
CHAPTER 1 

INTRODUCTION 

1.1 A SHORT HISTORY OF VARIATIONAL PRINCIPLES 

Among U1e first per,sons t.o realize the importance of variational problems 

and the physical significance of ·their solutions was G.~l. Leibniz (1646-1716). 

In his work, however, mathematical and physical reasoning was closely inter-

woven with philosophical and i:heological arguments. One of Lhe aims of his 

philosophy was t.o solve the problem of theodizee, i.e. to reconcile the evil 

in the world with God 1 s goodness and almigh-tiness ( cf. (Lz] ) . Leibniz' answer 

was -that God has chosen from the innumerable possible worlds the best possible .. 

but tha'c a perfeci: world is not possible. (This infinite multi-tude can only 

be conceived by an infinite understanding, which provided a proof of the 

exis-tence of God for Leibniz.) This best possible world is distinguished by 

a pre-established harmony be-tween itself, the realm of nature, on one hand and 

U1e heavenly realm of grace and freedom on the other hand. 'rhrough this the 

effective causes unite with the purposive causes. Thus bodies move due to 

their own internal la~m in accordance with the thoughts and desires of the 

soul. In this way, ·the con-tradiction between tlte prede-termination of the 

physical world following stric-t laws and the constantly experienced spontaneity 

and freedom of the individual is removed. The best possible world must here 

obey specific laws since an ordered world is better ·than a chao-tic one. This 

proves therefore the necessity of the existence of natural laws. The contents 

of the na-tural laws, however, are not completely determined a.s is the case 

for geome·tric laws but are only determined in a moral sense, since they must 

satisfy the c:citeria of beauty and simplicity in t:lte bes'c of all possible 

wo:r:lds" This leads Lt:;ibni:z even t:o va:ciat:ional principles., This is because 



if a physical process did not yield an extreme value, a maximum or minimum, 

for a particular energy or ac·tion integral, t.he world could be improved and 

would therefore not be the best possible one. Conversely, Leibniz also uses 

the bea.uty and simplicity of natural laws as evidence for his thesis of pre-

established harmony. ('rhe notion that we live in the best possible world 

was frequently rejected and even ridiculed by subsequent critics, in particular 

Vol·taire, on account of ·the apparen·t flaws of ·this world, but Leibniz' poin·t 

that a perfec·tly good wo:::ld is not possible was beyond reach of these 

argumen·ts e) 

J"eibniz, however, did not. elaborate his argumen·t concerning variational 

principles in his publications, but only in a private letter. Thus, it 

happened tha·t a principle o:f least. (and nol: only stai:i.onary) act.i.on was late.r 

rediscovered by Ha.upertu:i.s (1698-1759), without knowing of Leibniz' idea. When 

(1712-1757) then claimed priority for Leibniz on account of his letter 

that he ·was not able to show however t.o the Prussian Academy of Sciences 

(whose president was Maupertuis) this led to one of the most famous priori·i:y 

con·troversies in scientific history in which even Vol·taire, Euler, and 

Frederick the G:r:ea·t became involved. r·t was also pointed out that IY.laupertuis' 

principle of leaE·t action should be replaced by a principle of stationary 

action since physica.l equilibria need only be Etationary point.s but not 

necessarily minima of variational problem:3. 

1.2 THE CONCEPT OF GEODESICS 

One of the variational problems of most physical importance and mathe-

matical in·terest was the problem of geodesics, i.e. to find the shortest (or 

at least locally shortes·t) connections be·tween two points in a metric con·tinuum, 

e.g. a Riemannian manifold. Geodesics are critical points of the lengt-..h 
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integral 

Jl d 
0 I dt cldt 

where c : [0,1] + N is the parametrization, as well as, if they are para-

metrized proportionally to arclength, of the energy integral 

Jl d 2 
o I at c I dt • 

Here, unfortunately, we find some ambiguity of terminology, since the 

mathematical term "energy" corresponds to the physical concept of "action", 

while in physics "energy" has a different meaning. 

