THE CONVERGENCE OF ENTROPIC ESTIMATES FOR MOMENT PROBLEMS

A.S. Lewis

<u>Abstract</u>. We show that if x_n is optimal for the problem

$$\sup \left\{ \int_{0}^{1} \log x(s) ds \mid \int_{0}^{1} (x(s) - \hat{x(s)}) s^{i} ds = 0, i = 0, ..., n, 0 \le x \in L_{1}[0, 1] \right\}$$

then $\frac{1}{x_n} \rightarrow \frac{1}{\hat{x}}$ weakly in L₁ (providing \hat{x} is continuous and strictly

positive). This result is a special case of a theorem for more general entropic objectives and underlying spaces.

<u>Key Words</u>: moment problem, entropy, semi-infinite program, duality, normal convex integrand.

AMS 1985 subject classification:

Primary:	41A46, 42A70
Secondary:	90C25, 49D39

§1. Introduction

The following problem, known as a 'moment problem' or 'underdetermined inverse problem', occurs frequently in physical and other applications (see for example [Mead and Papanicolaou, 1984]). We are given a finite number of 'moments' $\int \hat{x} \hat{a}_i \, ds$, for i = 1,...,n, where

(S,ds) is some measure space and $a_i \in L_{\infty}(S)$, i = 1,...,n are given, and we wish to estimate the unknown non-negative density $\hat{x} \in L_1(S)$. One popular technique is to choose an estimate x to have the given moments and in order to minimize some objective function. Typically the objective function used is of the form $\int_{S} \phi(x(s))ds$, where $\phi \colon \mathbb{R} \to (-\infty,\infty)$ is

convex, so the problem becomes

$$(\text{MP}_n) \quad \left(\begin{array}{ccc} \inf & \int \phi(x(s)) ds \\ & S \\ \text{subject to} & \int (x-\hat{x}) a_i ds = 0 \ , \ i = 1, ..., n \ , \\ & S \\ & 0 \leq x \in L_1(S) \ . \end{array} \right)$$

Various functions ϕ have been tried, including the classical 'maximum entropy' approach where $\phi(u) = u \log u$, (see [Mead and Papanicolaou, 1984] and the references therein), other measures of entropy such as $\phi(u) = -\log u$ (for example [Johnson and Shore, 1984]), and more recently norm objectives such as $\phi(u) = \frac{1}{2}u^2$ [Goodrich and Steinhardt, 1986].

A survey of objective functions, along with solution techniques based on duality, may be found in [Ben-Tal, Borwein and Teboulle, 1988], and these techniques, together with the question of the existence of optimal solutions for (MP_n) , are studied further in [Borwein and Lewis, 1988(a)].

For this approach to the moment problem to be practically useful we would hope that as the number of known moments increases, our estimate converges in some sense to \hat{x} . Further conditions on the a_i 's will be necessary to ensure this. Suppose therefore that S is a compact Hausdorff space, ds a regular Borel measure, and that the a_i 's are densely spanning in C(S). As essentially observed in [Mead and Papanicolaou, 1984], if x_n is feasible for (MP_n) then $x_n ds \rightarrow \hat{x} ds$ weak* in M(S). However, it need not be the case that $x_n \rightarrow \hat{x}$ weakly in L₁(S). Indeed, the following result appears in [Borwein and Lewis, 1988(b)].

<u>Theorem 1.1.</u> Suppose S is a compact metric space, ds a non-negative regular Borel measure, $cl(span(a_i)_1^{\infty}) = C(S)$, and for some K, $\delta > 0$, $\delta \le \hat{x}(s) \le K$ a.e. For a given $y \in L_{\infty}(S)$, a necessary and sufficient condition that $\int_{S} (x_n - \hat{x}) y \, ds \to 0$ for every sequence (x_n) with x_n feasible for (MP_n) is that y = z a.e. for some function z, continuous a.e.

