(x+y), x+y \rangle - \langle A(x-y), x-y \rangle$$
$$+ i\langle A(x+iy), x+iy \rangle - i\langle A(x-iy), x-iy \rangle$$

where x and y belong to X, is often useful.

For a subset E of the Hilbert space X , the annihilator

$$\mathbf{E}^{\perp} = \{ \mathbf{y} \in \mathbf{X} : \langle \mathbf{x}, \mathbf{y} \rangle = 0 \text{ for all } \mathbf{x} \in \mathbf{E} \}$$

consists of all elements of X which are <u>orthogonal</u> to E. The <u>double annihilator</u>  $E^{\coprod}$  has a nice characterization: If F denotes the closure of the linear span of E, then

$$(1.5) E^{\coprod} = F {.}$$

It is easy to check that F is contained in  $E^{\coprod}$ . On the other hand, suppose for a moment that there is some a in  $E^{\coprod}$ , but not in F. Then by Corollary 1.2, there is  $x^* \in X^*$  such that  $x^*|_F = 0$  but  $\langle x^*, a \rangle = 1$ , i.e., there is  $y \in X$  such that  $\langle z, y \rangle = 0$  for all  $z \in F$ , but  $\langle a, y \rangle = 1$ . This is impossible since  $y \in E^{\bot}$  and  $a \in E^{\coprod}$  so that  $\langle a, y \rangle = 0$ . For  $T \in BL(X)$  , the adjoint operator  $T^{\bigstar} \in BL(X)$  is characterized by

$$\langle Tx, y \rangle = \langle x, T^*y \rangle$$
 for all x and y in X.

In addition to  $Z(T^{*}) = R(T)^{\perp}$ , as noted in Proposition 1.3(c), we also have

(1.6) 
$$Z(T) = R(T^*)^{\perp}$$
,

when X is a Hilbert space. This follows since  $x \in Z(T)$  if and only if  $0 = \langle Tx, y \rangle = \langle x, T^*y \rangle$  for all  $y \in X$  if and only if  $x \in R(T^*)^{\perp}$ . Thus, T (resp.,  $T^*$ ) is one to one if and only if the range of  $T^*$ (resp., T) is dense in X.

The norms of the operators T and  $T^{\bigstar}$  are related by the  $B^{\bigstar}\text{-algebra condition}$ 

(1.7) 
$$||T^*T|| = ||T||^2$$
.

This can be proved as follows.

$$\begin{split} \|T^{*}T\| &\leq \|T^{*}\| \|T\| \\ &= \|T\|^{2} \\ &= \sup\{\|Tx\|^{2} : x \in X , \|x\| \leq 1\} \\ &= \sup\{\langle Tx, Tx \rangle : x \in X , \|x\| \leq 1\} \\ &= \sup\{\langle T^{*}Tx, x \rangle : x \in X , \|x\| \leq 1\} \\ &\leq \|T^{*}T\| . \end{split}$$

If  $T^*$  commutes with T, i.e.,  $T^*T = TT^*$ , we say that T is <u>normal</u>, and if  $T^* = T$ , we say that T is <u>self-adjoint</u>. It is clear that every self-adjoint operator is normal.

For  $x \in X$  and  $T \in BL(X)$ , we have

$$\begin{aligned} \|T_{\mathbf{x}}\|^{2} - \|T_{\mathbf{x}}^{*}\|^{2} &= \langle T_{\mathbf{x}}, T_{\mathbf{x}} \rangle - \langle T_{\mathbf{x}}^{*}, T_{\mathbf{x}}^{*} \rangle \\ &= \langle (T_{\mathbf{x}}^{*}T - TT_{\mathbf{x}}^{*})_{\mathbf{x}}, \mathbf{x} \rangle . \end{aligned}$$

Hence it follows by using the generalized polarization identity that

(1.8) 
$$T \in BL(X)$$
 is normal if and only if  $||Tx|| = ||T^*x||$   
for all  $x \in X$ .