Because of the many applications of geodesics, it was rather natural 

·to generalize this concept. While minimal surfaces are critical points of 

a twodimensional analogue of the length integral, namely the area integral, 

the generalization of the energy integral for maps between Riemannian manifolds 

led to the concept of harmonic maps. They are critical points of the 

corresponding integral where the squared norm of the gradient or energy 

density has to be defined in terms intrinsic to the geometry of the domain 

and target manifold and the map between them. 

1.3 DEFINITION AND SOME ELEMENTARY PROPERTIES OF HARMONIC MAPS 

Suppose that X and Y are Riemannian manifolds of dimensions n and 

N, resp., with metric tensors resp., in some local co-

ordinate charts X = and on X and y ' resp. 

If f : X + Y is a c1-map, we can define the energy 

density 

e(f) 
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where we use the standard summation convention (greek minuscules occurring 

twice are summed from 1 to n , while latin ones are summed from 1 to N) and 

express everything in terms of local coordinates. Then the energy of f is 

simply 

E(f) = fx e(f)dX . 

If f is of class c2 and E (f) <co , and f is a critical point of E , then 

it is called harmonia and satisfies the corresponding Euler-I"agrange-equations. 

These are of the form 

(1.3 .1) 
1 () <IY y 

aS d fi) + Yas i () fj () fk 
3xi3 

rjk 
3xi3 

0 
/Y Clx 

a 3xa 

in local coordinates, where y det(yai3) and the 
jk 

are the Christoffel 

symbols of the second kind on y 

(1.3.1) is proved as follows. If f is critical, then for all admissible 

variations rp (e.g. cjJ E c:(x), and ¢l<lx = 0 if 3x 'f !» ) 

d 
- E(f+t¢) I' ' dt · t=O 

0 • 

and thus 

0 J ( aB (lfi .~ + _:J_ yaB9 . . "k ]f_~ 3fj l r:-:y dx y·(x)g .. (f(x)) 'P YY 
X l] ()xa (lxs 2 l] ,k ()xa axB, 

f. ( i) f i k _2_ l r:-: aS 3f 1 "j aS 3f 3f j ~-
- i3 vy y "xaJ g iJ. '~' dx - -::_ y (x) -- -·--s g. . , cp ,;y dx 

X (lx a .~ (lxa ()x lJ,K 

since cjJ is compactly supported 

and from this., putting rl and using the 



symmetry of aS y 
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in D~e second integral, 

0 -t () (r:Y YaS <Jf~}ni dx _ J _:!:2 yaS £j -s " v ~ g < g · · k +gl · · -g ·, · l 
()x ()x X lJ, ~J,l lK,J 

dx 

,.;hich implies ( 1. 3 .1) by the 1erruna of Du Bois-Raymond. 

We thus obtain a nonlinear elliptic system of partial differential 

equations, where ·the principal part is the Laplace-Beltrami operat~or on X 

and is therefore in divergence form, while the nonlinearity is quadratic in 

the gradient of the solution. 

We now want ·to look at the definition of harmonic maps from a more 

intrinsic point of view. The differential df of f , given in local 

coordinates by 

df 

can be conside:r·ed as a section of the bundle 
-1 

T*X ® f . TY . Then 

e(f) 1 yaS < Clf l!_" 
2 a ' S/ -1 

(Jx dX f TY 

1 <df, df '<::_ 
2 / T*X@f- 1 TY 

Le. e(f) is the trace of the pullback via f of the metric tensor of Y • 

In particular, e(f) and hence also E(f) are independent of the choice of 

local coordinates and thus intrinsically defined. f is harmonic, if 

(1.3.2) T(f) 0 , 

where T(f) tra.ce l7df , and 17 here denotes the covariant derivative in 
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the bundle T*X 0 f-l TY . 