It follows from this that in order to guarantee the weak convergence of optimal solutions of (MP_n) to \hat{x} we will need further conditions on the objective function. One possibility is to require it to have weakly compact level sets. When (S,ds) is complete and totally σ -finite, and ϕ is a closed, convex, proper function with conjugate ϕ^* everywhere finite, a result of Rockafellar shows that the objective function in (MP_n) has weakly compact level sets. Under the further conditions on S, ds and the a_i's above, this will ensure that if x_n is optimal for (MP_n) then $x_n \rightarrow \hat{x}$ weakly in L₁(S) (see [Borwein and Lewis, 1988(a)]). This will apply in particular to the Boltzmann-Shannon entropy defined by

 $\phi(u) = \begin{cases} u \ \log u \ , \ u > 0 \ , \\ 0 \ , \ u = 0 \ , \\ +\infty \ , \ u < 0 \ . \end{cases}$

For this objective function in the special case where S = [0,1], ds is Lebesgue measure, and $a_i(s) = s^{i-1}$, the weak convergence of x_n to \hat{x} was shown in [Forte, Hughes and Pales, 1988].

However, in the case of the logarithmic entropy,

 $\varphi(u) = \begin{cases} -\log u \ , \ u > 0 \ , \\ +\infty \ , \ u \le 0 \ , \end{cases}$

 ϕ^* is not everywhere finite, so the objective function typically will not have weakly compact level sets [Borwein and Lewis, 1988(b)], and this technique cannot be applied. The results presented in this paper will adopt a different approach to show, under suitable conditions, that if x_n is optimal for (MP_n) then $\phi'(x_n(\cdot)) \rightarrow \phi'(\hat{x}(\cdot))$ weakly in L₁(S).

§2. Minimizing Sequences

Throughout this paper the finite-dimensional convex analytic terminology used will be that of [Rockafellar, 1970]. Suppose (S,ds) is a finite measure space. For a closed, convex, proper function $\theta : \mathbb{R} \to (-\infty, \infty]$, define $I_{\theta} : L_1(S) \to (-\infty, \infty]$ by $I_{\theta}(v) := \int_{S} \theta(v(s)) ds$. Using

the theory of normal convex integrands in [Rockafellar, 1974], I_θ is a well-defined convex functional with conjugate $(I_{\theta})^* : L_{\infty}(S) \to (-\infty,\infty]$ given by $(I_{\theta})^*(z) = I_{\theta^*}(z) = \int_{S} \theta^*(z(s)) ds$.

For a given $y \in L_{\infty}(S)$ we shall be interested in the function $f: L_1(S) \to (-\infty,\infty]$ defined by $f(v) := I_{\theta}(v) - \langle v, y \rangle$. It is easy to check that the conjugate function $f^*: L_{\infty}(S) \to (-\infty,\infty]$ is given by $f^*(z) = I_{\theta^*}(z+y)$. We shall make the following assumptions about θ and y:

(2.1) $\begin{cases} \theta^* & \text{is twice continuously differentiable on } \inf(\operatorname{dom} \theta^*), \\ [\text{ess inf } y, \text{ess sup } y] \subset \inf(\operatorname{dom} \theta^*). \end{cases}$

<u>Proposition 2.2</u>. The infimum of f is attained uniquely by $\overline{v} \in L_{\infty}(S)$, where $\overline{v}(s) := (\theta^*)'(y(s))$ a.e., and $\inf f = -I_{\theta^*}(y)$. Proof. By [Rockafellar, 1970, 23.5],

 $\theta(v(s))$ - $v(s)y(s) \geq -\theta^*(y(s))$ a.e. ,

with equality a.e. if and only if $v(s) = (\theta^*)'(y(s))$ a.e. The result follows

by integrating over S . The fact that $\overline{v} \in L_{\infty}(S)$ follows from the

continuity of $(\theta^*)'$ and the compactness of the essential range of y (2.1).

<u>Lemma 2.3</u>. For $w \in L_{\infty}(S)$ and $b \in \mathbb{R}$

$$\inf\{f(v) \mid \langle v, w \rangle \ge b \ , \ v \in L_1(S)\} \ge$$

$$\sup\{b\lambda - f^*(\lambda w) \mid 0 \le \lambda \in \mathbb{R}\}$$
.

<u>Proof</u>. For $\langle v, w \rangle \ge b$ and $\lambda \ge 0$,

 $b\lambda - f^*(\lambda w) \le \langle v, \lambda w \rangle - f^*(\lambda w) \le f(v)$,

and the result follows, taking inf over ν and sup over λ .

<u>Theorem 2.4</u>. Suppose $(v_i)_1^{\infty} \subset L_1(S)$ and $f(v_i) \to \inf f$. Then $v_i(\cdot) \to (\theta^*)'(y(\cdot))$ (the unique minimizer for f) weakly in $L_1(S)$.