For a self-adjoint operator T , we have

$$\langle Tx, x \rangle = \langle x, T^*x \rangle$$
  
=  $\langle x, Tx \rangle$   
=  $\langle Tx, x \rangle$ 

for all  $x \in X$ , so that  $\langle Tx, x \rangle$  is real. Conversely, let  $\langle Tx, x \rangle$  be real for all  $x \in X$ . Then for  $x, y \in X$ , the generalized polarization identity shows that,

$$4\langle Tx, y \rangle = \langle T(x+y), x+y \rangle - \langle T(x-y), x-y \rangle$$

$$+ i \langle T(x+iy), x+iy \rangle - i \langle T(x-iy), x-iy \rangle$$

$$= \langle x+y, T(x+y) \rangle - \langle x-y, T(x-y) \rangle$$

$$+ i \langle x+iy, T(x+iy) \rangle - i \langle x-iy, T(x-iy) \rangle$$

$$(since \langle Tz, z \rangle \text{ is real for all } z \in X)$$

$$= \langle T^{*}(x+y), x+y \rangle - \langle T^{*}(x-y), x-y \rangle$$

$$+ i \langle T^{*}(x+iy), x+iy \rangle - i \langle T^{*}(x-iy), x-iy \rangle$$

$$= 4 \langle T^{*}x, y \rangle .$$

Hence  $T^* = T$ , i.e., T is self-adjoint. Thus,

(1.9) 
$$T \in BL(X)$$
 is self-adjoint if and only if  $\langle Tx, x \rangle$   
is real for all  $x \in X$ .

Examples of adjoint spaces and operators

(i) Let X be an n dimensional space with  $1 \le n \le \infty$ , and let  $x_1, \ldots, x_n$  be an ordered basis for X. Then for x in X, we have

$$x = t_1(x)x_1 + \ldots + t_n(x)x_n$$

where  $t_{j}(x)\in\mathbb{C}$  , j = 1,...,n , is uniquely determined by x . If we let

$$\langle x_{j}^{\varkappa}, x \rangle = \overline{t_{j}(x)}$$
,  $j = 1, ..., n$ ,

then  $x_1^{\bigstar},\ldots,x_n^{\bigstar}$  is an ordered basis for  $\textbf{X}^{\bigstar}$  and we have

$$\langle x_i^*, x_j \rangle = \delta_{i,j}$$
,  $i,j = 1, \dots, n$ ,

where  $\delta_{i,j}$  is the <u>Kronecker symbol</u>:  $\delta_{i,j}$  equals 0 if  $i \neq j$ , and equals 1 if i = j. This basis is called the <u>basis of</u>  $X^*$ <u>which is adjoint to the given basis</u>  $x_1, \dots, x_p$  of X.

For x in X and  $\stackrel{*}{x}$  in  $\stackrel{*}{X}$ , we have

(1.9)  

$$x = \langle x, x_1^{\bigstar} \rangle x_1 + \dots + \langle x, x_n^{\bigstar} \rangle x_n ,$$

$$x^{\bigstar} = \langle x^{\bigstar}, x_1 \rangle x_1^{\bigstar} + \dots + \langle x^{\bigstar}, x_n \rangle x_n^{\bigstar} ,$$

$$\langle x^{\bigstar}, x \rangle = \langle x^{\bigstar}, x_1 \rangle \langle x_1^{\bigstar}, x \rangle + \dots + \langle x^{\bigstar}, x_n \rangle \langle x_n^{\bigstar}, x \rangle .$$

Let, now, Y be an m-dimensional space with  $1 \le m < \infty$ . Let  $y_1, \ldots, y_m$  be an ordered basis for Y, and  $y_1^*, \ldots, y_m^*$  be the corresponding adjoint basis for  $Y^*$ . If  $T : X \to Y$  is linear, and we let

$$t_{i,j} = \langle Tx_j, y_i^{\bigstar} \rangle$$
,  $i, j = 1, \dots, n$ ,

then we see that for j = 1, ..., n,

$$Tx_{j} = \langle Tx_{j}, y_{1}^{*} \rangle y_{1} + \dots + \langle Tx_{j}, y_{m}^{*} \rangle y_{m}$$
$$= \sum_{i=1}^{m} t_{i,j} y_{i} .$$

Thus, for x in X,

$$Tx = \sum_{j=1}^{n} \langle x, x_{j}^{*} \rangle Tx_{j}$$
$$= \sum_{i=1}^{m} \left( \sum_{j=1}^{n} t_{i,j} \langle x, x_{j}^{*} \rangle \right) y_{i} .$$

