
1.3. Generators and Semigroups. 

Proposition 1.2.1 states necessary conditions for 

an operator to generate a Co-semigroup of contractions. Next 

we examine sufficient conditions and also study the construction 

of a semigroup from its generator. 

The problem of characterizing a generator H is 

equivalent to the problem of proving existence and uniqueness of 

global solutions of a differential equation 

da t 
--- + Hat dt 

o , a 

for all a in a suitable Banach space B. Formally the solution 

of the differential equation is 

and the difficulty is to give an appropriate definition of the 

exponential. Various algorithms and approximation techniques are 

of use. For example the algorithm 

exp{-tx} £im (l+tx/n)-n 
n~ 

for the numerical exponential san be extended to an operator relation 

if the (pseudo-) resolvent 
-1 

(I+aH) has suitable properties for 

small positive a . 

It should perhaps be emphasized that in applications 
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the Banach space B is not necessarily specified in advance. 

Typically one might encounter a differential equation of the above 

type for functions over some measure space but without 

specification of a particular norm. Thus the problem consists of 

choosing the norm and reinterpreting the operator H such that 

an appropriate solution can be found. 

The first basic result which characterizes 

generators is the following: 

THEOREM 1.3.1. (Hille-Yosida). Let H be an operator on the 

Banaah spaae B The following aonditions are equivalent: 

1. H is the infinitesimal generator of a Co-semigroup of 

eon traations S, 

2. H is norm alosed, norm densely defined: 

R(I+o.H) = B 

for all a. > 0 (or for one a. = 0.0 > 0) 

1l(I+a.H)ali ~ Hall 

for all a E D(H) and all a. > 0 (or for all 

If these conditions are satisfied 

Hm IISta - (I+tH/n)-nall = 0 
n-+oo 

for aU a E B , uniformly for t in any finite interval of [0, 00) • 



Proof. 1 ~ 2. This follows from Proposition 1.2.1, it 

suffices to set A = -lla . 

2 ~ 1. Assume R(I+aoH) = Band 1I<r+aH)all ~ lIall for all 

a E D(H) and a E {a, ao] Thus (I+aoH) -1 is a bounded 

operator with norm one. First we extend this conclusion to all 

a E {aoh, aO] and then by iteration to all a E (0, ao] 

If a E (ao /2' ao] then 

N 

I 
n=O 

[
a-a )n o ( ) -n-l -a- I+a('.H 

converges in norm to a bounded operator R. But for a E D(H) one 

has ~a E D(H) and a simple rearrangement argument proves that 

1i<r+aH)RNa - all + 0 and IIRN(I+aH)a - all + 0 as N + 00 Since H 

is norm closed it follows that R = <r+aH)-l and then IIR//::: 1 by 

the bound 1I<r+aH)all ~ lIail . 

The remainder of the proof consists of establishing 

that the strong limit of the operators 

r (t) 
n 

exists as n + 00 and that it defines a Co-semigroup of contractions 

with generator H Note that for n sufficiently large 

tin < a O and I/0+aH)-1,,::: 1 for all a relevant to the remainder 

of the proof. 

As a preliminary to studying the above limit we note 

that if a E D(H) 

23. 



24. 

::: a.IIHall _ 0 . 
a.+0+ 

Since D(H) is dense one concludes that 
-1 

(I+a.H) converges 

strongly to the identity as a. + 0+ This has several implications. 

First if for a E B one defines 

then a E D(H2) and a is norm convergent to a 
n n 

is dense. Second if a E D(H) then a converges to a and Ha 
n n 

also converges to Ha Thus D(H2) is a core for H. Third 

r (t) 
n 

t > 0 

then 

r (t)a 
n 

is strongly convergent to the identity as t +0 

Next one claculates that drn(t)/dt is bounded for 

and, more specifically, 

dr (t) 
n = _H(I+tH/n)-n-l . 
dt 

Combining these facts one calculates that if a E D(H2) 

