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ITERATIVE METHODS FOR SOME LARGE SCALE GENERALIZED EQUATIONS 

R.S. WomersZey 

1. INTRODUCTION 

Let T be a set valued mappin•J of into 

(that is 'I'(x) ~ lRn for aLl x E ) . Consider the problem of finding a 

zero of the map 'f , 'chat is a point x * E JRn which satisfies the 

equation 

(Ll) * 0 E T (J{ ) 

Such p:;::oblems frequen·tly arise as necessary conditions for opt.imizat.ion 

problelUS, so t.he continui·ty properties of the solu·tion sets are of 

considerable interest (see [3] for example). HovJever here the int:erest. is 

in numerical methods for calculating x In particular a·tt.ention is 

* res·tricted t.o those maps T \li'here the problem of finding x is 

equiva.lerrt to the problem of minimizing some function F , 

Consider ·the maps 'J: which are the generalized grad:i.en·t ClF (x) of a 

locally Lipschitz func'cion F: JR11 + m." For any x E ClF(x) is a non~ 

empty compact convex set in lRn, and the mapping ClF is upper semi-

continuous (Clarke [1]), A locally Lipschi·tz function is differentiable 

almost. every1o;here, and ClF (x) is a single·ton (the gradient of F ) if and 

only if F is differentiable a·t x Also if F is convex then ·the 

generalized gradient is ·the su..bdifferential of F A necessary condition 

* * for a poin·t x to be a local minimizer of F is that 0 E CJF (x ) , so 

solving (L 1) equivalen·t ·to finding a stationary point of F 
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2. MONOTONICITY AND CONVEXITY PROPERTIES 

It is commonly assumed that the map T satisfies various monotonicity 

properties. These properties can be used to partially characterize the 

maps T for which there exists a function F with T = oF , and to 

guarantee existence and uniqueness of solutions to (1.1). If T =oF for 

some function F then the monotonicity properties are equivalent to 

convexity properties of F 

A set valued mapping T of lRn into lRn is 

(i) monotone iff 
T 

(u-v) (x-y) ~ 0 Vx,y , Vu E T(x) , Vv E T(y) • 

(ii) strictly monotone iff (u-v)T(x-Y) > o Vx,y , x 7" y , 

Vu E T(x) , Vv E T(y) • 

(iii) strongly monotone iff there exists a non-negative function y 

such that y(a) + oo as a+ oo , y(a) = 0 implies a= 0 and 

T 
(u-v) (x-y) ~ llx-ylly(llx-yll) Vx,y Vu E T(x) , Vv E T(y) • 

(iv) maximal monotone if the graph of T is not properly contained 

in the graph of any other monotone mapping. 

(v) cyclically monotone if for any m > 0 

for any set of points (i) . 0 1 x , ~ = , , ••• ,m with 
( i) (') 

U E T(x ~ ). 

Any cyclically monotone map is monotone. However if T is linear, so 

T(x) = Ax+b , then T is monotone if and only if the symmetric part of A, 

namely ~(A+AT) , is positive semi-definite, whilst T is cyclically 

monotone if and only if A is symmetric and positive semi-definite. 

The following result from Rockafellar [5] characterizes the maps T 

which are the subdifferentials of a convex function. To the author's 

knowledge a corresponding result characterizing the maps T which are 



the generalized gradient of a locally Lipschitz function is not available. 

PROPOSITION 2.1: A set val,ued ma:pping T fT'om JRn into JRn is the sub­

diffePentiaZ of a convex function F: lil1 + JR if and onZy if T is maximal, 

cycZica7,7,y monotone, moPeoveP the function F is unique up to an additive 

constant. 

NQte that the subdifferential of a convex function F: :Rn+ :R is maximal 

monotone [5]. Also if F is locally Lipschitz then F is convex if and only if 

3F is monotone [1] • Relationships between the monotonicity of 3F and the 

convexity of F are summarized in the following proposition. 

PROPOSITION 2.2: Let F:JRn +JR be ZocaUy Lipschitz. Then 

(i) F is (stT'ictl,y) convex if and onZy if 3F is (stT'ictl,y) 

monotone. 