<u>Proof</u>. Suppose not, so for some $w \in L_{\infty}(S)$,

 $\int\limits_{S} [v_i(s) - (\theta^*)'(y(s))]w(s)ds \geq 1$, each i.

Applying Lemma 2.3 with $b := 1 + \int_{S} (\theta^*)'(y(s))w(s)ds$ it follows that

for all $0 \leq \lambda \in \mathbb{R}$,

(2.5) $b\lambda - f^*(\lambda w) \leq \inf f$.

Now pick $\delta > 0$ such that

 $[(\text{ess inf y})-\delta, (\text{ess sup y}) + \delta] \subset \text{int}(\text{dom }\theta^*)$.

By the continuity of (θ^*) ", there exists M such that for all

 $u\in [(\text{ess inf }y)\text{-}\delta$, (ess sup $y)\text{+}\delta]$, $0\leq (\theta^*)"(u)\leq M$. Since $w\in L_\infty(S)$, for

all λ sufficiently small

 $y(s) + \lambda w(s) \in [(ess inf y)-\delta, (ess sup y)+\delta]$ a.e.,

so by the mean value theorem,

$$\theta^*(\mathbf{y}(\mathbf{s}) + \lambda \mathbf{w}(\mathbf{s})) \leq \theta^*(\mathbf{y}(\mathbf{s})) + \lambda \mathbf{w}(\mathbf{s})(\theta^*)'(\mathbf{y}(\mathbf{s})) + \frac{1}{2} \mathsf{M}(\lambda \mathbf{w}(\mathbf{s}))^2 , \text{ a.e.}$$

Integrating over S gives

$$f^{*}(\lambda w) \leq -\inf f + \lambda(b-1) + \lambda^{2} \left(\frac{1}{2} M \int w(s)^{2} ds\right)$$

for all λ sufficiently small. But then by (2.5), for all $\lambda \ge 0$ sufficiently small

$$-\lambda + \left(\begin{array}{c} \frac{1}{2} \ M \int \ w(s)^2 ds \\ S \end{array} \right) \lambda^2 \geq \inf \ f + f^*(\lambda w) \ - b\lambda \geq 0 \ ,$$

which is a contradiction for small $\lambda > 0$.

A similar, less direct approach to this result uses the results on minimizing sequences in [Rockafellar, 1974].

§3. Weak Convergence

We are now ready to return to the original problem.

$$(P_n) \qquad \left\{ \begin{array}{ll} \inf & \int \phi(x(s)) ds \\ subject \ to & \int (x-\widehat{x}) a_i ds = 0 \ , \ i = 1, \dots, n \ , \\ & S \\ & x \in L_1(S) \ . \end{array} \right.$$

Notice we have removed the constraint $x \ge 0$, assuming it to be implicit in the function ϕ . We make the following assumptions:

$$\begin{cases} S \text{ is a compact Hausdorff space,} \\ ds \text{ is a non-negative regular Borel measure on } S \text{,} \\ cl(span(a_i)_1^{\infty}) = C(S) \text{,} \\ \\ \varphi : \mathbb{R} \to (-\infty,\infty] \text{ is closed, convex, proper, essentially smooth} \\ and essentially strictly convex, and twice continuously \\ differentiable on int(dom \phi) \text{,} \\ \\ \hat{x} \in C(S) \text{ with } [\min \hat{x}, \max \hat{x}] \subset int(dom \phi) \text{.} \end{cases}$$

A closed, convex, proper function $\phi : \mathbb{R} \to (-\infty,\infty]$ is essentially strictly convex if and only if it is strictly convex on dom ϕ (see [Borwein and Lewis, 1988(a)]), and is essentially smooth if it is differentiable on int(dom ϕ) and $|\phi'(u)| \to +\infty$ if u approaches a point in the boundary of dom ϕ . Functions which are both essentially smooth and essentially strictly convex are said to be 'of Legendre type', and have the following property.

<u>Theorem 3.2</u>. [Rockafellar, 1970, 26.5] The function ϕ is of Legendre type if and only if ϕ^* is. In this case the gradient map $\phi' : \operatorname{int}(\operatorname{dom} \phi) \rightarrow$ int(dom ϕ^*) is 1-1, onto, continuous, and with continuous inverse (ϕ^*)'.