r (t)a = 
m 

Hm 
E:+O+ 

ft-E: d { } dS-d r (s)r (t-s)a E: s n m 

= Hm ft-E: ds {r I (s)r (t-s)a - r( s)r I (t-s )a} 
E:+O+ E: n m n m 

= Hm 
E:+O+ 

ft-E: {-l -1 } ds r (s)r (t-s) -H(HsH/n) a + H(I+(t-s)H/m) a. 
E: n m 



This immediately yields the estimate 

Thus {rn(t)a}n~l is a Cauchy sequence which is norm convergent, 

uniformly for t in any finite interval of [0, 00). But since 

is norm dense, and ilr (t)11 ::: 1 for all n = 1, 2, 
n 

it follows that {rn(t)}n~l is strongly convergent, uniformly 

for t in any finite interval of [0, 00) • 

denotes the strong limit one readily deduces that So = I , 

t E JR+ 1---+ St E (B) is strongly continuous, and "St"::: 1 • 

To establish the semigroup property we use the combinatoric 

identity 

n 
x n 

y 
n 

I n-m m-l x (x-y)y . 
m=l 

Hence for a E D(H2) one calculates that 

r (s)r (t)a 
n n 

r (s+t)a = 
n 

n 

I -n+m -n+m -m+l 
(I+sH/n) (I+tH/n) (I+(s+t)H/n) x 

m=l 

25. 

{ -I -1 -I} x (I+sH/n) (I+tH/n) - (I+(s+t)H/n) a 

n -n+m-l -n+m-l -m st 2 I (I+sH/n) (HtH/n) (H(s+t)H/n) 2"H a. 
m=l n 

Therefore 

Ilr (s)r (t)a - r (s+t)all ::: ~ IIH2ali . 
n n n n 
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In -the limit n -+ 00 one finds 

S S a 
s t 

S a s-l-t 

and the semigroup property follows from the density of D(H2) 

and the contractivity of S. 

It remains to identify the generator of S. 

Again one calculates for a E D(H2) 

n-l 
t -1 I (I+tH/n) -m (I+tH/n) -1 -I) a -I- Ha 

m=O 

1 
n 
I ((IHH/nrm-I)Ha n 

m=l 

t n m 
(I+tH/n)-PH2a 2 I I 

11 m=l p=l 

Consequently 

and in the limit n -+ 00 

A 

Thus if !-I denotes the generator of S then 

A 

Ha ::: Ha 

"-
is a core for H and hence H 

is an extension of H This, however implies that (I+aH)-l 



is an extension of 
-1 

(I+aH) for all small a > a . Since the 

latter operator is everywhere defined it is not possible that 

A A 

H is a strict extension of H. Therefore H = H . o 

There are a number of possible variations of the 

Hille-Yosida theorem. It follows from Condition 1 of the theorem 

that H is nOl~m closed but for the implication 2 => 1 it is not 

necessary to assume the closedness since it follows from the other 

hypotheses of Condition 2. For example if a E D(H) , 
n 

Iia - all -+ a , and IIHa - bll -)- a then there is a c such that 
n n 

( HaH)c a + ab , 

by the range condition, and consequently 

lie - a II < IIO+aH) (c-a )11 -)- a , 
n n 

by the lower bound. Hence c = a, b = Ha , and H is norm 

closed. This redundancy "fill reoccur, without comment, in several 

of the subsequent statements. 

The Hille-Yosida theorem can also be rephrased as a 

criterion for an operator to be a pre-generator, i.e., a closable 

operator whose closure is a generator. 

THEOREM 1.3.2. Let H be a norm densely defined operator on the 

Banach space B and assume that 

II (I+aH)a[[ > Iiall 

for all a E D(H) and all a E (0, a o] , for Borne aa > a . 
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It foZZows that H is norm eZosabZe and the foZZowing 

eonditions are equivaZent: 

1. The eZosU!'e H of H is the generator of a 

co-semigroup of eontraetions, 

2. R( I+aH) = B 

for one a E <o~ 0.0]' where the bar denotes 

norm e ZosU!'e. 