(ii) If 3F is stPongZy monotone then F is stT'ictZy convex and 

coePcive (that is F (x) + oo as llxll + oa ) • 

* * When F is convex the problem of finding a point x with 0 E 3F(x ) 

is equivalent to finding a minimizer of F • 

PROPOSITION 2.3: Let F:JRn +JR be convex. The foUO!Uing statements aPe 

equivaZent 

(i) x* is a minimize:!' of F ( F(y) :2: F(x*} 'lyE JRn). 

* * T * n (ii) 0 E 3F(x } ( 3u E 3F(x ) such that u (y-x ) ~ 0 'ly E lR ) • 

(iii) T * v (y-x ) :2: 0 'lv E 3F(y) , 

One also has the following existence and uniqueness results as a 

direct consequence of proposition 2.2. 

PROPOSITION 2.4: Let F:JRn +JR be ZocaUy Lipschitz. Then 

(i) if 3F is stPongZy monotone thePe exists a unique point 

with * 0 E dF(x ) • 

* X 
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(ii) if <lF is str-iatly monotone and if a point 

* * 0 E <lF(x ) exists then x is unique. 

* X with 

(iii) if <lF is monotone then the set of solution points satisfying 

o E <lF(x) is a aonvex set (if it is non-empty). 

A simple example of a function F for which <lF is strictly 

monotone but not strongly monotone is F(x) ex for x E lR. 

3. SPECIAL STRUCTURE 

It is often convenient to decompose a nonsmooth function F:IRn ~lR as 

(3.1) F(x) f(x) + Q(x) 

where f:lRn ~lR is smooth (continuously differentiable) and Q:lRn ~lR is 

nonsmooth. Thus 

(3.2) ()F(x) 'i/f(x) + <lQ(x) • 

As <lQ(x) is multivalued if and only if Q is nonsmooth this corresponds 

to isolating the multivalued part of <lF in <lQ • 

A multifunction T from lRn into lRn is called polyhed:J:>al if its 

graph is the union of a finite collection of polyhedral convex sets. If 

<lF is decomposed as in (3.2) <lF is polyhedral if and only if 

'i/f(x) = Ax+b and <lQ is polyhedral. The function Q is separable if 

If Q is also convex then 

n 
Q(x) ~ qi (xi) • 

i=l 

<lQ(x) 
n 

~ (lqi (xi) 
i=l 

Obviously <lQ is polyhedral if and only if (lqi is polyhedral for 

i 1, ... ,n • 

A particular example of interest is 



(3.3) T(x) 

?-44 

n 
TAx +b + :2: E 

i=l 

where A is s~~rnetric positive definite, and 

1 
n2 (~- uol +H E, 

0 

E <sl [O,H0 ] t; (3. 4) 

l (t_; r;, 

where and Ho are positive constants 

> u 
0 

u 
0 

< u 
0 

and u 
0 

:cs a known 

constan-t. This is a problem where T is polyhedral and s·trongly monotone 

and Q is separable. Obviously (3.3) is the SW)differential of the convex 

func·tion 

n 
F(x) 

T T 2: q (x.) 2){ Ax+ + 
i=l ]. 

where 

{ 
"2n2 (t; - 2 +H (!;:- f; <: 0 . 

q(E;J 

"""l u; -
2 ,... 

c, s uo 

This particular problem arises in an implicit discre,'::i.zation of ·the 

enthalpy formulation of the two-phase Stefan problem (see [2] or [4] for 

exoJ!lple). The parameter T co:n:esponds to the time s'cep used in the 

discre·tiza·tion of the problem. 'l'he matrix A corresponds t.o the s·tandard 

discretization of the Laplacian in 2 or 3 dimensions, so methods for 

finding a zero of (3.3) must be suitable to large scale problems. As (3.3) 

is closely rela:ted to a linear system it is expected tha·t methods for 

finding a zero of ( 3. 3) are going 'co be closely related to methods for 

solving large sparse systems of linear equations. 

4. ALTERNATING VARIABLE METHODS 

The classical Gauss-Seidel and successive overrelaxation (SOR) methods 

for linear systems (see [6] for example) correspond to methods in which F is 
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minimized in each of the coordinate directions in turn. These methods 

consist of 

(i) 

(ii) 

an iterative scheme of the following form. 

Let X 
(0) 

be given. Set k = 0. 

