240

ITERATIVE METHODS FOR SOME LARGE SCALE GENERALIZED EQUATIONS
R.S. Womersley

1. INTRODUCTION

Let T be a set valued mapping (multifunction) of R" into ﬂ{r
(that is T(x) < R" for all x € Egl). Consider the problem of finding a
zero of the map T , that is a point x* e ®® which satisfies the

generalized equation

%*
(L.1) 0e T(x) .

Such problems frequently arise as necessary conditions for optimization
problems, so the continuity properties of the solution sets are of
considerable interest (see [3] for example). However here the interest is
in numerical methods for calculating x* . In paréicular attention is
restricted to those maps T where the problem of finding x* is
equivalent to the problem of minimizing some function F .

Consider the maps T which are the generalized gradient JdF(x) of a
locally Lipschitz function F:R® + IR. For any X € =" OF(x) is a non-
empty compact convex set in Hgl, and the mapping OF is upper semi-
continuous (Clarke [1]). A locally Lipschitz function is differentiable
almost everywhere, and OJF(x) is a singleton (the gradient of F ) if and
only if F is differentiable at x . Also if F is convex then the
generalized gradient is the subdifferential of F . A necessary condition
for a point x* to be a local minimizer of F is that O ¢ BF(X*) ; SO

solving (1.1) equivalent to finding a stationary point of F .
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2. MONOTONICITY AND CONVEXITY PROPERTIES

It is commonly assumed that the map T satisfies various monotonicity
properties. These properties can be used to partially characterize the
maps T for which there exists a function F with T = 9F , and to
guarantee existence and uniqueness of solutions to (l1.1). If T = 3F for
some function F then the monotonicity properties are equivalent to
convexity properties of F .

A set valued mapping T of =" into r" is
(i) monotone iff (u—v)T(x-y) >0 ¥x,y , Yu e T(x) , ¥v ¢ T(y) .

(ii) strictly momotone iff (u-v) (x-Y¥) >0 Vx,y , x#y ,

Yu e T(x) , ¥v e T(y) .

(iii) strongly monotone iff there exists a non-negative function 7y

such that vy(@) - ® as o > , y(0) = 0 implies o =0 and
(u-v)T(x—y) > lx-ylly (Ix-yl) ¥x,y VYu e T(x) , ¥v e T(y) .

(iv) maximal monotone if the graph of T is not properly contained

in the graph of any other monotone mapping.
(v) cyeclically monotone if for any m > 0

(l)_x(O))Tu(O) + x(2)_x(l))Tu(l) +

(x ( eee +(x

@ _ )T m

for any set of points x(l), i=0,1,...,m with u(l) € T(x(l)).

Any cyclically monotone map is monotone. However if T is linear, so
T(x) = Ax+b , then T is monotone if and only if the symmetric part of A,
namely %(A+AT) , is positive semi-definite, whilst T is cyclically
monotone if and only if A is symmetric and positive semi-definite.

The following result from Rockafellar [5] characterizes the maps T
which are the subdifferentials of a convex function. To the author's

knowledge a corresponding result characterizing the maps T which are
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the generalized gradient of a locally Lipschitz function is not available.

PROPOSITION 2.1: A set valued mapping T from R into R" is the sub-
differential of a comvex function PR >R if and only 1f T <s maximal
cyclically monotone, moreover the function F 1is unique up to an additive
constant.
Note that the subdifferential of a convex function F: R'> R is maximal
monotone [5]. Also if F is locally Lipschitz then F is convex if and only if
OF is monotone [1]. Relationships between the monotonicity of 9F and the
convexity of F are summarized in the following proposition.
PROPOSITION 2.2: Let F:R" +R be locally Lipschitz. Then

(i) F s (strictly) convex if and only if OF <s (strictly)

monotone.
(ii) If BOF <s strongly monotone then F <is strictly convex and

coercive (that is F(x) ~® as x|l +© ),

* *
When F is convex the problem of finding a point x with 0 € oF(x )

is equivalent to finding a minimizer of F .