Let us quickly show, why (1.3.1) and (1.3.2) are equivalent (cf. [EL 4 ]) . 

v s<dfl 
3/Clx 

and thus, since T (f) 

Tk(f) y aS 

f 'l'Y 
+ 1/ ( 

-1 

3/Clxs 

= t.race 

()2f'":. 
-a-S-
8x Clx 

1/df 

XrY fk 
+ Yas Yr~. Clfi Clfj 

----
aS Clxy l.J a ClxS ()x 

and we see that (1.3 .1) and ( 1. 3. 2) are equivalent, 

From the preceding calcula·tion, we see that the Laplace-Beltrami opera tor 

is the contribution of the connec·tion in T*X , while the connection in f -l TY 

gives rise to the nonlinear ·tenn involving the Christoffel symbols of ·the image. 

With the preceding notations, we can also calculate the Hessian of a 

hannonic map f for vector fields v , w along f (i.e. v and w are 

sections of f-l TY) For this purpose, we consider a two-parameter variation 

with 

v 

1) Here, we distinguish the Christoffel symbols of X and Y by the 
superscript X or Y , resp. 



7 

We then want ·to calculate 

We have, writing f ins·tead of f 8 t , and taking scalar products 

<· 1 ·> in T'*X ® f-l TY , if not otherwise indicated, 

-1 
(~) 

-1 
dxs" < r/ TY 

C( 
Vf TY (~) + dx 

3/'dxcc 'ds 313xs 3t / 

< v£-1 ~Y 
v~/Clt (~) dxC( 

' 
2!._ dxs > 

3/()x 
()s axS 

/ RN c:a C( ()£] ()f 2!._ dxs"' + dx , ., ()t ()s ' axS / 

-1 -1 
+ < Vf TY v dxC( 

' 
Vf TY w ctxs > 

()/'(Jxcc a/3xs 

Now 



f 
Clf a < '~a;at as dx 

by Stokes' Theorem 

0 , since 

Thus 

Hf (v,w) 

8 

v , 

V I 

For the preceding calculations cf. also [EL4). 

v df 0 , as f is hannonic. 

We now want to look at the definition of harmonic maps from a somewhat 

different point of view. By the famous embedding theorem of Nash ([Na]), Y 

can be isometrically embedded in some Euclidean space lR~ We define the 

Sobolev space 

1 1 .R. w2 (X,Y) = {fE w2 (X,lR) : f(x) E Y a.e.} 

Since w; (X,:R~) = H;(x,JR~-) by a well-known theorem of Meyers and Serrin 

(cf. [MS), p.52; we can assume X to be a compact manifold (possibly with 

boundary), since we always can localize the problem in the domain. Namely, if 
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f is a critical point of E on X , then it is also critical on any subdomain) 

every element in can be approximated with respect to the norm 

by smooth mappings, namely from 
00 !/_ 

C (X,:R ) , although the corresponding 

equality does not hold in general, cf. [SU2]. In particular, 

if we compose an element from 
1 W2 (X,Y) with a smooth mapping, we can apply a 

chain rule. 

In this Sobolev space, we can still define the energy functional by 

E(f) =% J jdf(x)j 2 dX(x) 

and look for critical points of 

Assume that 

E in 1 w2 (X,Y) 

is a critical point of E which maps X into 

a compact part Y0 of Y • Y0 has a uniform neighbourhood in :R£ on which 

the projection TI , mapping a point in :R£ to the closest point in Y , is 

smooth. 

'llhus, if cp: X+JRR, is smooth and cpjax= 0 and t is sufficiently small, 

(f+tcp) (x) lies in this neighbourhood for a. a. x E X . Since f is critical 

0 8
8t E (TI (f+tcpl > 1 t 0 

applying the chain rule, 

where D f 
a and e a 

is a moving orthonormal frame on X ' 1, .•. n 
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since TI is a projection 