For i = l, ••• ,n 

Let 
(k) 

yi 

F(k+l,i) (y) 

Set 
(k+l) 

X. 
]. 

be the minimizer of 

(k+l) (k+l) (k) (k) 
F(xl , ••. ,xi-1 ,y,xi+l'"""'xn ) 

(iii) If a convergence test is satisfied stop, otherWise set k k+l 

and go to step (ii). 

The Gauss-Seidel method corresponds to so 

SOR method suggested by Elliott [2] takes 

(k+l) 
X. 

]. 
An 

if 3F(k+l,i)(y) is multivalued for any 
(k) (k) (k) 

y E [xi ,(1-w)xi +wyi ]. 

otherwise , 

where w E (0,2) • Note that is characterized by 

If 3F is decomposed as in (3.1) then one can prove convergence of the 

Gauss-Seidel method if Vf is strongly monotone, Q is separable and 3Q 

is monotone. For the system defined by (3.3) and (3.4) Elliott [2] has 

proved convergence of his SOR method for any w E (0,2) The necessity of 

Q being separable is illustrated by the following example. Let· n = 2, 

b = 0 , A = 2I and 

{ 
(O,O)T if xl +x2 > 1 

3Q(x) A.(-2,-2)T where 0 $ A. $ 1 if xl +x2 1 

(-2,-2)T if xl +x2 < 1 

Then 3F(x) Ax + 3Q(x) is the generalized gradient of 

F(x) 
. 2 2 2 2 

max {x1 + x 2 , (x1 - 1) + (x2 - 1) } 
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which has the unique minimizer However any method which 

minimizes along the coordinate directions in turn converges to X= (l,O)T 

from any starting point 
{0) T 

x = {a.,O) . ,, where CX.ElR. 

Some results on the asymptotic rate of convergence can be obtained by 

looking at the spectral radius of the projection of the iteration matrix on 

to the subspace orthogonal to the surface of nondifferentiability of F at 

the solution {see [2] for example). This requires that a strict 

* complementarity condition hold at the solution, namely 0 E rel int aF{x ) 

As the surface of nondifferentiability at the solution is not known a 

priori it is difficult to use these results to choose the relaxation 

parameter w in an SOR method. 

5. CONJUGATE GRADIENT METHODS 

If F is smooth then the conjugate gradient method generates a search 

direction s{k) at the point x{k) by s{k) = -g{k) +S{k)s{k-l) , where 

g{k) = VF(x{k)) I and s{k) = g{k)Tg{k)/g{k-l)Tg{k-l) with s{O} = 0. 

The point 
(k+l) 

X is chosen by a line search giving 

{k+l) {k) (k) {k) 
x = x + a. s , where minimizes F{x{k) + a.s{k))· 

When F is nonsmooth, but the generalized gradient is known, a 

"gradient" can be defined by 

g{x) Nr aF{x) , 

where NrS denotes the point of S nearest to the origin in the Euclidean 

norm. As aF{x) is compact and convex g{x) exists and is unique. Now 

suppose the usual one-sided directional derivative F' {x;s) always exists 

then [7] 

min F' {x;s) 
s:llsll~l 

min max 
s:llsll~l UEdF{x} 

T u s -I Nr aF {x) I . 

Thus -g{x) is the direction of steepest descent at x , echoing the 
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behaviour of the gradient of a smooth function. The definition of g(x) 

is also natural as one is trying to solve the generalized equa·tion 

0 E dF'(x) • 

For some problems, in particular that defined by (3.3) and (3.4), one 

can write down a concise expression for g(x) . One can then develop a 

conjugate gradient method having many of the features of conjugate gradient 

methods for smooth problems (for example finite termination if F is a 

piecewise quadratic function and the surfaces where F is nonsmooth are 

linear) [8]. The conjugate gradient me·thods have the advantage tha'c they do 

not require Q to be separable, or a relaxation parameter ·to be estimated. 

Hmv-ever the great simplici·ty of the alternating variable methods is lost. 

I·t should be no·t.ed that, although conceptually simple, t:he line search is 

often the most compu·tationally expensive, so care must be ·taken to use an 

efficiel'!t implementation, Further details and a comparison of alternating 

variable methods and conjugate gradien·t methods for the problem defined by 

(3.3) and (3.4) can be found in [8]. 
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