The operator T can be represented by the  $m \times n$  matrix  $A = [t_{i,j}]$ , with respect to the bases  $x_1, \ldots, x_n$  and  $y_1, \ldots, y_m$  of X and Y respectively, in the following sense:

$$\begin{bmatrix} t_{1,1} & \cdots & t_{1,n} \\ \vdots & & \vdots \\ t_{m,1} & \cdots & t_{m,n} \end{bmatrix} \begin{bmatrix} \langle \mathbf{x}, \mathbf{x}_1^{\bigstar} \rangle \\ \vdots \\ \langle \mathbf{x}, \mathbf{x}_n^{\bigstar} \rangle \end{bmatrix} = \begin{bmatrix} \langle \mathbf{T}\mathbf{x}, \mathbf{y}_1^{\bigstar} \rangle \\ \vdots \\ \langle \mathbf{T}\mathbf{x}, \mathbf{y}_m^{\bigstar} \rangle \end{bmatrix}$$

Now consider the adjoint operator  $T^*: Y^* \to X^*$ . It can be easily seen that  $(X^*)^*$  can be identified with X , and we can regard  $x_1, \ldots, x_n$  as the basis of  $(X^*)^*$  which is adjoint to the basis  $x_1^*, \ldots, x_n^*$  of  $X^*$ . Since

$$\langle T^*y_j^*, x_i \rangle = \langle y_j^*, Tx_i \rangle = \overline{\langle Tx_i, y_j^* \rangle} = \overline{t}_{j, i}$$

for i = 1, ..., m and j = 1, ..., n, we see that the adjoint operator  $T^*$  is represented by the <u>conjugate transpose matrix</u>  $A^H = [\bar{t}_{j,i}]$ , with respect to the bases  $y_1^*, ..., y_m^*$  and  $x_1^*, ..., x_n^*$  of  $Y^*$  and  $X^*$  respectively.

A commonly occurring situation is when  $X = \mathbb{C}^n$ , the set of all column vectors with n entries of complex numbers. Let  $e_j^{(n)}$  denote the column vector whose i-th entry  $e_j^{(n)}(i)$  equals  $\delta_{i,j}$ . To save space, let  $x = \begin{bmatrix} x(1) \\ \vdots \\ x(n) \end{bmatrix}$  in  $\mathbb{C}^n$  be denoted by  $[x(1), \ldots, x(n)]^t$ , where the superscript t denotes the transpose. Note that  $x^H$  denotes the conjugate transpose of x , i.e., the row vector  $[\overline{x(1)}, \ldots, \overline{x(n)}]$ . For  $x \in \mathbb{C}^n$ , we have

$$x = \sum_{j=1}^{n} x(j)e_{j}^{(n)}$$

so that  $e_1^{(n)}, \ldots, e_n^{(n)}$  is a basis of X , the so called <u>standard</u> <u>basis</u>. If  $x^* \in X^*$  and we let

$$\langle x^*, e_j^{(n)} \rangle = y(j)$$
,  $j = 1, \dots, n$ 

then

$$\langle \mathbf{x}^{*}, \mathbf{x} \rangle = \sum_{j=1}^{n} \overline{\mathbf{x}(j)} \mathbf{y}(j) ,$$

so that  $X^*$  can be identified again with the set  $\mathbb{C}^n$  of column vectors  $[y(1), \ldots, y(n)]^t$ , and we can consider  $x_j^* = e_j^{(n)}$ ,  $j = 1, \ldots, n$ , as the corresponding adjoint basis. Then we have for all  $x \in X$  and  $y \in X^*$ ,

$$\langle y, x \rangle = \sum_{j=1}^{n} \overline{x(j)} y(j) = x^{H}y$$
.

If  $Y = \mathbb{C}^m$  , and  $T \,:\, \mathbb{C}^n \to \mathbb{C}^m$  is linear, then

$$t_{i,j} = \langle Te_j^{(n)}, e_i^{(m)} \rangle = (e_i^{(m)})^H Te_j^{(n)}$$

is simply the i-th entry of the m-vector  $\operatorname{Te}_j^{(n)}$  for  $j = 1, \ldots, n$  and  $i = 1, \ldots, m$ . Thus, Tx is given by the product of the  $m \times n$  matrix  $[\langle \operatorname{Te}_j^{(n)}, e_i^{(m)} \rangle]$  with the  $n \times 1$  matrix  $x \in \mathbb{C}^n$ . Conversely, an  $m \times n$  matrix defines a linear map from  $\mathbb{C}^n$  to  $\mathbb{C}^m$  in a natural way. We shall denote an operator and the corresponding matrix by the same letter T.

