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NON-REFLEXIVE REALIZATIONS OF NON-DISTRIBUTIVE SUBSPACE LATTICES 

W.E. LONGSTAFF 

Abstract. Let ~ be a subspace lattice on a (complex) 

Hilbert space H . A subspace lattice ~ on a Hilbert 

space K is a realization of ~ on K if ~ is 

lattice-isomorphic to ~ . In 1975 it was proved that if 

~ is completely distributive every realization ~ of it 

is reflexive (that is, ~ is the set of invariant 

subspaces of a family of operators). A partial converse 

has recently been found: If every realization of ~ is 

reflexive and 'ff has a finite--dimensional realization, 

then 'ff is completely distributive. This is proved by 

showing that every non-distributive subspace lattice on a 

finite-dimensional space has a non-reflexive realization on 

the same space. 

l. Introduction 

This expository article concerns a problem that arose about 14 years ago. 

A partial solution to it has recently been found. This solution precipitated 

after discussions with algebraists (in particular, R.S. Freese) at the 
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University of Hawaii. 

After some preliminary remarks concerning notation and terminology I will 

describe ho>l the problem arose. After this, I will discuss, and outline the 

steps of, the recently found proof. This discussion will include the 

consideration of a special case in an attempt to clarify why the proof >vorks. 

Finally, some open problems will be mentioned. For more details, the reader 

is referred to [9]. 

Throughout, H denotes a complex Hilbert space. The algebra of 

(bounded, linear) operators on H is denoted by ~(H) and the lattice of 

(closed, linear) subspaces of H is denoted by b(H) . For any subset 0 of 

H , <0> denotes the linear span of 0 . The closed linear span of a family 

{M 
'Y 

~ E f) of subspaces of H is denoted by vrM~ The inner-product on 

H is denoted by (•j•) . If T E ~(H) , G(T) denotes the graph of T; so 

G(T) ~ {(x,Tx) : x E H) . Two (abstract) lattices L1 and L2 are 

isomorphic if there exists a bijection ~ : L1 ~ L2 satisfying a ~ b if and 

only if T(a) ~ T(b) . A lattice L is distributive if 

a A (bvc) ~ (aAb) v (aAc) 

and its dual statement hold identically in L . 

For every subset ~ h b(H) define Alg ~ by 

Alg ~ ~ {T E ~(H) : TM h M , for every ME ~) 

Dually, for every subset (J1 h ~(H) define Lat (]1. by 

Lat ()1 ~ (M E b(H) : TM h M , for every T E {J{ ) . 

Then Alg '!f is an algebra of operators on H and Lat ffi the set of 

invariant subspaces of fJl , is a lattice of subspaces of H For any subset 

~ , '!f h Lat Alg ~ . Call '!f reflexive if F ~ Lat Alg ~ (Alg is a 
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mapping from the power set of ~(H) into the power set of ~(H) , and Lat is 

a mapping in the reverse direction. If we partially order these power sets by 

inclusion, the pair Alg , Lat is a Galois connection; see [13, p.70] for a 

general definition. The Galois closed subsets of ~(H) are precisely the 

reflexive lattices. The Galois closed subsets of ~(H) are called reflexive 

algebras. These have been the ·subject of intensive study; see [11] 

for further references.) The notion of reflexivity presented here, with its 

topological overtones, is due to Halmos in 1968 [2] . A purely algebraic 

version of the notion was considered by Thrall in 1952 [14] . 

A subset '!f k ~(H) is reflexive if and only if '!f = Lat (Jl for some 

family (Jl. of operators on H This characterization is more descriptive 

than the definition; reflexive lattices are invariant subspace lattices. 

Obvious necessary conditions for the reflexivity of '!f are (1) (0) , H E '!f 

(2) for every family (M 
-y 

satisfying conditions (1) and (2) is called a subspace lattice on H . 

2. Reflexive lattices 

A characterization of reflexivity has yet to be found, even in 

finite-dimensions. There are many partial results some of which will now be 

mentioned. Of course, ~(H) is reflexive: ~(H) = Lat CI A double triangle 

lattice is a five-element lattice, with a greatest and a least element, in 

which every pair of non-trivial elements are complementary, that is, a lattice 

4> 
~t conta~ns 

with Hasse diagram If dim H < oo , every non-distributive 

subspace lattice on a double triangle sublattice by the 

Birkhoff-Dedekind criteria [13, p.90]. Consider the double triangle subspace 

lattice V on H s H with non-trivial elements consisting of the two 'axes' 

H s (0) and (0) s H and the 'diagonal' G(I) = ((x,x) : x E H) . It is 
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easy to see that Alg 'D ~ ([~ ~] : A E :B(H)) . Clearly, G(ai) E Lat Alg 'D 

for every a E IC In face, Lat Alg 'D { (0), (0) 0 H, H 0 H) U (G(ai) : 

a E IC) . The Hasse diagrams of 'D and Lat Alg 'D are represented by Figures 

l and 2 respectively. 

