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An approximation theoretic characterisation 

of inner product spaces 

A. L. Brown 

ABSTRACf 

Two approximation theoretic properties of Hilbert spaces 
used in the proof of a result concerning Chebyshev sets 
obtained by Frerking and Westphal [4] are discussed. 
Investigation of one leads to a characterisation of 
inner product spaces of dimension at least three; it is 
an improvement of one due to Berens [3]. The other 
property is shared by all finite dimensional spaces [3] 
and here a topological result of which that fact is a 
simple consequence is proved. 
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Considerable but so far unsuccessful efforts have been made to determine 

whether or not every Chebyshev subset of a Hilbert space is convex. A number 

of conditional results have been obtained and one of the most satisfying of 

them is one of those due to L.P. Vlasov [v.6]: 

(I) If X is a Banach space, x* is strictLy convex and K is a 

Chebyshev subset of X such that the metric projection of X onto K is 

continuous then K is convex. 

This result can be compared with a striking recent Hilbert space result 

of J. Frerking and U. Westphal [4] which is more conveniently stated in the 

contrapositive form: 

(II) If X is a HiLbert space and K is a non-convex Chebyshev subset of 

X then the set of points of discontinuity of the metric projection of X onto K 

contains a non-triviaL Lipschitz curve. 
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The result (II) is a improvement of one due to Balaganskii [2]; its proof 

depends upon four approximation theoretic properties of Hilbert spaces. In 

order to state them as (i} - (iv} below we must introduce-some notation. 

Let X be a real normed linear space. The open ball, closed ball and 

sphere centrex € X and of radius r will be denoted. by B(x,r), B'(x,r) and 

S(x,r) respectively. The unit sphere S(O,l} will also be denoted by Sx· The 

identity mapping on X will be denoted by I. If K is a subset of X and x € X 

then 

d(x,K) = inf{llx-kll : k € K} 

is the distance of x from K. The metric projection of X onto K is the set 

valued mapping PK defined by 

P K(x) = {k € K : llx-kll = d(x,K)}. 

K is said to be proximinaL if PK(x) # ~ for each x € X, and Chebyshev if PK(x) 

is a single point for each x € X (in which case PK is regarded as a mapping of 

X onto K). A second set valued mapping ~K is defined by 

~K(x) = n co(K n B'(x,d(x,K)+c)). 
c>O 

Thus co PK(x) ~ ~K(x) for each x € X. If X is of finite dimension and K is 

closed then co PK(x) = ~K(x) for each x € X. If X is reflexive then ~K(x) # ~ 

for each x € X. 

The first of the four properties is possessed by any uniformly convex 

space: 

(i} If X is a uniformLy convex space and K is a Chebyshev subset of 

X then PK is continuous at x € X if and onLy if PK(x) = ~K(x). 
If X is a Hilbert space and K is a subset of X then ~K is an accretive 

(monotone) set valued mapping. If ~ is any accretive set valued mapping on a 

normed linear space X then for each A > 0 the set valued mapping AI + ~ is 

injective and its inverse (AI + ~)-l is Lipschitz with constant~ on its 

domain. Thus 

(ii} If X is a HiLbert space and K is a subset of X then for each 
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A. > 0 the set vaLued mapping A.I + <11K is injective, and 

(iii) (A.I + ~K)-l is continuous on its domain. 

However, if X is a Hilbert space then i!iK is maximal accretive (maximal 

monotone) and this has the important consequence that 

(iv) If X is a Hilbert space and K is a subset of X then for each 

A. > 0 the set vaLued mapping AI + i!iK is surjective. 

The truth of (ii), (iii) and (iv) for a single A > 0 would be sufficient 

for the proof of (II). (We have not considered weaker conditions which might 

suffice). The comparison of (I) and (II) naturally prompts the question of 

whether (or to what extent) the properties (ii), (iii) and (iv) extend to any 

spaces which are not Hilbert spaces. Here we show that (ii) does not do so 

even for a single A., and we prove a topological theorem which gives a variant 

proof of the fact that property (iv) is shared by all finite dimensional 

spaces. 