since 'ITo f = f and consequently d'TT • D f a D f a 

f is a weak solution of 

0 6f - D2'IT(f) (df,df) , 

by the chain rule. Thus, 

where 6 is the Laplace-Beltrami opera·tor on X ( cf. [SUl] for somewhat 

differen·t calculations). (1.3 .1) and (1.3 .3) are equivalen·t, since they 

both are the Euler-Lagrange equations of the energy functional E . The point 

of view leading to (1.3.3) was different, however. Here, the energy was 

£ 
minimized among all maps u : X + ~ of class 

1 co 9. 
H2 n L (X,R j satisfying a 

nonlinear constraint u (xi E Y0 (for almost all x E X) Since the Dirichlet 

in·tegral is lower semicont:inuous w.r.t. weak H~-convergence we also get 

LEMMA 1.3.1 The energy integral is lower semicontinuous w.r.t. weak 

1 
H2-convergence. 

Finally, let 2: 1 and z2 be surfaces with conformal metrics 

o2dz dz (z=x+iy) 

and 

2 au (u=u1+iu2 ) p du resp. 

For a 
l 

C -map f the energy is then given by 

E(f) 

in ·those coordinates. Hence 
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LEr1~~A 1. 3. 2 If k z0 -+ Z1 is a conformal map bet1Jeen surfaces, then 

E(f 0 k) E(f) 

This means tha·t the energy is conformally invariant. 

Moreover, the Laplace-Beltrami operator of z1 in our coordinates is 

given by 

{Y\ihere u 
z 

1 () d 
and (1.3.1) hence takes the form 

1 ,au _ i 3ul 
'= 2 ()x (Jy 

11 

z 
1 (~ '= 2 ()x 

+ i _3u) ) 
3y • 

In the case ·the image is the surface Z 2 , this in turn reads as 

(1.3 .4) 
1 1 2pu 
2 11 - + 2 a zz a P 

u 
z 

11-
z 

0 . 

Thus, the ha.rmonici·ty of u does not depend on the special metric of 

z1 , but only on i·ts conformal structure, since we can simply multiply the 

equation by a2 Hence 

LEfvlMA 1. 3. 3 Suppose u : Z1 -+ Y is 

·conformal map between surfaces. Then uok is also harmonic. In particular, 

in two dimensions conformal are harmonic. 

•rhe harmonicity of u does depend, however, on ·the image metric, unless 

u - 0 or U- = 0 , i.e. u is confol-mal or anticonformal. 
z z 

(Note that this 

distinction is only meaningful for oriented surfaces.) 

We also note the following 

L EM~1A 1 . 3 • 4 If u : Z1 ->- Z2 is a harmonic map between surfaces, then 

(z= x+iy) 
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&s a ho~omorphic quadratic differential. 

Proof 

Thus, 

Hultiplying (1.3.4) by the conformal factor o 2 

20 
'U 

T(u) : = U - + U U-
ZZ p Z Z 

0 2 (u 1 (u) + u 1 (u)) o 
z z 

0 • 

we obtain 

u u -. z zz 

q.e.d. 

We also observe, that if cp is holomorphic then 'T(U) = 0 with the possible 

exception of points where Iii I z 
i.e. where the Jacobian 

vanishes. 'rhis was actually used by Gerstenhaber and Rauch [GR] as a 

def ini·tion of harmonic maps between surfaces. 

We note moreover, that cp is just the (2,0) part of the differential 

form 2 -u* (4p (u) dudu) i.e. the pull-back of the image metric under u . 

Finally, of course cp - 0 if and only if u is conformal or anti-

conformal. Therefore, I,emma 1.3 .4, together with the observation that by 

Liouville's Theorem cp - 0 is the only holomorphic quadratic differential 

2 
on S shows that any harmonic map from s 2 is conformal or anticonformal. 

1.4 MATHEMATICAL PROBLEf'IIS ARISING FROM THE CONCEPT OF HARMONIC MAPS 

From 1.3, one sees that new mathematical difficulties arise compared to 

the case of geodesics. Here, critical points lead to systems of non-linear 

partial differential equations, while geodesics lead only to systems of ordinary 

differential equations. The natural space to look for critical points of E 

is the Sobolev space 
.1 00 w2 (X, Y) n L (X, Y) , since the equations for weak 
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solutions of (1.3.1), namely 

(1.4.1) 

make sense only for test functions 
ol N 00 N ¢ E w2 (X,JR) n L (X,JR). 

