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NON-LINEAR CHARACTERIZIITIONS OF 

SUPERREFLEXIVE SPACES 

S. Blimrrrinathan 

1. The claossical theorem of Weierstras"s on o.pproximation says thcH: a real 

continuous function on a closed, bounded set in a fini"ce dimensional spa.ce 

is the limito of a uniformly convergent. sequence of polynomials. r.•Jhil,e 

this ·t1'1eorem has very interesting extensions 11 su.ch as the St,one~Weierstras.s 

Theorem, it does ned: generalise in "this form to infinite dimensional spaces. 

A.S. Nemirovski and S.M. Semenov [5] have given an example of a real 

con"tinuous funct:ion on a separable, infinite Hilbert space H , possessing 

uniformly cont:inuous Freche·t derivatives of all orders bu"t, which, on t.he 

uni"t ball of H cannoot be approximat:ed uniformly by polynomials. However, 

they shov1 tha"t every uniformly continuous function on the unit ball of H 

is the uniform limit of restricb.ons of functions which are uniformly 

continuously differentoiable on bounded seots" For a discussion of "these 

results see [7]. Result-S of this type in global analysis on infinite 

dimensional manifolds raise the questoion of existence of uniformly 

continuously differen'ciable functions on a Banach space which have bounded 

support. R. Bonic and J. Frampton [2] studied ques'cions of similar nature. 

If X and Y are Banach spaces, let: 

·those func·tions in cP (X, Y) \lvhose derivatives of orde~~ less t.han or equal 

to q are bounded. Call a Banach space X , if there exis·ts a 

nonzero cp,q_function on X with bounded support. In "this notation, 

0000 p 
finite dimensional spaces are C ' -smooth and if an Lp space is C"- -smoot-11, 

then i"t is also Cp,q_smooth. Consider the space of all real bounded 
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co 
null sequences with the supremu.\Tt norm. There exists a C -funct.ion on 

\<fhich is nonzero in the open ball and zero off it. To see this, let 

00 

g R ->- R be a C -function satisfying 

r if It I ~ -~ 

g (t) = 1- if ~< I tl < 1 

0 if It! ?; 1 

co 

If X = ' ... ) E co ' 
le-t (x) = II g Then f is the 

i=l 
required function on However, l.J .. Wells [8] showed that if f is 

c 
0 

a 

real valued continuous function on with a uniformly continuous derivative, 

t.hen the support of f must be unbounded. CJ:'hus is no-t ' 2 -smoo-th. 

R. Aron [1] has sho1rm that such a result is true for G(X) , the space of all 

rea.l continuous functions on a compact Hausdorff space X • 

The ques-tion arises, ~chen, as t-0 what type of spaces X have the 

proper-ty that there exist a nonzero real continuous function f on X such 

that the derivative Df is uniformly con-tinuous and f has a bounded 

support. Let us call a space D--b-smooth if it possesses the above property. 

The examples of spaces which are no-t U-b-smooth, namely and C(Xj 1 are 

not reflexive. Is reflexivity essen-tial for a space to be U-b-smooth? 

The answer is yes and it \>ias proved by Sundaresan [6], and also by K. John, 

H. Torunczyk and V. Zizler [7] using different methods. Actually, the 

property of D-b-smoothness characterises an important subclass of reflexive 

spaces, known as superreflexive spaces. 

2. SUPERREFLEXIVE SPACES 

Let X be a Banach space. X is uniformly conv-ex if, 

{xn} ' {yn} of sequences in the unit ball of X such that 

then llxn -y nil ->- 0 . 

for any pair 
X +y 
11~11+0 

" 
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X is uniformly smooth iff the norm of X is uniformly Frechet 

differentiable. Uniform convexity and uniform smoothness are dual properties 

in the sense that X is uniformly convex iff X* is uniformly smooth; and, 

in either case, the space is reflexive. It was a long-standing open problem 

whether X having a uniformly convex norm implied that X also had a 

uniformly smooth norm. The concept of.superreflexivity arose from a solution 

to this problem by R.C. James and Per Enflo. see van Dulst [4] for details. 

A Banach space Y is finitely-representable in X , iff, for a finite 

dimensional subspace Y0 of Y and A > 1 , there exists an isomorphism 

T of Y0 into X such that 

for all y E Y0 • 

A Banach space X is called superreflexive if every Banach space Y 

that is finitely representable in X is reflexive. 

For E > 0 , an E-tree T in a Banach space X is a set of points 

x .. in X, i,j=O,l,2, ••• ,j<2i 
~J 

such that for each such i·, j , 

X •. and 
~J 

\lx. 2.-x. 2"+111;:: E. 
~. J ~. J 

If i is restricted to be only ~ n , then we have an {n-E)tree, denoted 

by T n,E 

It is a beautiful theorem of R.C. James-Per Enflo that the following are 

equivalent for a Banach space X 

{a) X is superreflexive, 

{b) X has an equivalent uniformly convex norm, 
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(c) X has an equivalent uniformly smooth nor~m, 

(d) X has an equivalent norm which is both uniformly convex and 

uniformly smooth, 

(e) For each s > 0 , there exists n such that no (n-s)tree, 

lies in ~he unit ball of X 

3. ULTRAPOWERS AND U-b-SMOOTHNESS 

r.et S be an infinite set and U , a non-trivial ultrafilter on S • 

The limit of a real bounded function f on S with respect to U is 

defined by: 

lim {f(s)} 
u 

sup{A.: {s E s : f (s} > \} c U} " 