PROPOSITION 2.3: Let F:R" +R be comvex. The following statements are
equivalent
(i) x 18 a minimizer of F (Fly) 2 F(x) ¥y ¢ B").

(ii) 0 € OF(x) ( 3u € OF(x ) such that u (y-x) 20 ¥y e B") .

s T * n
(iii) vi(y=x ) 20 V¥ e oF(y) , Vg e R .

One also has the following existence and uniqueness results as a

direct consequence of proposition 2.2.

PROPOSITION 2.4: Let F:R" +R be locally Lipschitz. Then
(i) 2f OF s strongly monotone there exists a unique point x

with 0 e dF(x) .
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(ii) Zf ©°F <s strietly monotone and if a point x with
0 e BF(x*) exists then x  is unique.
(iii) <f OF <is monotone then the set of solution points satisfying

0 € OF(x) 1is a convex set (if it is non-empty).

A simple example of a function F for which 9F is strictly

monotone but not strongly monotone is F(x) = e’ for x e R.

3. SPECIAL STRUCTURE

It is often convenient to decompose a nonsmooth function F:Hf‘-*ﬂR as
(3.1) F(x) = £(x) + 0(x) V¥x ¢ ®",

where f:R" +R is smooth (continuously differentiable) and Q:IRn +IR is

nonsmooth. Thus

(3.2) oF (x) = VE(x) + 3Q(x) .

As 0Q(x) is multivalued if and only if Q is nonsmooth this corresponds
to isolating the multivalued part of O3F in 09Q .

A multifunction T from R" into R is called polyhedral if its
graph is the union of a finite collection of polyhedral convex sets. If
OF is decomposed as in (3.2) 9F is polyhedral if and only if
VE(x) = Ax+b and 03Q is polyhedral. The function Q is separable if

n
Qx) = .E g, (x;) .
i=1

If QO is also convex then

n
3Q(x) = Z dq, (x.) .

i=1
Obviously 09Q is polyhedral if and only if qu is polyhedral for
i=1,...40n .

A particular example of interest is
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n
(3.3) T(x) = TAx +b + 2 E(x.) ,
. 1
i=1

where A is symmetric positive definite, and

Ny (g —u ) +H

o 579
(3.4) E(E) =4 [0,H] £ =,
nl(E -uo) £ < Ug v

where T , nl B nz and HO are positive constants and uo is a known

constant. This is a problem where T is polyhedral and strongly monotone

and Q 1is separable. Obviously (3.3) is the subdifferential of the convex

function
n
F(x) = > xAx+bx + T qx;)
i=1
where
2
b - -
énz(g uo) -+Ho(§ uo) £ = uo
alg) = )
2
i -
znl(i uO) £ < ug -

This particular problem arises in an implicit discretization of the
enthalpy formulation of the two-phase Stefan problem (see [2] or [4] for
example) . The parameter T corresponds to the time step used in the
discretization of the problem. The matrix A corresponds to the standard
discretization of the Laplacian in 2 or 3 dimensions, so methods for
finding a zero of (3.3) must be suitable to large scale problems. As (3.3)
is closely related to a linear system it is expected that methods for
finding a zero of (3.3) are going to be closely related to methods for

solving large sparse systems of linear equations.

4, ALTERNATING VARIABLE METHODS
The classical Gauss-Seidel and successive overrelaxation (SOR) methods

for linear systems (see [6] for example) correspond to methods in which F is
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minimized in each of the coordinate directions in turn. These methods
consist of an iterative scheme of the following form.

. (0) . _

(1) Let x be given. Set k = 0.

(ii) Por i =1,...,n

Let yik) be the minimizer of
(k+1,1) _ (k+1) (k+1) (k) (k)
B (y) = F(Xl reeceXs g 1Y f41c et rEy ) .
Set x?k+l) = xfk) + wfk)(yfk) - xfk)) .
i i i i i

(iii) If a convergence test is satisfied stop, otherwise set k = k+l

and go to step (ii).