The dual problem for (MPn), from [Borwein and Lewis, 1988(a)], is

$$(DP_{n}) \qquad \begin{cases} maximize \quad \langle \hat{x}, \sum_{i=1}^{n} \lambda_{i}a_{i} \rangle - I_{\phi^{*}} \left(\sum_{i=1}^{n} \lambda_{i}a_{i} \right) \\ subject to \quad \lambda \in \mathbb{R}^{n} \end{cases}$$

<u>Theorem 3.3</u>. The values of (P_n) and (DP_n) are equal, with attainment in (DP_n) .

<u>Proof.</u> This follows from the duality theorem [Borwein and Lewis, 1988(a), 2.4], since $\hat{x} \in qri(dom I_{\varphi})$ (or in other words cl cone(dom $I_{\varphi} - \hat{x}$) is a subspace) so the required constraint qualification is satisfied. To see this, observe that from 3.1, $\hat{x} \in ||\cdot||_{\infty} - int(dom(I_{\varphi}|_{L_{\infty}}(S)))$ (restricting I_{φ} to $L_{\infty}(S) \subset L_{1}(S)$), so certainly cone(dom $I_{\varphi} - \hat{x}) \supset L_{\infty}(S)$. Since $L_{\infty}(S)$ is dense in $L_{1}(S)$ [Rudin, 1966, 3.13], the result follows. The question of attainment in the primal problem (P_n) is harder. We have the following result from [Borwein and Lewis, 1988(a)].

<u>Theorem 3.4</u>. Suppose assumptions (3.1) hold for the problem (P_n). Suppose further that $S = [\alpha, \beta] \subset \mathbb{R}$ with ds Lebesgue measure, that the a_i 's are locally Lipschitz (or in particular continuously differentiable),

and that $\phi(u) = +\infty$ for u < 0. Define two numbers, $d := \lim_{U \to +\infty} \frac{\phi(u)}{u}$, and if $d < +\infty$,

$$c := \lim_{U \to +\infty} (d - \phi'(u))u$$
.

Suppose either $d = +\infty$, or c > 0, and there exists $\mu \in \mathbb{R}^n$ with

$$\begin{split} &\sum_{i=1}^n \ \mu_i a_i(s) < d \ \text{ for all } s \in [\alpha,\beta] \ \text{ (which holds in particular for all sufficiently large n, or if } a_1 \equiv 1 \text{)}. \end{split}$$

It is easy to check for example that the conditions on ϕ are satisfied in particular for the two entropies in the introduction.

When we know the existence of an optimal solution, it is easy to identify it.

<u>Theorem 3.5</u>. Suppose x_n is optimal for (P_n) and λ^n is optimal for (DP_n) . Then

$$\begin{split} \sum_{i=1}^n \lambda_i^n a_i(s) &= \phi'(x_n(s)) \quad , \text{ a.e., and} \\ x_n(s) &= (\phi^*)' \left(\sum_{i=1}^n \lambda_i^n a_i(s) \right) \, , \text{ a.e.} \end{split}$$

<u>Proof</u>. If x_n and λ^n are both optimal then

$$\begin{split} I_{\phi}(x_{n}) &= \left\langle \begin{array}{c} \hat{x} \end{array}, \begin{array}{c} \sum_{i=1}^{n} \lambda_{i}^{n} a_{i} \end{array} \right\rangle - I_{\phi^{*}} \left(\sum_{i=1}^{n} \lambda_{i}^{n} a_{i} \right) \\ &= \left\langle \begin{array}{c} x_{n} \end{array}, \sum_{i=1}^{n} \lambda_{i}^{n} a_{i} \right\rangle - I_{\phi^{*}} \left(\sum_{i=1}^{n} \lambda_{i}^{n} a_{i} \right) \end{split}, \end{split}$$

1

so it follows that

$$\int_{S} \left[\phi(x_{n}(s)) + \phi^{*} \left(\sum_{i=1}^{n} \lambda_{i}^{n} a_{i}(s) \right) - x_{n}(s) \sum_{i=1}^{n} \lambda_{i}^{n} a_{i}(s) \right] ds = 0 .$$

Thus by [Rockafellar, 1970, 23.5],

$$\sum_{i=1}^n \ \lambda_i^n \ a_i(s) \ \in \ \partial \phi(x_n(s)) \ , \ a.e.,$$

and the result follows by Theorem 3.2.

This result shows in particular that primal optimal solutions, if they exist, are unique. This is clear alternatively from the strict convexity of I_{\$\Phi\$} .

Let us denote the value of a problem by $V(\cdot)$.