The i-th entry of the n-vector  $T_{j}^{*}e_{j}^{(m)}$  is

$$\langle T^* e_j^{(m)}, e_i^{(n)} \rangle = \langle e_j^{(m)}, T e_i^{(n)} \rangle = \bar{t}_{j,i}$$

for i = 1,...,n and j = 1,...,m. Thus, the adjoint  $T^*$  of an operator T is given by the conjugate transpose  $T^H$  of the corresponding matrix T.

(ii) Let  $X = \ell^p$ ,  $1 \le p \le \infty$ , the space of all p-summable sequences of complex numbers, with the norm

$$\|[\mathbf{x}(1),\mathbf{x}(2),\ldots]^{\mathsf{t}}\| = \left(\sum_{j=1}^{\infty} |\mathbf{x}(j)|^{p}\right)^{1/p}$$

for  $x = [x(1), x(2), ...]^t$  in X. Then  $X^*$  can be identified with  $\ell^q$ , where 1/p + 1/q = 1, via the map  $x^* \mapsto y$  with

$$\langle x^*, e_j \rangle = y(j)$$
,

where  $e_j = [0, ..., 0, 1, 0, ...]^t$ , the entry 1 occurring only in the j-th place ([L], 13.4(b)). Now, for  $x = \sum_{j=1}^{\infty} x(j)e_j$  in X we have

$$\langle x^*, x \rangle = \sum_{j=1}^{\infty} \overline{x(j)} y(j)$$
.

Let  $T \in BL(\ell^p, \ell^q)$ , and

12

$$Te_{j} = [t_{1,j}, t_{2,j}, \dots]^{t}$$
,

so that  $\langle Te_{j}, e_{i} \rangle = t_{i,j}$ . Since

$$Tx = \sum_{j=1}^{\infty} x(j)Te_j$$
,

we have for  $i = 1, 2, \ldots,$ 

$$Tx(i) = \sum_{j=1}^{\infty} x(j)t_{i,j}.$$

Now,  $T^* \in BL(\ell^p, \ell^q)$ , and

$$T^*e_{j} = [\bar{t}_{j,1}, \bar{t}_{j,2}, \dots]^t,$$

since  $\langle T^*e_j, e_i \rangle = \langle e_j, Te_i \rangle = \overline{t}_{j,i}$ . We note that T and  $T^*$  are thus given by the infinite matrices  $[t_{i,j}]$  and  $[\overline{t}_{j,i}]$ ,  $i, j = 1, 2, \ldots$ , respectively.

(iii) Let  $X = L^p([a,b])$ ,  $1 \le p \le \infty$ , the set of all p-integrable complex-valued functions on [a,b] with the norm

$$\|\mathbf{x}\|_{p} = \left(\int_{a}^{b} |\mathbf{x}(t)|^{p} dm(t)\right)^{1/p} ,$$

where m is the Lebesgue measure. Then  $X^{*}$  can be identified with  $L^{q}([a,b])$ , where 1/p + 1/q = 1, since for every  $x^{*} \in X^{*}$ , there is a unique  $y \in L^{q}([a,b])$  such that

$$\langle x^{*}, x \rangle = \int_{a}^{b} \overline{x(t)}y(t)dm(t) , x \in X .$$

(See [L], 14.3.)

Consider, for simplicity, p = 2 = q, and let  $T \in BL(L^2([a,b]))$ be the integral operator

$$Tx(s) = \int_{a}^{b} k(s,t)x(t)dm(t) , x \in X ,$$

where  $\int_{a}^{b} \int_{a}^{b} |k(s,t)|^2 dm(s) dm(t) < \infty$ . Then for all  $x, y \in X$ , we have

$$\langle T^{*}y, x \rangle = \langle y, Tx \rangle$$
  
=  $\int_{a}^{b} \overline{Tx(t)}y(t)dm(t)$   
=  $\int_{a}^{b} \left[ \int_{a}^{b} \overline{k(t,s)} \ \overline{x(s)} \ dm(s) \right]y(t)dm(t)$   
=  $\int_{a}^{b} \overline{x(s)} \left[ \int_{a}^{b} \overline{k(t,s)} \ y(t)dm(t) \right]dm(s)$ 

so that for  $a \leq s \leq b$ ,

$$T^{*}y(s) = \int_{a}^{b} \overline{k(t,s)} y(t)dm(t) .$$

Thus,  $T^*$  is again an integral operator with kernel  $k^*(s,t) = \overline{k(t,s)}$ .