(k) _

4+
The Gauss-Seidel method corresponds to W =1 xgk o (k)

i =Yy - An

SOR method suggested by Elliott ([2] takes

1 if 8F<k+l'l)(y) is multivalued for any vy € [xik),(l—w)xik)+wy£k)].
(k) _
W, =
i
w otherwise ,
where w e {(0,2) . Note that yik) is characterized by 0 € 3F(k+l'l)(y;k)) .

If OF is decomposed as in (3.1) then one can prove convergence of the
Gauss—Seidel method if Vf is strongly monotone, @ 1is separable and 3Q
is monotone. Foxr the system defined by (3.3) and (3.4) Elliott [2] has
proved convergence of his SOR method for any w e (0,2) . The necessity of
Q being separable is illustrated by the following example. Let n = 2,

b=0, A=2I and

T .
(0,0) if X, +x, > 1

9 (x) = K(-2,—2)T where 0 < A

N
-

if x_  +x_ =1

T .
(-2,~2) if X, T, <1.

Then 0F(x) = Ax + 3Q(x) is the generalized gradient of

2,2 12 12
F(x) = max {xl +x.%, (xl 1) +(x2 n°l,
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which has the unique minimizer x* = (%,%)T . However any method which
minimizes along the coordinate directions in turn converges to % = (1,0)T
from any starting point x(o) = (u,O)T;, where o € IR.

Some results on the asymptotic raﬁe of convergence can be obtained by
looking at the spectral radius of the projection of the iteration matrix on
to the subspace orthogonal to the surfacé of nondifferentiability of ‘F at
the solution (see [2] for example). This requires that a strict
complementarity condition hold at the solution, namely O € rel int BF(x*).
As the surface of nondifferentiability at the solution is not known a
priori it is difficult to use these results to choose the relaxation

parameter w in an SOR method.

5. CONJUGATE GRADIENT METHODS

If F is smooth then the conjugate gradient method generates a search

s(k) at the point x(k) by s(k) = —g(k) + (k)s(k-l)

T T
-1 k-
(k) g(k) g(k ) g( 1)

direction

¢% - vrx

B

, where

(k)) , and B(k) =g

+ -
The point x(k b is chosen by a line search giving

LK) (k) 0"(k)s(k)

/ with 8@ =0 .

, where a(k) minimizes F(x(k) + as(k))-.
When F is nonsmooth, but the generalized gradient is known, a
"gradient" can be defined by

g(x) = Nr 9F(x) ,

where NrS denotes the point of S nearest to the origin in the Euclidean
norm. As 0OF(x) 1is compact and convex g(x) exists and is unique. Now
suppose the usual one-sided directional derivative F'(x;s) always exists

then [7]

min F'(x;8) = min max uTs = -|Nr BF(x)[ .
s:lisli<1 s:lIsll<1 uedF (x)

Thus -g(x) is the direction of steepest descent at x , echoing the
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behaviour of the gradient of a smooth function. The definition of g(x)
is also natural as one is trying to solve the generalized equation
0 € OF(x) .

For some problems, in particular that defined by (3.3) and (3.4), one
can write down a concise expression for g(x).. One can then develop a
conjugate gradient method having many of the features of conjugate gradient
methods for smooth problems (for example finite termination if F is a
piecewise quadratic function and the surfaces where F is nonsmooth are
linear) [8]. The conjugate gradient methods have the advan;age that they do
not require Q to be separable, or a relaxation parameter to be estimated.
However the great simplicity of the alternating variable methods is lost.
It should be noted that, although conceptually simple, the line search is
often the most computationally expensive, so care must be taken to use an
efficient implementation. Further details and a comparison of alternating
variable methods and conjugate gradient methods for the problem defined by

(3.3) and (3.4) can be found in [8].
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