Proof. If an E D(H), lIanll + 0 , and !!Han-bll + 0 , then H is 

norm closable if, and only if, b = o. Now suppose at E D(H) 

and b' = Ha' then 

for a E <0, 0.0]' Therefore taking the limit over nand 

subsequently dividing by a one finds 

lib + a' + ab'" ~ lIa ill 

Hence 

lIa' + bll ~ lIa'" . 

But D(H) is norm dense and so for each E > 0 one can choose 

a' such that lib + a'" < E and IIa 'II ~ IIbt!. Therefore 

IIbll < E and b = 0 

Next suppose 

IIHa - "Hall + 0 then 
n 

a E D(H) , 
n 

lIa - all + 0 , and 
n 



II (I+O:f{)all 2im II (I -I-O:H)a II 
n 

lIall . 

Moreover if c E B and one chooses c E R(I+o:H) such that 
n 

lie - cll + 0 then c :: (I+o:H)a for some a E D(H) and 
n n n n 

IIc - c II n m 
II (I +o:H ) (a -a ) II 

n m 

:': lIa - a II . 
n m 

Therefore a must be a convergent sequence. But 
n 

IIH(an-am)1I S a-l{II(I+O:H) (an-am) II + lIan - amll } 

:: o:-l{lIcn - cmll -I- lIan - amll } 

and consequently Ha 
n 

is also convergent. Hence if lIa - all -+ 0 
n 

then a E D(i{) and IIHa - Hall -+ 0 because H is norm closable. 
n 

Thus 

C :: (I+o:H)a 

and this establishes that 

R( I+O:H) . 

Therefore Conditions 1 and 2 are equivalent by the Hille-Yosida 

theorem. o 
Remark 1.3.3. Results analogous to Theorem 1.3.1 and 1.3.2 are 

valid for general Co-semigroups. For example if one replaces the 
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lower bound in Condition 2 of Theorem 1.31 by the set of lower 

bounds 

a E D (Hn) , n = 1, 2, 3, .•• 

for all a E <0, wJ and repeats the proof of 2 = 1 then the new 

bounds give the estimates 

and one readily concludes that H generates a Co-semigroup S 

satisfying 

Conversely if S satisfies these bounds then the lower bounds (*) 

follow from the Laplace transforms 

-n 1 Joo n -t 
(I+aH) a = n! 0 dt t e Sata 

Rema rk 1. 3 • 4 • If S is a Co-semigroup with generator H it is 

customary to write 

-tH 
St = e 

This is justified by the definition of the generator and also by 

the construction of Theorem 1.3.1. Moreover if H is bounded 

St coincides with exp{-tH} defined as a uniformly convergent 

power series. 



The Hille-Yosida theorem can be reformulated in a 

much neater manner: H is the generator of a Co-semigroup of 

contractions if~ and only if, (I+aH)-l is a bounded contraction 

operator for all sufficiently small positive a. Nevertheless 

it is useful to identify explicitly the two pieces of information 

which are contained in the statement that 
-1 

(BaH) is a 

bounded contraction operator, the range condition 

R(HaH) := B , 

and the lower bounds 

II (I+aH)all =:: Iiall , a E DeH) > 

These latter lower bounds can often be re-expressed in quite 

different terms. They are related to the maximum principle when 

applied to differential operators and to a spectral property for 

operators on Hilbert space. In the next section we discuss the 

interpretation of these bounds as a criterion of dissipation. But 

for the present we adopt the terminology that the operator H is 

norm-dissipative if 

II (I+CY.H)all =:: lIall 

for all a E D(H) and all small a > 0 . 

The following example illustrates this concept for 

elliptic differential operators. 

Examp 1 e L 3. 5. (The Laplace Operator). 

f . f' \! space 0 contlnuous unctlons over ~ which vanish at infinity, 
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equipped with the usual supremum norm. The Laplace operator 

_V2 is defined on c~(~V) , the twice continuously differentiable 

functions in Co(~V) , by 

v a2a 
l -2 ' 

i=l ax. 
1 

and one has the obvious identity 

Therefore if a > 0 

1 (1-aV2) a 12 = lal 2 + a 2 1V2al 2 + a(-V2a)a + aa(-V2a) 

laj2 + a 2 1V2al 2 + 2al~al2 _ aV2 1al 2 

~ lal 2 _ aV2 1al 2 . 

