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NUMERICAL METHODS FOR INVERSE EIGENVALUE 

PROBLEMS I III ALGEBRAI C CONTROL THEORY 

J. Kautsky, N.K. Nichols and P. Van Doomn 

In this talk we outline t:hree numerical methods for solving -the follow-

ing problem (de-tails are to be reported elsewhere, see also [2J), 

Given n linear subspaces S.cE in the n-dimensional real vector 

space choose one vector 

J n 

X. ES. , j = 1,2,. . .,n 
-J ] 

in each so that these 

vectors ""'~ are as orthogonal as possible. 

n 

Problems of -this kind arise, for example, in algebraic control -theory 

when, given an nxn matrix A, an nxm matrix B of rank m and numbers 

A1 ,A 2 ""';'n we seek an mxn ma-trix F such that the eigenvalues of the 

matrix A + BF are the given numbers AI"'" An' ~"or m> 1 there may be 

many solutions F and it is then desirable to construct that F for which 

-the eigenvalues A. 
J 

of A + BJ;" are least sensitive to perturbations. This 

sensi ti vi ty is proportional to the condi tion numbers c. 
J 

(see [4J) of eigen-

values A. 
J 

given by 

satisfy 

(1) 

c. 
J 

1Ix.1I \I y.1I 
-] -J 

where the right eigenvectors 

(A-A,I+BF)x. 
J -) 

o 

and Yj are the left eigenvectors given by 

-T 
y. = X e. 
-] -] 

j 

As c" '" 1 with equality (for all j 
J 

x. 
-J 

1,2, ... ,n) 

occuring iff the columns of X are orthogonal there are many measures 

of the vector 
T 

c = (c lF ... ,cn ) which can be minimized to express mathematically 
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the intuitive noj:.ion, used above, of vectors x 
-j 

being "as orthogonal as 

possible". 

The subspaces S. 
J 

for the eigenvectors in (1) are easily constructed 

for the given data as right nullspaces of 
.T 
Ul (A - \ I) where the colU11L71s of 

Ul are any (preferably orthogonal) basis for the left nullspace of B. 

We cO\"(Iment that for the construction of F as well as for other prop-

erties important from the control theory view-point it is important that 

the matrix X is well conditioned ([lJ). Therefore, and also to motivate 

our numerical methods, we n01t1 list some relations between norms of the vec-

tor of sensitivities ° = (01 

Without loss of generality (the 

'I' 
v' •• ,c) and condition numbers of X. 

n 

C. r S 
J 

are independent of scaling of 

we assume that the columns of X are normalized, so that IIXe .11 = Ilx .11 L 
-] -] 

Let D = diag(dl ,d2 , ••• ,dn ) 

T 2 1< 
( 2: (e. A e.) ) 2 
i,j -~ -J 

(2) 

(3) 

(4) 

-T 
condF(X Dl 

11.:::112 

11.:::111 

II c II (5) 
- co 

A A A A 

Also, if X (~1'~2'··· ,~ 

sines \0. 
A T ~ 

(I-x. x.l of 
J J J 

sufficiently small then 

(6) 

where p 
21< 

(22:'1'.)2. 
j J 

) 

be a diagonal matrix. We have (il A II F = 

-1 21< 2 21< 
condp(XD ) (2: d~ )2 O:d.c.)2, 

i 1 i ~ ~ 

-1 1 
-~ IIx -II F n condF (X) 

-1 -~ 
condp(XD ) if d. = c. , 

1 1 

s cond2 (X) s condp(X) 

AT"'" 
) is an orthogonal matrix (X X = I and the 

n 

the angles between vectors and x. x. are 
J J 

11.:::112 s In + p(l- p) 
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Note that (2).i:lllows us to represent IID.£II;2 exactly by the Frobenius 

norm of the scaled inverse of X. Actually, weighted p~norms of c (includ-

ing the tIDifonn norm as a limit) may be expressed similarly if the scaling 

D is allowed too depend on £ itself .. ,hich can be achieved by our methods 

by adaptive iterations. One particular eJ~ample is relation (4) where the 

scaling is the optimal scaling for minimizing both the Frobenius and spec-

tral conditions of X. We see tha't various norms of £, (xl and 

condF(X) are closely inter-related and that they all reach minimum iff the 

matrix X is orthogonal. 

All our methods to find a suitable selection of vectors x. E.s , 
-] 

j 1,2, .•. , n are iterative. In the first method 0 an elementary iter-

ation consists of replacing one of the columns of X say ~l r by 

a vec'tor from ,"hich minimizes This ne'", ~l is found easily 

as an orthogonal projection, into of the vector orthogonal to 

all other columns of X. Sweeps of n such iterations, replacing in turn 

each column of X are repeated until some general condition, say cond2 (X) , 

has hopefully settled to an acceptable minimum. However, convergence of 

'this kind cannot be assured as improving one of the condition mnubers may 

worsen the others and, indeed, numerical experiments confirmed this non-

convergence, although good results were obtained by method 0 asy~ptotically. 

The second method 1 performs the same sweeps of elementary operations 

in which, however, the new column of x, say x 
-1 

is chosen to minimize 

II D£ 112 (for some prescribed scaling D). As this is a global measure, 

independent of the updated vector ~l' the convergence of the method is as­

sured. Denoting by Sl some orthogonal basis of Sl and Xl = (~2'~3'···'~) 

the elementary iteration comprises finding an m-vector u of uni,t length 

such that is minimized. This is a non-linear 

constrained least square type problem which, however, can be solved 
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explicitly essentially by three orthogonal decompositions. 

Our third method 2 is based on minimizing p in (6). Instead of X 

A 

we aim to position an orthogonal matrix X in such a way that each of its 

columns is close to the corresponding subspace S .. The result is then 
J 

obtained by projecting Xo 
J 

into s .. 
J 

The positioning of is done by 

sweeps of n (n - 1) /2 rotations in planes determined by pairs of vectors 

~j' 2J~, j i k; the angles of which are chosen to minimize ~~ + ~~ where 

~. is no" the sine of the angle between x. 
J 

and S .• 
J 

These elementary 
J 

rota-tions are similar to those occurring in -the Jacobi method for calcu-

lating eigenvalues and can be obtained explicitly. The calculations in-

volve scalar products of vectors of length m which, for In > n -ro, may 

be replaced by vectors of length n - fa by using orthogonal complements of 

subspaces So 
J 

(method 3), As the de-termination of the rotation requires 

A 

less effort than the actual update of the matrix X a threshold technique 

can be employed to increase efficiency and to ensure convergence, 

!Ale note that a similar method was proposed by Klein and Moore [3J 

where, essentially, the objective of our method 1 was combined with the 

plane rotations technique of method 2/3. In this case, however, the optimal 

rotation could not be obtained explicitly so that another iterative pro-

cess had to be performed to complete each elementary iteration. 

It is interesting to note that a~ a priori lower bound for the obtain-

able conditioning can be derived; indeed, for any X such tha-t X e. E S. , 
-J J 

II X e 0 II = 1 we have 
-J 

of subspaces S .' 
J 

is a matrix of combined orthonormal bases S. 
J 

Although this bound is not sharp it provides a useful 
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information on a priori poorly conditioned situations as well as indication 

how to proceed in the "inverse inverse" eigenvalue problem of the algebraic 

control theory: how to choose Al, ••• ,An to achieve a robust result. 

Finally -we wish to comment that similar appr:oaches ani numerical meth ..... 

ods can be applied to other problems in control theory, for example output 

feedback problems and state feedback prob1ellS for descriptor systems. 
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