HE13H 

1\ 
~ 
I 

(0) 

Fig. 1 

HEI3H 

(0) 

Fig.2 

Of course 'D is not reflexive; Lat Alg 'D is. 

H 

M 

• ~ • K 

L 

Fig.3 

The above serves to indicate why the follmving is true: Every finite, 

reflexive subspace lattice '!f on a finite-dimensional space is distributive. 

(This was first proved by Jans in 1957 [6], and, independently, by Johnson 

[7].) For, if '!f were non-distributive, it would contain a double triangle 

sublattice 'D 
0 

Then Lat Alg 'D0 ~ Lat Alg '!f ~ '!f . But Lat ']) 
0 

infinite; so then is '!f Contradiction. This result is false in 

is 

infinite-dimensions: there exists a reflexive pentagon T [3]. The Hasse 

diagram of T ~ ((0), K, L, M, H) is Figure 3. Note that 

M n (K v L) ~ M"' L ~ (M n K) v (!1 n L) . The converse, that finite 

distributive subspace lattices are reflexive, is true [4,5]. (This was first 

proved, for finite-dimensional spaces, in 1952 by Thrall [14], and 

independently by Johnson [7] .) 

In 1965 Ringrose [12] proved that every totally ordered subspace lattice 

'J is reflexive. He did this b J shmving that '!f ~ Lat 'R vJhere 'R denotes 

the set of rank one operators of Alg 'J . Along the way he defined, for every 
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element M E '!f the element M E 'j by M ~ Y{N E 'j N c M) where 'c' 

denotes strict inclusion and where, by convention v¢ ~ (0) so that 

(0) ~ (0) For every pair e,f E H of non-zero vectors let e @ f denote 

the rank one operator on H given by e @ f(x) ~ Cxle)f Ringrose showed that 

e ® f E Alg 'J if and only if f E M and e E ~ for some M E 'J In other 

interesting special cases of reflexivity obtained by Harrison [5] and Halmos 

[3], including the reflexive pentagon, it again turned out that '!f ~ Lat ~ . 

This suggested the question: Which subspace lattices 'J on H satisfy 

'J ~ Lat ~ where ~ is the set of rank one operators of Alg '!f ? 

Let 'j be a subspace lattice on H Extend Ringrose's definition of 

M For every M E '!f , put M V(N E 'j M d: NJ and, 
T 

for every N E ~t; 

put N* ~ n(M M E '!f and M 4 Nl '-'lith the convention that n¢ ~ H so 

Once again it turns out that 

e ® f E Alg 'J if and only if f E M and e E ~ for some M E 'IF , and we 

have the following results. 

PROPOSITION (1975, [8]). Lat ~ ~ (K E ~(H) : N ~ K ~ N* for some N E 'J ). 

COROLLARY. If dim(N,.,eN) ::; l for every N E 'J , then 'J ~ Lat ~ 

COROLLARY. If N ~ N* for every N E 'J , then 'J ~ Lat ~ . 

The first of these corollaries explains the reflexivity of Halrnos' pentagon 

'P . In 'P see Figure 3, dim(MeL) ~ l In the second corollary, the 

condition 'for every N E 'J , N ~ N*' is purely lattice-theoretic. It was 

shown to be equivalent to the notion of 'complete distributivity', a very 

strong form of distributivity. The types of subspace lattices, mentioned 

earlier, considered by Ringrose, Harrison and Halmos (apart from the pentagon) 

are completely distributive. 
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THEOREM (1975, [8]). Every completely distributive subspace lattice '!f 

on H is reflexive. In fact '!f ~ Lat 'R v1here 'R is the set of rank one 

operators of Alg '!f . 