THEOREM 1 Let X be a real normed Linear space of dimension at Least three. 

Then the following four conditions are equivalent: 

Proof 

(1) X is an inner product space, 

(2) For each x E SX there exist positive constru<ts X, c such that 

0 ~ Xtx + co(SX n (tx + SX)) 

for aLL t E (O,E), 

(3) For each proximinaL subset K of X there exists X > 0 such that 

A.I + co PK is injective. 

(4) For each x E SX there exists c > 0 such that SX n (tx + SX) is 

contained in a hyperpLane for aLL t € (O,c). 

That (1) and (4) are equivalent is a characterisation of inner 

product spaces due toP. Gruber [v.1,(15.17)]; it is natural to include it 

here for comparison as it is easily seen that (4) ~ (2). The implication 
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(1) ~ (4) is quite elementary. The statement (ii) above includes the 

implication (1) ~ (3). It remains to prove that (2) ~ (1) and 

(3) ~ (1). 

If X is not an inner product space then it contains a three dimensional 

subspace which is not an inner product space. If (2) and (3) are false for 

some three dimensional subspace of X, in place of X, then they are false for 

X. It may therefore be supposed that X is of dimension three. 

If x € X then y is said to be orthogonal to x {in the sense of Birkhoff) 

and one writes y ~ x, if d(y,ffis) llyll • If llxll = llyll = 1 then y ~ x if and 

only if the line y + ffix supports SX at y. 

Suppose that X is not an inner product space. Then by a characterisation 

due to R.C. James [v.1,(14.2)] there exists x € SX such that the set 

{y € X : y ~ x}, which is symmetric about 0, does not contain a hyperplane. 

It follows that 

0 € int(co{y € SX : y ~ x}) 

(where 'int' denotes the interior relative to X). Therefore there exist 

points y 1 ,y2 ,y3 ,y4 in SX, each orthogonal to x such that 

0 € int(co{y1,y2 ,y3 ,y4 }). 

Now, for each i 1,2,3,4, if t € {0, 1], so lltxll S: 1, then 

y.+tx 
lly1.-txll ~ 1 and II 1 - txll S: 1. 

llyi+txll 

So there exists 9 € [O,t] such that 

y.+9x 
lly>9xll € ~ n (tx+~). 

It follows that, given t > 0, there exists t 0 € {0,1] such that 

d{yi'~ n (tx+Sx)) < t 

for all t € (O,t ] and for i = 1,2,3,4. For some~> 0 
0 

B{0,2~) ~ co{y1,y2 ,y3 ,y4} 

and therefore for some t 0 > 0 
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for all t € (O,t0 ]. If A> 0 and 0 < t <min{~, t 0 } then 

-Atx E B(O,~) ~ co(SX n (tx+SX)). 

This proves that (2) is not satisfied. 

andif?..s!l 
t 

Then PK (0) 
t 

0 € B(O,~) ~co K = (AI+co PK) (0), 
t t 

0 € Atx +co K = (AI+co PK )(tx). 
t t 

Now let (tn}nLl be a sequence in (O,t0] which is convergent to 0, let (zn)nLl 

be a sequence in X such that llznll = 6n, for n = 1 ,2, ... , and let 

co 

K = U (zn+Kt ). 
n=O n 

It is now easily seen that AI + co PK is not injective for any A > 0. Thus 

(3) is not satisfied. This completes the proof that (2) ~ (1) and 

(3) ~ (1). The characterisation (3) of inner product spaces is an 

improvement of one obtained by Berens [3]. 

The next theorem involves Cech (or Alexander or sheaf theoretic) 

cohomology. Let G by any non-trivial abelian group. A topological space is 

said to be acyclic if its Cech cohomology with coefficients in G is trivial. 

The theorem is, modulo the Vietoris-Begle mapping theorem [5, p.344], a very 

simple result. It is the natural extension to set valued mappings of a result 

for (ordinary) mappings which follows directly from the fact that a sphere is 

not a retract of its ball. The set of subsets of the space ffin will be denoted 

by ~(ffin). For the purposes of the notation let ffin be equipped with the 

euclidean norm. 