<u>Theorem 3.6</u>. $V(DP_n) \uparrow I_{\phi}(\hat{x})$ as $n \to \infty$.

<u>Proof</u>. Clearly $V(DP_n)$ is increasing in n . Since

[min \hat{x} , max \hat{x}] \subset int(dom ϕ), and ϕ is continuously differentiable on

int(dom ϕ), $\phi' \circ \hat{x} \in C(S)$, and by Theorem 3.2,

 $[\min \varphi' \circ \hat{x}, \max \varphi' \circ \hat{x}] \subset int(dom \varphi^*). \text{ Pick } \epsilon > 0 \text{ such that}$

 $[\min(\phi' \circ \hat{x}) - \epsilon, \max(\phi' \circ \hat{x}) + \epsilon] \subset int(dom \phi^*) ,$

so ϕ^* is uniformly continuous on $[\min(\phi' \circ \hat{x}) - \varepsilon, \max(\phi' \circ \hat{x}) + \varepsilon]$. Since span $(a_i)_1^{\infty}$ is dense in C(S) it follows that, given $\delta > 0$, there exists N and $\lambda \in \mathbb{R}^N$ such that

$$||(\phi'\circ\hat{x}) - \sum_{i=1}^N \lambda_i a_i||_\infty < \delta,$$

and (for $~\delta<~\epsilon)~$ by the uniform continuity of $~\phi^*~$ we can also ensure that \$N\$

$$||\phi^*\circ\phi'\circ\hat{x}-\phi^*\circ\sum_{i=1}^{\infty}\lambda_{i}a_{i}||_{\infty}<\delta\;.$$

We then have

$$\begin{aligned} & <\hat{x}, \sum_{i=1}^{N} \lambda_{i}a_{i} > -I_{\phi^{*}}(\sum_{i=1}^{N} \lambda_{i}a_{i}) \\ & = \int_{S} \left[\hat{x}(s) \sum_{i=1}^{N} \lambda_{i}a_{i}(s) - \phi^{*}(\sum_{i=1}^{N} \lambda_{i}a_{i}(s)) \right] ds \\ & \geq \int_{S} \left[\hat{x}(s)\phi'(\hat{x}(s)) - \delta|\hat{x}(s)| - \phi^{*}(\phi'(\hat{x}(s))) - \delta \right] ds \end{aligned}$$

$$= \int_{S} \phi(\hat{x}(s)) - \delta(1 + |\hat{x}(s)|) ds$$
$$= I_{\phi}(\hat{x}) - \delta \int_{S} [1 + |\hat{x}(s)|] ds ,$$

by [Rockafellar, 1970, 23.5], so $V(DP_N) \ge I_{\phi}(\hat{x}) - \delta \int_{S} [1 + |\hat{x}(s)|] ds$. However $V(DP_N) = V(P_N) \le I_{\phi}(\hat{x})$, since \hat{x} is feasible for (P_N) . Since δ was arbitrary, the result now follows.

Notice that the strong duality theorem (3.3) is not in fact necessary to prove this result: it is sufficient to observe by weak duality that $V(DP_N) \leq V(P_N)$.

We are finally ready to deduce our main result. We include in the statement a summary of the above results.

<u>Theorem 3.7.</u> Suppose assumptions (3.1) hold for the problem (P_n) . Then $V(P_n) = V(DP_n) \uparrow I_{\phi}(\hat{x})$ as $n \to \infty$, with attainment in (DP_n) . If λ^n is is optimal for (DP_n) then $\sum_{i=1}^n \lambda_i^n a_i \to \phi'(\hat{x}(\cdot))$ weakly in $L_1(S)$. If there exists an optimal solution of (P_n) then it is given uniquely by $x_n(s) := (\phi^*)' \left(\sum_{i=1}^n \lambda_i^n a_i(s)\right)$, a.e., and $\phi'(x_n(\cdot)) \to \phi'(\hat{x}(\cdot))$ weakly in $L_1(S)$.

<u>Proof.</u> Consider the function $g: L_1(S) \to (-\infty,\infty]$ defined by $g(v) := I_{\phi^*}(v) - \langle v, \hat{x} \rangle$. By Proposition 2.2, inf $g = -I_{\phi}(\hat{x})$, and is attained uniquely by $\overline{v} \in L_{\infty}(S)$, where $\overline{v(s)} := \phi'(\hat{x}(s))$ a.e. By Theorem 3.6, $\sum_{i=1}^n \lambda_i^n a_i$ is a minimizing sequence for g, so by Theorem 2.4 $\sum_{i=1}^n \lambda_i^n a_i \to \overline{v}$ weakly in $L_1(S)$. The remaining assertions follow from Theorem 3.5.