At the time, I called completely distributive subspace lattices strongly 

reflexive because, if '!f is strongly reflexive, every subspace lattice §' on 

a (complex) Hilbert space K , which is lattice-isomorphic to '!f , is also 

reflexive. In general, for a given subspace lattice 2 on H call a 

subspace lattice J! on a Hilbert space K , a realization or a copy of :£ on 

K if J! is lattice-isomorphic to :1'. • It is not hard to find an example of 

a reflexive subspace lattice with a non-reflexive realization. For example, 

let 'D be the double triangle described earlier. Then Lat Alg :l.l\(G(-I)l is 

a non-reflexive copy of Lat Alg 'D . Also, Halmos' pentagon ~ has a 

non-reflexive realization [10]. Such considerations lead to the following 

question concerning the appropriateness of the terminology 'strongly 

reflexive' . 

QUESTION. If a subspace lattice '!f has the property that every 

realization of it is reflexive, must '!f be completely distributive? 

The answer is not known. Recently, however, I've found that if we 

additionally require that '!f have a realization on a finite-dimensional 

space, then the answer is affirmative. In particular, ~(H) for 

l < dim H < oo , has a non-reflexive realization. 

3. Non-reflexive realizations 

If the underlying space is finite-dimensional, a subspace lattice is 

completely distributive if and only if it is distributive. Thus, in order to 
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show that the question at the end of preceding section has an affirmative 

answer, given that ~ has a finite~dimensional realization, it is enough to 

prove the following. 

THEOREM ( 1988, [ 9]). Every non-distributive subspace lattice on a 

finite-dimensional complex Hilbert space has a non-reflexive realization on 

the same space. 

Let me discuss, and outline the steps of~ the proof. A key observation is 

that there are proper subfields of C which are field~isomorphic to C ; in 

fact there are 2° such subfields [1, p.233]. Throughout the remainder of 

this section dim H < oo and ~ denotes a proper subfield of C isomorphic 

to C by the mapping a So a is a bijection satisfying 

a(a + ~) - a(a) + o(~) and o(a~) - a(a)a(~) for every a,~ E C . 

First, we use a to define a lattice~isomorphism ~ of ~(H) onto a 

certain subspace lattice J!. on H 

Define a : H ~ H by 

For every subspace M of H , define a(M) x E M) . Then a(M) is 

closed under addition, but it need not be a subspace. For example, 

~ E ~} . Define ~ : ~(H) ~ ~(H) by ~(M) - < ~(M) > 

(~(M) :Me ~(H)} is a subspace lattice on H and ~: ~(H)~ J!. 

is an isomorphism. In particular, and 

for every family (M . ~ e f) of subspaces of H . Also, for any subspace 
~ 

lattice ~ on H , ~(~) - (~(M) : Me ~} is a subspace lattice on H , 
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isomorphic to '!J by the mapping M H cp(l1) . 

The mapping cp preserves dimension. In fact, if {x1 ,x2 , .. ,xm} is a 

is a basis for cp(M) . Proof 

of the latter rests on the fact that, if A is an n x n invertible matrix 

all of v1hose entries belong to F , then all of the entries of 
-1 

A also 

belong to F Suppose dim H > 1 T,Je shovJ that cp does not map onto 

e(H) Let f3 E IC\!F and put N If cp(M) ~ N for some 

M E ecH> then N ~ < -;; (e) > for some vector e E H . Thus there exists 

' E IC such that el + f3e2 ~ -y'O(e) 
(n 

~ 'l~ a(.~} say. Comparing 

coefficients, l 

Contradiction. 

We will show presently that, if '!f is non-distributive, then cp('J) is 

non-reflexive. However, in an att:empt to clarify "things lee us next consider 

the case of the non-distributive (and reflexive) subspace lattice Lat Alg 'D 

described earlier, ~>lith 'D the double triangle with non-trivial elements 

H 0 (0),(0) 0 H and G(I) We have Lat Alg 'D ~ {(0),(0) 0 H, H 0 H) u 

(G(al) : a E 0::) As a basis for H 0 H 

and e. 
J+n 

(O,fj) for 1 :;5; 

basis for H . lhth F and a as before, 

given by 

'O(x,y) 

take {el, e2, .. 

j ~ n , where 

the mapping 

n 

L\'a(C)f., 
J J 

1 

a 

· ,e2n ) Hhere 

{fl,f2' ... ,fn) is 

H 0 H -7 H e I-1 

and rp((O) 0 H) ~ <{o(O,y) : y E H)>~ (0) 0 H . Also, for every a E [; , 

cp(G(ai)) <{o(x,ax) : x E H)> { (y,u(a)y) : y E H) ~ G(o(a)I) 

a 

is 

Thus cp(Lat Alg 'D) ~ { (0), (0) 0 H, H 0 H) U (G(f3I) : f3 E IF} vThich is clearly 
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not reflexive. 