From an analytical point of view, it is not surprising that the equations 

(1.3.1) turned out to be rather difficult to handle, since the nonlinearity is 

quadratic in the gradient of the solution. Such systems may have nonsmooth 

weak solutions. This phenomenon can even occur in the present situation. 

Namely, mapping the unit ball Dn of dimensions n ~ 3 onto its boundary 

via radial projection, can be interpreted as a weakly harmonic map (i.e. a 

solution of (1.4.1)) f : Dn + sn-l cf. [HKW3]. 

In order to verify this, we first show that 
X 

TXT has finite energy 

for n ~ 3 . 

For 
X 

f(x) =TXT ,and hence for X f. 0 

(1.4 .2) 
a 

X•X 
(here, e 

a 
is a unit vector, and 

and 

(1.4.3) 1dM1 
2 

a 
X X e 

a 

(1.4.3) clearly implies that 
X 

TXT 
has finite energy for n ::: 3 

that the energy is infinite for n= 2 ) • 

X 

TXT 
is smooth for X f. 0 and we shall verify now, that 

equation (1.3.3) for x ¥ 0 

We note 1T(f) 
f 

VI' and from (1.4.2) thus 

_a_ 1T(fl 
<Jfa 

X 

TXT 

(and also, 

satisfies 
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and moreover 

(1.4.4) 

Since implies (y= 1, .•• n) (1.4.4) yields 

(1.4.5) 
2 a2 

D n(f) (df,df) 
= 3fOI.()ff3 

Hence the equation for a harmonic map from Dn into 
n-1 s 

and (1.4.5) 

(1.4.6) 

now satisfies this equation, since by (1.4.4) 

x -(n-l)x 

~'~FT= lxl 3 

and by (1.4.3) 

~ 2 X (n-l)X 
ld TxT I TxT= lxf 

The following lemma then implies that 
X 

TXT 
solution of (1.4.1). 

n n-1 
D + S 

is by (1.3 .3) 

indeed is a weak 

LEMMA 1.4.1 If f : X+ Y is a map of finite energy whiah is smooth and 

harmonia outside a subset of x of aapaaity zero, then f is weakly harmonia 

on x . 

For simplicity, we shall show this only for dim X ~ 3 and the case 

where f is not smooth only at one isolated point. This suffices for our 

application. 

we have to show that 
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for all cp E H~ n L00 (X, Y) Le·t us choose the local coordinates in such a way 

that 0 is the singular point of f . We define 

l 
1 (-1-- 2m-l) if -m I I -m+l 

2m-l lxl 2 :sxC:2 · 

nm 0 if 2-m+l S lx I 

1 if lxl -m 
:: 2 

Clearly, nm is Lipschitz continuous. 

We write 

Since f is harmonic for x 1 0 , and 
1 00 

cp E H2 n L it suffices 

·to show 

(1.4. 7) 

However, 

o13nm l 
Hence 

)3 
21-m 

lx 13 

0 

as 

for 

otherwise . 

-m+l 
:S 2 

and (1.4.7) follows from Holder's inequality, since we assumed n > 3 . 

q.e.d. 

It might be worth pointing out that the regularity problem for weakly 

harmonic maps actually has two inherent nonlinearities, one being the 
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nonlinearity of the equations, i.e. arising from the local geometry of the 

image, and the other one coming from the fact that in general the target 

space itself does not have a linear structure, i.e. arising from the global 

topology of the image. 

In these notes, we shall first be concerned with the local regularity 

problem for solutions of the equations, i.e. the first nonlineari·ty, in 

chapters 3 and 4, and then deal with the global topological difficulties 

only in two dimensions, where the regularity theory is easier. 