Now if lal has a maximum at then the maximum principle 

states that x ~ _V2 Ia(x)1 2 is non-negative at x = Xo 

Therefore the preceding estimate establishes that 

II (I-aV2)all~ ~ 1 (1-aV2) a (xo) 12 

~ la(xo) 12 = lIall~ , 

i. e., the Laplace operator is 11 0 11 00 -dissipati ve. A similar 

conclusion is true for more general elliptic operators by the 

same calculation. o 
Now let us examine operators on Hilbert space. In 
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this case one has 

2 2 2 
lIall + a IIHall + 2a Re(a, Ha) 

Therefore H is norm-dissipative if, and only if, 

Re(a, Ha) =:: 0 

for all a E D(H). But under certain quite general circumstances 

these latter conditions are equivalent to a spectral property of 

H. For example if H is bounded and normal, i.e., if H 

commutes with its adjoint 1-1"', these conditions are equivalent 

to 

Re O(H) =:: 0 . 

This follows by a numerical range argument. Define the numerical 

range W(H) of H by 

W(H) {(a, Ha) a E D(H)} . 

If H is bounded then the Hausdorff-Stone theorem establishes 

that W(H) is convex. If, moreover, H is normal then the closure 

W(H) of W(H) coincides with the convex closure of O(H) . 

Therefore in this latter case Re W(H) =:: 0 if, and only if, 

Re O(H) =:: o. This conclusion can be extended to unbounded 

generators of normal semigroups. 

Examp 1 e 1. 3 . 6 . (Normal Semigroups). 

Co-semigroup acting on a Hilbert space H. The adjoints 



34. 

{ "'} S,.,:: S~ eo form a weakly, hence strongly (Exercise 1.2.3), 

continuous semigroup called the adjoint semigroup. The semigroup 

S is defined to be nOY'maZ if Sand S'" commute for all 
s t 

s, t > 0 and self-adjoint if Q :: S* for all t > 0 
~t t . Note 

that Ilst":: Ils~1I and hence Sand S* are simultaneously 

contractive. Moreover if H generates S then the adjoint H* 

of H generates S* (Exercise 1.3.4). 

If S is contractive then Re O(H) ~ 0 and if 

S is normal it is contractive if, and onZy if., Re O(H) ~ 0 

The first statement was established in Proposi-tion 

1.2.1. Moreover if H is bounded it is normal if, and only if, 

S is normal and the second statement folloHs from the discussion 

preceding the example. The case of unbounded H can now be 

deduced by an approximation technique based on the functional 

analysis of generators. 

If Re O(H) ~ 0 then 
-1 

(I +aH) is a well-defined 

bounded operator for all a ~ O. Consequently the operators 

H a 
-1 ( -1) a I-(HaH) 

are bounded. But if S is normal it follows that H is normal a 

and the uniformly continuous semigroups sa :: exp{-tH} are also 
t a 

normal. Moreover it follows from the identity 

-1 -1 -1 
I.. (I +01.1.. ) I - HOI. :: (Hal..) ( AI - H ) ( HaH ) 

that if I.. E r(H) then 1..(1+01.1..)-1 E r(Ha) ,unless I.. -a -1 



Therefore I' (H ) a 
contains the open lef-t hand plane, Re a (H J ::: 0 , a 

and Sa is contractive by the preceding argument for bounded 

generators. Finally the formula 

Jl a" ( -1) 
t 0 dA SAt S(l-A)t I-(I+aH) )Ha 

with a E D(H) , and the fact that ( I+aH) 
-1 

1---+ I as a -7 0 (see 

the proof of Theorem 1.3.1), establish that Sa 
t 

converges strongly 

to St Hence S is contractive. 