A lattice, such as Lat Alg V , in which every pair of distinct 

non-trivial elements are complementary, is called medial. The lattice 

Lat Alg V is a maximal medial subspace lattice on H ® H : there does not 

exist a subspace N of H ® H satisfying N n ((0) ®H)~ (0), N v .((0) ®H) 

= H ® H and, for every a E C , N n G(al) (0) , N v G(al) ~ H ® H . (The 

first pair of equations would give N ~ G(B) for some B E ~(H) the 

remaining conditions then give that B has no eigenvalues.) 

As far as mediality is concerned, the situation with general double 

triangle sublattices of ~(H) is much the same as just remarked. If 

~ (E, K, L, M, F} ~~(H) has Hasse diagram as iri Figure 4, with possibly 

E >" (0) and/or F >" H then Lat Alg ~ ~ { (0)' E, M, F, H) u {M a E C) 
Q 

where (i) M = 
0 

K and Ml L 
' 

(ii) M 
a 

n M = E and M v M = F for every 
a 

a E c and (iii) M n M/3 E and M v M ~ F 
' 

if a, {3 E c and a "' fJ a Q f3 
The Hasse diagram of Lat Alg ~ is represented by Figure 5. 

F 

L 

E 

Fig.4 
(0) 

Fig.S 
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There does not exist a subspace Q of H satisfying Q n M 

and, for every a E IC , Q n H 
C< 

F . 

E , Q v M 

Finally, let ~ be a non-distributive subspace lattice on H . Let 

F 

rp : t;'(H) -7 t;'(H) be the mapping defined at the beginning of this section and 

put §' ~ rp(~) . We shm1 that 9' is non-reflexive. Nm.r '!f contains a double 

triangle sublattice 'j ~ {E, K, L, M, F) say, with Hasse diagram as in 

Figure 4, and rp(:J) is a double triangle sublattice of 9' . T,Je have 

Lat Alg :J ~ {(0), E, M, F, H) u {Ma :a E IC) and 

Lat Alg rp('Y) ~ { (0), rp(E), rp(M), cp(F), H) u (Na a E rG) where it can be 

shown that cp(M ) 
C< 

Na(a) for every a E 1C 

If $ E IC\~ , then NP E Lat Alg cp('Y) ~ Lat Alg §' . 

if N$ E 9' then N$ ~ rp(Q) for some Q E '!f . 

Since 

(l) N$ n cp(M) ~ cp(E) and NP v cp(M) ~ rp(F) , 

and (2) 

we have 

(l)' Q n M ~ E and Q v M ~ F 

and (2)' for every a E 1C, Q n Ma E and Q v Ma 

But N 'if §' 
$ 

F . 

For 

rp(F) , 

But no such subspace Q exists. Contradiction. Hence 9' is non-reflexive. 

4. Concluding remarks 

(I) As we have already remarked, it is not known t.rhether or not a 

subspace lattice, whose every realization is reflexive, must be completely 

distributive. If the underlying space H is infinite-dimensional it is not 
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clear how to proceed from the existence of a proper subfield ~ of ~ and a 

field-isomorphism o : ~ ~ ~ Can useable maps o : H ~ H and 

~ : ~(H) ~ ~(H) be defined? An additional problem is that an arbitrary 

non-completely-distributive subspace lattice on H need not contain a double 

triangle sub lattice (the pen·tagon 'J' is an example). Also, the class of 

subspace lattices arising as Lat Alg ~ for some double triangle sublattice 

Y is not nearly as well understood as in finite-dimensions. 

(II) Concerning subspace lattices, some authors impose the additional 

requirement of strong closedness. A subspace lattice ~ on H is strongly 

closed if the family of orthogonal projections whose ranges belong to ~ is 

closed in the strong operator topology. This is a necessary condition for 

reflexivity [3]. With this additional requirement, reconsider the basic 

question raised at the end of section 2. What can be said? 

(III) If L is an abstract complete lattice, call a subspace lattice 

'!f on a complex Hilbert space H a realization of L on H if ~ is 

lattice-isomorphic to L . The question: Which completely distributive 

lattices L have a realization on Hilbert space? seems worth considering. 

It has not been investigated though there are some partial results scattered 

throughout the literature. 
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