1. 5 sm~E EXAMPLES OF HARMONIC MAPS 

The variational problem for harmonic maps seems to.be the most natural 

such problem one can pose for mappings between manifolds, and hence it is 

not surprising 'chat many ot.her canonical or natural maps turn out to be 

harmonic. In the sequel, we shall list some examples, 

isometries of Riemannian manifolds 

harmonic functions on Riemannian manifolds 

geodesics as maps s 1 ~ M 

minimal immersions and parametric minimal surfaces 

Hopf maps 8 3 ~ 8 2 8 7 + 8 4 , 3 15 + 38 

conformal maps on two-dimensional domains (cf. Lemma 1.3 .3) (in 

higher dimensions, ·they are in general no·t harmonic, however) 

holomorphic maps between K;,:hler manifolds (Holomorphic maps between 

arbitrary complex manifolds are in general not harmonic. 'rhis is not surprising, 

since the Kahler condition just means that the me·tric and the complex structure 

of the manifold agree. The definition of harmonic maps was given in terms of 

the metric structure, and when deriving tJ1e Euler-Lagrange equation for 

stationary points of the energy integral, we tacitly used the fact ·tha·t the 

manifold is endowed with the Levi-Civita connection. Otherwise, as is already 

the case for geodesics, those ·two concepts - minimizing the energy or leng·th 
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integral on one hand and being autoparallel on the other hand for geodesics -

would not agree. On the other hand, holomorphic maps are defined in terms of 

t.l!e complex structure, and as men·tioned above, the Kahler condition means 

that the complex connection, i.e. the unique torsionfree connection for which 

the complex structure is parallel, and the Levi-Civita connection, i.e. the 

unique torsionfree connection for which the metric is parallel, do agree.) 

Gauss maps of minimal submanifolds of Euclidean space, or more 

generally, of submanifolds with parallel mean curvature vector. This is a 

theorem of Ruh and Vilms [RV] . With the help of this theorem, one can prove 

Bernstein type theorems for minimal submanifolds of Euclidean space by 

proving Liouville type theorems for harmonic maps, since, if the Gauss map 

is constant, the submanifold has ·to be a linear subspace. We shall come back 

to this point in chapter 4. 

1. 6 SOt~E APPLICATIONS OF HAR~~ONIC MAPS 

We want to calculate for a harmonic map f 

Lie (f) 

i.e. 
1 ai3 i j 

Li2_Y (x)g, ,(f(x))f af i3 
lJ X X 

In order to do this, it will be convenient to introduce normal coordinates 

at the points X and f(x) ' i.e. Yai3(x) = oaS and gij(f(x)) = 6ij and 

all Christoffel symbols vanish at x and f(x) , so that we only have ·to 

take deriva·tives of the Christoffel symbols into account which will yield 

curvature terms eventually. 

First of all, we write the equation for harmonic maps in the form 

(1.6.1) 0 
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Differentiating this equation at x w.r.t. E 
X we obtain 

(1.6.2) 

1 m 
- -2 (gk · 0 +go · k - gk 0 ' ) f 

~,""m ""~' m ""'~m E 
X 

using of course that by our choice of coordinates all first derivatives 

of the metric tensors vanish, and the Christoffel symbols are given by, 

Furthermore, in our coordinates 

(1.6.3) aS 
Y 'aa 

and by the chain rule 

(1.6.4) l::,.g •• (f (x)) 
~J 

From (1.6.2) - (1.6.4) we obtain 

(1.6.5) 1 aS i !::,.2y (x)g .. (f(x))f 
~J xa 

+ (g .. M + gk2,,ij ~J, 

fi fi X fi 
a a a a + RaS a 

X X X X X 

where is the Ricci tensor of 

of Y 

- gik, jt - g.2, 'k) fi fj fk f2, 
) I~ a a a a 

X J!: ~ X 

fi y fi fj fk f2, 
xs 

- RikjJI. a a a a 
X X X X 

X and is the curvature tensor 
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In arbitrary coordinates, this formula is of course transformed into 

lie (f) 

and in invariant notation, if e 
(;( 

is an orthonormal frame at x , 

lle(f) 

(1.6.5) immediately yields the following 

COROLLARY 1.6.1 ([ES]) Suppose f : x + Y is a harmonic map, x is 

t . X compac , RJ..c =:: 0 , and the sectional curvature of Y is nonposi-tive. 