Note that if St = exp{-tH} is contractive then 

Re a(H) ::: 0 but the converse is not necessarily true if S is 

not normal. For example if 

H [: : 1 

then 0(H) 0 but 

St 
-tH 

[-: 
01 e 
1) 

and IIStll > 1 for all t f:: 0 . 0 

Throughout this section we have examined criteria 

for an operator H on a Banach space B to be the generator of 

a Co-semigroup of contractions. More generally one can ask 

whether a given operator H has extensions which are generators, 

35. 



36. 

and then try to classify all such extensions. Unfortunately the 

theory of extensions is poorly developed except for specific 

examples, or for the special case of norm-dissipative operators 

on Hilbert space. This Hilber~c space theory can be briefly 

described as follows. 

Assume H is a norm closed, norm densely defined 

norm-dissipative, operator on the Hilbert space H and for small 

a > 0 define 

It follows by a simple variation of the argument used in the proof 

of Theorem 1.3.2 that HOI, is a closed subspace of H Now if 

H ::: H then 
a 

U 
L1 is the generator of a Co -contraction semig:coup 

by the Hille-Yosida theorem. Therefore we consider the situation 

HOI, t H and try to construct extensions of H which generate 

contraction semigroups. 

It is useful to introduce the spaces 

..L 
D D (H) = H which measure the extent to which the range a a. a 

spaces R(I+aH) fail to equal H. The D are called deficiency a 

spaces and the first key observation is that the dimension of 

is independent of a This dimension is called the deficiency 

index of H. To prove the independence statement one first 

remarks that 

II (AHH)all > Allall 

D a 



for all a E D(H) and all sufficiently large A > 0 because H 

is norm-dissipative. Next define E as the orthogonal a 

projection onto D and note that a 

II (I-E )bll = sup I(b, (HaH)a) 1/11 (I+aH)all 
a aED(H) 

Therefore if b E Dl / A then 

sup I (b, (JlI+H)a) 1/11 (JlHH)all 
aED(H) 

sup {I(b, (AHH)a)I + IJl-AI I(b, a)I}/II(JlHH)all 
aED(H) 

where the last estimate uses the norm dissipativity of H 

Consequently 

But this implies that 

II Eo. - E13 II = II (I - Eo.) E13 - E13 (I - Eo.) II 

~ 10.-131/13 + 10.-131/0. . 

Thus if a > 0 is in a sufficiently small open interval around 13 

one has ilEa - E13" < 1 which is equivalent to Eo. = E13 . 

Therefore Do. and D13 have the same dimension. But since 

13 > 0 was arbitrary the general independence statement follows 

immediately. 

The second crucial observation is that D(H) n Do. = {a} 
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for each a > o. This is established by noting that if 

a E D(H) n D then Ca, (I+o,H)a) = 0 and 
a 

(a, Ha) -ilall 

But H is norm-dissipative, hence Re(a, Ha) ::: 0 , and a = 0 

Now one can construct generator extensions of H by 

iteration of the following procedure for the simplest case that 

the deficiency index is one. 

Assume D is one-dimensional. Then define H by a a 

D(H J a 

for a E 

because 

Ho, (a+b) 

D(H) (B D and a 

D(H) and b E 

D(H) n D = {a} 
a 

D If a + 
a 

Therefore 

= 0 , i.e. , the operator H a 

b = 

Ha 

is 

Re«a+b), (Ha+b/o,) 

0 one has a = 

0 = b/o, and 

linear. But 

Re(a, Ha) + Ilbl1 2/o, + Re(b, (I+aH)a)/o, 

> Re(a, Ha) ::: 0 

0 

where we have used bED Thus H is norm-dissipative. a a 
I 

Finally if c E R(I-l-o,H r- then a 

for a E D(H) and bED a 

(c, (I+aH)a) + 2(c, b) = 0 

-L 
But R(I+o,H) = Ha and b E Ho, 

Therefore c = o. Thus to summarize a > 0 ~ H is a one­a 

b 



parameter family of norm densely defined, norm-dissipative, 

operators with R(I+aHa ) = H . Hence the H are norm closed a 

and each Ha generates a Co-semigroup of contractions by the 

Hille-Yosida theorem. 