(iv) Let X = C([a,b]), the set of all complex-valued continuous functions on the closed and bounded interval [a,b] of the real line, with the supremum norm. Then for every  $x^* \in X^*$ , there is a unique normalized function of bounded variation, say y, such that

$$\langle x^*, x \rangle = \int_a^b \overline{x(t)} dy(t) \text{ for all } x \in X$$

(See [L], 14.6) .

Let T be an integral operator as in (iii) above, with k(s,t)continuous for  $s,t \in [a,b]$ . Then for every  $x \in C([a,b])$  and every normalized function y of bounded variation on [a,b], we have, as earlier,

$$\langle T^{*}y, x \rangle = \int_{a}^{b} \overline{x(s)} \left[ \int_{a}^{b} \overline{k(t,s)} dy(t) \right] ds$$
$$= \int_{a}^{b} \overline{x(s)} dz(s) ,$$

where

$$z(s) = \int_{a}^{s} \left[ \int_{a}^{b} \overline{k(t,u)} dy(t) \right] du, \quad a \leq s \leq b .$$

Since this is true for every  $x \in X$  , we see that for  $a \leq s \leq b$  ,

$$T^{*}y(s) = z(s)$$
$$= \int_{a}^{b} \left[ \int_{a}^{s} \overline{k(t,u)} du \right] dy(t)$$

## Problems

1.1 Let Y be a closed subspace of X , and  $x_0 \in X$  but  $x_0 \notin Y$ . Then there is  $x^* \in X^*$  such that

 $\langle x^{\bigstar},y\rangle = 0 \quad \text{for all} \quad y \in Y \ , \ \langle x^{\bigstar},x_0\rangle = 1 \ , \ \text{and} \ \|x^{\bigstar}\| = 1/\text{dist}(x_0,Y) \ .$ 

1.2 For fixed  $x \in X$ , define  $f_x : X^* \to \mathbb{C}$  by  $f_x(x^*) = \langle x, x^* \rangle$ . Then  $f_x \in X^{**}$ . Identify x with  $f_x$ , so that  $X \subset X^{**}$ . Let  $E \subset X$ . Then

$$E^{\coprod} \cap X =$$
the closure of span $\{E\}$  in X.

If  $T \in BL(X,Y)$ , then

$$Z(T) = X \cap R(T^*)^{\perp} ,$$

(1.10)

the closure of R(T) in X = X  $\cap$  Z(T<sup>\*</sup>)<sup>⊥</sup> .

If R(T) is closed, then

(1.11) 
$$R(T^{*}) = Z(T)^{\perp}$$
.

In general, does the closure of  $R(T^*)$  in  $X^*$  equal  $Z(T)^{\perp}$ ?

1.3 Let X and Y be Hilbert spaces and  $T \in BL(X,Y)$ . Then the closure of R(T) (resp., R(T<sup>\*</sup>)) equals  $Z(T^{*})^{\perp}$  (resp.,  $Z(T)^{\perp}$ ).

Also,  $Z(T^*T) = Z(T)$  and the closure of  $R(T^*T)$  equals the closure of  $R(T^*)$ . If R(T) is closed, then  $\overline{R}(T^*)$  is closed and  $R(T^*T) = R(T^*) = Z(T)^{\perp}$ . Further,  $T^*T$  is invertible if and only if T is one to one and R(T) is closed. (Hint: R(T) is closed if and only if  $\nu(T) = \inf\{||Tx|| : x \in Z(T)^{\perp}, ||x|| = 1\} > 0$ )

1.4 If  $T \in BL(X,Y)$  is invertible, then  $T^* \in BL(Y^*,X^*)$  is invertible and  $(T^{-1})^* = (T^*)^{-1}$ . The converse also holds. (See (8.1).)

1.5 Let 
$$X = L^2([a,b])$$
 or  $C([a,b])$ , and  
 $Tx(s) = \int_a^b e^{st}x(t)dm(t)$ ,  $x \in X$ ,  $a \le s \le b$ .

If  $X = L^2([a,b])$ , then  $T^* = T$ , while if X = C([a,b]), then

$$T^*y(s) = \int_a^b \frac{e^{ts}-e^{ta}}{t} dy(t)$$

for every normalized function y of bounded variation on [a,b]; in particular, if  $y \in C^{1}([a,b])$ , then

$$T^{*}y(s) = \int_{a}^{b} \frac{e^{ts}-e^{ta}}{t} y'(t)dt$$

16