If X is a Banach space and f is a bounded X-valued function on S , let 

ltl lim {jjf(xllll . 
u 

Then I • I is a semi-norm on ·the vector space V of all bounded X-valued 

functions on S The quotient space of V modulo the kernel of 1·1 

equipped with the quotient-norm is called the ultrapo,.rer of X wi'ch respect 

to the pair (S,U) and is denoted by X(S,U) The space X is isome·trically 

embedded in X(s,U) The usefulness of this notion in Banach space t.heory 

stems fJC·om the following results: (a) The ult:c·apmver of a Banac;::h space is 

also a Banach space. (b) If a Banach space Y is finitely represented in 

a Banach space X , then Y is isometric with a subspace of some ul trapo'l';er 

X(S,U) • For proofs of these results and other allied results, see [7]. 

Sundaresan [6] proved that: 

If X is U-b-smooth, then an ultrapower X(S,U) of X is also U-b-smooth. 

For a proof, see [6] or [7]. It follows from this theorem tha·t, if Y 

is finitely representable in a U-b-smooth space, then Y is also U-b-smooth. 
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Since U-b-smooth spaces are reflexive, i·t follows further that if X is 

U-b-smooth, ·tl1•sn X is superreflexive. ~·he converse resul·t that >•ihen X 

is superreflexive then X is is also t:rue. To see this, we 

first. no·te ·tha'c when X is superrefleldve, then X is isomo:cphic 1:o a 

unifox:mly smooth space, and tha·t D-b-smoothness is invariant under 

isomorphisms" The noX111 of a uniformly smooth space is uniformly con·tinuously 

differentiable on regions {x : A~ l!xli ~ and by composing the norm with a 

suitable real c1-·function on ·the reals, i'c can be shown that the composi·tion 

is also uniformly cont:inuously differen·tiable. One can then cons·tru.ct, 

given r,f~ > 0 , a. function f: X -r R such that 0 ~ f;;;; 1 , f is unifonnly 

continuously differentiable, and f :.: 1 on a.n open ball of radius r , 

cen1.:ered at 0 , while f vanishes outside the closed ball of radius 

r+ € !! center 0 The details can be had from [6], [7]. 

4, UNIFORMLY SMOOTH PARTITIONS OF UNITY 

K. John, IL Torunczyk and V" Zizler approach the problem in a. different 

manner. They introduce t:he notion of a dual ·tree as follows and shov,l that 

a space is superreflexive if it admit.s parti·tions of uni·ty formed by functions 

with uniformly contimwus differentials. Let X be a Banach space and 

K , ;;: , 11 > 0 , o > 1 be given. Le·t l·l ~ Kl!•ll be a pseudonox·m on X 

Then a dual 'cree D (K, E:, 1·1 , o dl) is a set of poin·ts 

. ' 0 1 . i l,J~ ',. • .,]<2 such that, for each such 

X .. 
l] 

J x .. + t (x . , 2 . -
l] l+.c, J 

i,j 

Jlx. 2.-
l, J 

E X I 

2j+lll ~ 20 

for any J t J ~ 1 . If i is restric·ted to be only ~ n then we have a 

dual n-tree D11 (K,E:, J·l ,o,nl . Dual trees can.be constructed in, say, the 
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With such a definition, these three authors devot.e their paper [4] 

proving the following theorem: 

·rhe following are equivalent on a Bana.cb. space X 

(i) X is superreflexive. 

(ii) X is U-b-smooth, 

(iii) For any open cover U of X , ·there is a. locally finite 

partition of unity on X subordinated ·to U and consis·ting of 

funct.ions which are ·uniformly continuously differentiable. 

(iv) of: There exist: E > 0 and K > 0 such that, for any 

n and 8 E (0,1) n > o 

on X and a dua1--n~tree~ 

t.here is a pseudo-norm I " I :£ Kll "II 

D (K,E, 1·1 ,8,TJ) c X • n 

For proving the implications, ·they do no·t use ul·trapowers; ~che most 

involved part of the proof is in ·the implicat.ion (i) => (iii). We refer 

to [4] for detcdls. 

5o APPLICATIONS 

(l) I'c is a well knm..rn fact that all sepa . .:·able Banach sp3.ces are 

homeomorphic. It can be shown, using the resul·ts of section 3 that there 

cannot exist uniformly continuously differentiable homeomorphisms for 

certain Banach space, whether they are separable or not. Specifically, the 

following· resul·t is proved [6]: Suppose E and F are Banach spaces and 

there exists a uniformly continuously differentiable homeomorphism from E 

to F , then E is superreflexive. 

(2) Let ¢ be a real function on a Banach space X such that 

¢ (x) + 0 as llx!l + oo • Let ex be a non-trivial con·tinuous function on 

R to R vJith compact support, and let Q: X + space of symmetric bilinear 



forms on X , such that Q is bounded and a ( llxll) 'Q (x) 'f 0 for at least 

one point x E X • Then the following differential equation is of interest 

in theory of dynamical flows: 
2 

D ¢(x) =.a<llxlll •Q(x) It can be shown [ 2 ] 

that for a non-superreflexive space X , t-here can be no solution ¢ 

vanishing at infinit.y. 
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