The above construction generalizes quite easily. 

If Da has dimension n > lone first chooses a one-dimensional 

subspace D(l) C D and defines 
a a 

D(H ) = D(H) ® D(l) 
a a 

and 

H (a+b) = a + b/a a 

and bED (1). It then follows as above that 
a for all a E D(H) 

Ha is norm-dissipative and the corresponding deficiency space is 

given by D (H) = D (H)\D(l) 
a a a '\ a Thus the deficiency index is 

reduced by one. Iteration of this procedure then produces a 

family of extensions of H which generate contraction semigroups. 

If n is finite, or countably infinite, this iterative procedure 

is straightforward. In the general case it is necessary to appeal 

to complete induction. 

Although the foregoing method allows the construction 

of some generator extensions, in the Hilbert space context, it 

does not give all possible extensions. A complete classification 

of such extensions is only known for the even more special cases 

of symmetric operators, 

Im(a, Ha) = 0 , a E D(H) , 

or anti-symmetric operators, 
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Re(a. Ha) = 0 • a E D(H) . 

These particular cases will be discussed in greater detail in 

Chapter 2. 

Examp 1 e 1. 3. 7 . Define H = d2 / 
/ dx2 

on the twice continuously 

differentiable functions with compact support in (O. 00) Then 

H is a symmetric norm-dissipative operator on 2 
L (0. 00) because 

foo Idf 12 (f. Hf) = 0 dx dx (x) 

for all f E D(H) . But the deficiency index of H is one because 

R(I+a2H)~ consists of multiples of the function fa where 

Hence the above construction gives a one-parameter family of norm-

dissipative extensions H of H satisfying the range condition a 

where a denotes the right derivative. Therefore the family of 

extensions of to the twice differentiable functions 

must also satisfy the range condition. But these extensions. which 



\.,e also denote by H , are also symmetric and norm dissipative 
a 

because 

( ) 1 I 12 fcc 1 df 12 f, Haf = a- f(O) + 0 dx dx(x) 

for all f E D(HaJ 0 Hence the Ha are pre-generators of 

contraction semigroups Sa 0 This construction omits, however, 

two extensions which formally correspond to the values a = 0 and 

a = 00 ; the first is related to Dirichlet boundnry conditions 

f( 0) := 0 and the second to Neumann boundary concli tions af (0) 0 0 

Exerci ses. 

1.3.1. If H generates the Co-semigroup S prove that 

and 

£im 
01;+0+ 

£im 
S-+O+ 

lis a - exp{-tH(I+aH)-lj'all 
t -

lis a - exp{-t(I-S J!s}a ll t s 

Hint: See Example 1.3.6. 

o 

o , 

1.3.2. Complete the proof of Remark 1.3.3 that a norm closed, 

norm densely defined, operator generates a Co-semigroup S 

satisfying IIStll::: M exp{wt} if, and only if, 

R(I+aH) = B 
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and 

for all small a > 0 . 

1. 3.3. Let 
v A be a bounded open subset of ~ Define the 

Laplace operator H == _V2 on the twice continuously differentiable 

functions with compact support in A. Prove that H is norm-

dissipati ve on LP (.i\) for all p E [1, oo} • 

1. 3.4. Let S == exp{-tH} be a Co-semigroup on a reflexive 

Banach space, i.e., B == (B*)*. Prove that the adjoints 

s* == {s~}t~O define a Co-semigroup, the adjoint semigroup, with 

generator H*, the adjoint of H. 

Hint: Use Exercises 1.2.4 and 1.2.5 together with the definition 

D(H",) == {f fEB"', I (f, Ha) I ::: cfllall a E D( H) } 

(f, Ha) for f E D(H",) , a E D(H) • 

1.3.5. Consider the Laplacian H == _V2 defined on the infinitely 

often differentiable functions in L2(~V) which vanish in a 

neighbourhood of the origin. Prove that the deficiency index d(H) 

of H satisfies 

d(H) 2 if v 1 

d(H) 1 if v 2 3 

d(H) 0 if v ~ 4 