Then f is totally geodesic and has constant energy density. If the 

Ricci curvature of x is positive ·at one point of X at least, then f is 

constant. 

If the sectional curvature of Y is negative, then f is either constant 

or maps X onto a closed geodesic of Y • 

Proof Since xflle(f)dX = 0 , the integral over the right hand side of (1.6.5) 

has to vanish. Since the integrand is pointwise non-negative by assumption, it 

has to vanish identically. In particular, IVdfl = 0 , and thus f is 

·totally geodesic. Furthermore f:le(f) _ 0 , and since harmonic functions on 

compact manifolds are constant, e{f) _ const. 

If at x E X , R~S(x) is positive definite, then 

0 

implies that at x and hence everywhere e(f) 0 , and f is constant. 
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If Y has negative sectional curvature, then in ·the same way we see 

dim(df (T X)) < l 
X 

for any X E X . 

If the dimension is zero somewhere, then e(f) = 0 at this point and hence 

everywhere. Otherwise, f as a totally geodesic map has to map X onto a 

closed geodesic. 

We now want to apply Cor. l. 6.1 in conjunction with the following 

basic existence and uniqueness theorem of Eells-Sampson(existence) and 

Hartman (uniqueness) which will be proved in chapter 3 in order to reprove 

some well known theorems about nonpositively curved manifolds hy using harmonic 

maps. 

THEOREM 1.6.1 If X and Y are compac·t Riemannian manifolds and Y has 

nonpositive sectional curvature, then every homotopy class of maps from X 

to Y contains a harmonic map. If the curvature of Y is negative_, then 

this harmonic map is unique unless its 1:mage is a single point or contained 

in a closed geodesic in which case every other homotopic harmonic map can 

from the given one only by a rotation of this closed geodesic. 

We first deduce Preissmann 's Theorem: 

THEOREM 1.6.2 If Y is a compact Riemannian manifold of negative sectional 

curvature, then every Abelian Bubgroup of the fundamental group is cyclic. 

Proof Suppose a and b are commuting elements of n1 (Y) The homotopy 

between ab and ba allows us to construct a map g from the twodimensional 

torus '1' 2 into Y . By Thm. 1.6.1 g is homotopic ·to a harmonic map 

f : T 2 -+ Y , and the image of f is contained in a closed geodesic by 

Cor. 1.6.1. Hence both a and b are homotopic to some multiple of this 

geodesic. 
q.e.d. 
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Furthermore, we can prove the following consequence of the Hadamard-

Cartan theorem. 

THEOREM 1. 6. 3 If Y is a nonpositively curved compact Riemannian manifolds 

then all homotopy gl'oups 

manifold. 

TT (Y) 
m 

vanish for m > 2 i.e. Y -is a K(TT,l) 

Proof We have to show that every map g from a sphere Sm , m ~ 2 , into 

Y is homotopic to a constant. By Thm. 1. 6 .1, g is homotopic to a harmonic 

map f : Sm-+ Y , and f is constant by Cor. 1.6.1. 

q.e.d. 

Finally, we deduce 

THEOREM 1.6.4 If Y is a negatively curved R-iemannian manifolds then every 

isometry of Y homotopic to the identity coincides w-ith the and the 

isometT'Y group of Y 1.-s discre·te. 

Proof This follows from the uniqueness part of Thm. 1.6.1, since isometries 

are harmonic. 
q.e.d. 

The preceding argument can be generalized to show that the larger the 

isometry group of a compac-t manifold is, the more restrictions exist for 

mappings of this manifold into negatively curved ones, since composing a 

harmonic map with an isometry again yields a harmonic map. Cf. [SY3] for 

more details. 

While in the preceding part of this section, we have used harmonic maps 

to reprove some elementary theorems merely for the sake of illustration, we 

now want to briefly mention some more difficult applications most of which 

we shall not prove in these notes. 