Examples

Consider the special case

$$(E_n) \begin{cases} \inf & \int_{0}^{1} \phi(x(s)) ds \\ & 0 \\ subject to & \int_{0}^{1} s^{i}(x(s) - \hat{x}(s)) ds = 0 , i = 0, ..., n , \\ & 0 \\ & 0 \le x \in L_1[0,1] , \end{cases}$$

where ds is Lebesgue measure, for three different measures of entropy:

(i)
$$\phi(u) = \begin{cases} u \log u - u, & u > 0, \\ 0, & u = 0, \\ +\infty, & u < 0, \end{cases}$$

(ii)
$$\phi(u) = \begin{cases} -\log u , & u > 0 , \\ +\infty , & u \le 0 , \end{cases}$$

(iii)
$$\phi(u) = \begin{cases} u \log u - (1+u) \log(1+u) , & u > 0 , \\ 0 & , & u = 0 , \\ + \infty & , & u < 0 . \end{cases}$$

In all three cases (assuming \hat{x} is continuous and strictly positive) Theorems 3.4 and 3.7 apply. Suppose in each case λ^n is dual optimal, and let x_n denote the unique optimal solution of (E_n).

(i)
$$x_n(s) = \exp(\sum_{i=0}^{n} \lambda_i^n s^i)$$
, a.e.,

and log $x_n(\cdot) \rightarrow \log \hat{x}(\cdot)$ weakly in L₁.

(ii)
$$x_n(s) = -(\sum_{i=0}^n \lambda_i^n s^i)^{-1}$$
, a.e.,

$$\begin{array}{ll} \mbox{and} & \frac{1}{x_n(\cdot)} \rightarrow \frac{1}{\hat{x}(\cdot)} & \mbox{weakly in } L_1 \end{array} . \\ (iii) & x_n(s) = \left[\exp(-\sum_{i=0}^n \lambda_i^n s^i) - 1 \right]^{-1} & , \mbox{ a.e.} \end{array}$$

and
$$\log(1 + \frac{1}{x_n(\cdot)}) \rightarrow \log(1 + \frac{1}{\hat{x}(\cdot)})$$
 weakly in L₁.

Further examples may be found in [Borwein and Lewis, 1988(a)]. Clearly we could replace $a_i(s) = s^{i-1}$ in the above with trigonometric

polynomials, cos i e and sin i e (alternating).

In case (i) the theory in [Borwein and Lewis, 1988(b)] shows that in fact $x_n \rightarrow \hat{x}$ weakly in L_1 . Whether or not this is necessarily the case in the other examples remains unclear.

§4. <u>References</u>

- Ben-Tal, A., J.M. Borwein and M. Teboulle, 1988: Spectral estimation via convex programming, to appear in the Proceedings of the conference in honour of A. Charnes' 70th Birthday.
- Borwein, J.M. and A.S. Lewis, 1988(a): Duality relationships for entropylike minimization problems, submitted to SIAM J. Appl. Math.
- Borwein, J.M. and A.S. Lewis, 1988(b): On the convergence of moment problems, to appear.
- Forte, B., W. Hughes and Z. Pales, 1988: Maximum entropy estimators and the problem of moments, to appear.
- Goodrich, B.K. and A. Steinhardt, 1986: L₂ spectral estimation, SIAM J. Appl. Math. 46, 417-428.
- Johnson, R.W. and J.E. Shore, 1984: Which is the better entropy for speech processing: slogs or logs? IEEE Trans. on acoustics, speech and signal processing, ASSP 32, 129-136.
- Mead, L.R. and N. Papanicolaou, 1984: Maximum entropy in the problem of moments, J. Math. Phys. 25, 2404-2417.
- Rockafellar, R.T., 1970: Convex analysis, Princeton University Press, Princeton, N.J.
- Rockafellar, R.T., 1974: Conjugate duality and optimization, SIAM Publications, Philadelphia.

Rudin, W., 1966: Real and complex analysis, McGraw-Hill, New York.

Department of Mathematics, Statistics and Computing Science Dalhousie University, Halifax, N.S., Canada B3H 3J5