Let ~ : ffin ~ ~(ffin),{0} be a bounded upper semi-continuous 

set valued mapping with the property that ~(x) is an acycLic cLosed subset of 

ffin for each x € ffin. Then I + W is surjective. 
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Proof Suppose on the contrary that there exists a il1 : lRn --? ~(lRn)',{0} 

satisfying the conditions of the theorem but such that 0 ([. x + i!>(x) for each 

x € !Rn. It is easily shovm that, by the upper semi-continuity and boundedness 

U {x+~(x}) is a closed subset of !Rn. Therefore, 
xE!Rn 

for some r > 0, llx+yll i r for all x € !Rn and y E il?(x), Let 

K sup{ lly!l : y € 

f [O,R2] _____, [0,1] be a continuous function such that 

{
. 0, for p E [O,R1], 

f(p) = . 
1, for p = R2 , 

m1d define P B'(O,R2 ) ~~(1Rn),{0} by 

P(x) = f(llxll + (1-f ( llxll)) + i!!(x)). 

Then IJ; is also upper semi-continuous and IJi(x) is an. acyclic closed subset of 

!Rn for each x € B'(O,R2 ). Furthermore llx+yll 2 r for all x € B'(O,R2 ) and all 

y E P(x), and ~ji(x) = {x} for each x E S(O,R2). 

Let 

denote the 'graph" of lfJ. The graph is a subset of the product space. The 

projection p '&(>¥) ----. B' (O,R2 ) is closed, continuous and surjective and 

-1 
p o. {x} x >lt(x) is acyclic for each x € B' (O,R2 }, Therefore by the 

Vietoris-Begle !napping theorem p induces an isomorphism 

of Cech cohomology. Thus 'il(w) has trivial Cech cohomology i.e. has the 

cohomology of a point. If we let 

diag S(O,R2 ) = {(x,x) 

then there is a commutative diagram 

1 1 
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of horizontal inclusions and vertical projections to the second factor. The 

left hs~d projection is a homeomorphism, the right hand projection is a 

homotopy equivalence, and the lower horizontal inclusion is a homotopy 

equivalence. Therefore all the mappings induce isomorphisms of Cech 

cohomology. However there are inclusions 

and the composite 

of the induced mappings is a non-trivial isomorphism. This contradicts the 

w* 
fact that H (~(~)) is trivial. The proof of the theorem is complete. 

A convex subset of a normed linear space is contractible and so acyclic. 

Suppose that X is a finite dimensional normed linear space. If K is a bounded 

closed subset of X and A> 0 then co PK = ~K is upper semi-continuous and it 

follows immediately from Theorem 2 that /\I + co PK is surjective. The link to 

the general case is provided by a proposition. 

PROPOSITION Let A ) 0" If X is a real normed linear space and 1\I + iliK is 

surjective for each bounded cLosed non-empty subset K of X then AI + iliK is 

surjective for each closed non-empty subset of X. 

Proof The proof expresses the fact that (1\I + iliK)-l is locally bounded. 

'A 1 
It is convenient to calculate in terms of + 'A+l~K" If z0 E X, x E X and 

'A 1 
z E 1\+l~ + 1\+lijiK(x) then 

and therefore 

It follows that 

llx-zll ('A+ 1 )z-"Ax) II 

~ d(x,K) 
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(*) 

If R > 2(~~1c + ~(z0 ,K) + d(z0 ,K) and K' = K n B'(z0 ,R) then 

d(z0 ,K) = d(z0 ,K'), the inclusion(*) holds with K' in place of K and PK' WK' 

Consequently 

if and only if 

The proposition now follows. 

Theorem 2 and the Proposition immediately give the following theorem, the 

original proof of which invoked a result for convex valued set valued 

mappings. 

THEORDI (Berens [3]) If K is a cLosed non-entpty subset of a fin-L te 

dimensionaL normed Hnear space X then, for each A ) 0, the set vaLued mapping 

'AI + co PK is surjective. 
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