One can prove rigidity G~eorems for certain classes of nonpositively 

curved K~hler manifolds, i.e. that the topological type already determines 
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"L'1e complex si:ructure, by showing "that a sui table harmonic map is actually a 

holomorphic diffeomorphism. Such results were obtained by Siu [Si], Jost-Yau 

[JY] , Jost-Mok-Yau. 

One can easily prove many results of 'reichmuller theory using 

harmonic maps, for example that Teichmuller space is contractible or· even a 

cell (de·tails can be found in [EE], [Tr], and [J8).) Also, one can recover 

the Weil-Petersson metric of Teichmiiller space from the second variation 

formula for harmonic maps. 

One can reduce boundary regularity for the minima of certain 

quadratic functionals to ·the nonexistence of nontrivial solutions for a 

certain Dirichlet problem for harmonic maps, cf. [JM] and [SU2]. 

As was pointed out by Eells-Wood [EW], harmonic maps can provide 

an analytic proof of the Theore.rn of Kneser, that a con·tinuous map <p be·tween 

closed orientable surfaces zl and z2 has to satisfy the inequality 

between its degree and the Euler characteris·tics of Z1 and Z2 , in case 

X u;-,l < o (cf. chapter 5). 
"" 

As we shall show in chapt.er 4, harmonic maps can be used "tO prove 

Bernstein ·type theorems. 

1.7 COMPOSITION PROPERTIES OF HARMONIC MAPS 

In this section, we shall display an elementary composition property 

which shall be useful in the sequeL First of all, if u E c2 (X, Y) is a map 

between Riemannian manifolds, and h E c2 (Y, lR) is a f1.mction 1 then the 

following Riemannian chain rule is valid. 

(L 7.1) ll(hou) 
') 

D-h(u a'u al +<(grad h)ou, T(u)> Y 1 

e e 
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where ea is an orthonormal frame on X In particular, if u is 

harmonic, i.e. 1: (u) = 0 , this reads as 

(1. 7.2) i'l(hou) 

or in local coordina·tes 

i'l(hou) 

Thus 

LEMMA 1.7.1 If h is a (strictty) convex function on Y and u is 

harmonic~ then hou is a .c;ubha:J'monic function on X • 

We note the follovling consequence (cL Gordon [Go]). 

COROLLARY 1. 7 .l Suppose x is a compact man·ifoZd, possibly 1.uith boundary, 

and u : x -+ Y is harmonic. If there exists a str{ct.Zy convex func·tion on 

u (X) , and u (ax) is constant in case ax 7' 0 , then u is a con.c;tant 

mapping. 

Proof From the maximum principle for subharmonic f1.mctions, it follows that 

hou is constant, and since h has definite second fundamental forra, (L 7. 2) 

implies that u itself is constant. 

In section 2.3, we shall see that the assumptions of Cor. 1.7.1 are in 

particular satisfied, if u(X) is contained in a ball B(p,M) which is 

disjoint to the cut locus of p and satisfies M < 1T where 
2K 1 

2 
K is an 

upper curvature bound on this ball, because in this case d 2 (•,p) is 

strictly convex. 

Another consequence is 

COROLLARY 1. 7. 2 Suppose X is a compact manifold with 1T1 (X) o and the 
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sect-ional curvature of Y is nonposit-ive. Then any harmon-ic map u X+ y 

is constant, provided u(3X) is constant in case ox f o . 

Proof By the homo·topy lif·ting theorem, we can lift u to a harmonic map 

u : X + Y into the universal covering of Y The required strictly convex 

function is then 2 d (• ,p) , where p is any point in y . 

If instead of a real-valued function, h is a map from Y into some 

other Riemannian manifold, then instead if ( 1. 7 .1) '"e get 

(1.7.3) 

In par·ticular 

ll(hou) 'Vdh(u a'u a) + (dh)ou • T(u) • 
e e 

LEf~i't1A 1. 7, 2 If h is totaUy geodes·&c and u is harmonia, then hou is 

aga·in harmonia. 


