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NON-LINEAR CHARACTERIZATIONS OF
SUPERREFLEXIVE SPACES

S. Swaminathan

1. The classical theorem of Weierstrasg on approximation says that é real
continuous function on a closed, bounded set in a finite dimensional space
is the limit of a uniformly convergent sequence of polynomials. While

this theorem has very interesting extensions, such as the Stone-Weierstrass
Theorem, it does not generalise in this form to infinite dimensional spaces.
A.S. Nemirovski and S.M. Semenov [5] have given an example of a real
continuous function on a separable, infinite Hilbert space H , possessing
uniformly continuous Fréchet derivatives of all orders but, which, on the
unit ball of H cannot be approximated uniformly by polynomials. However,
they show that every uniformly continuous function on the unit ball of H
is the uniform limit of restrictions of functions which are uniformly
continuously differentiable on bounded sets. For a discussion of these
results see [7]. Results of this type in global analysis on infinite
dimensional manifolds raise the gquestion of existence of uniformly
continuously differentiable functions on a Banach space which have bounded
support. R. Bonic and J. Frampton [2] studied questions of similar nature.
If X and Y are Banach spaces, let Cp'q(X,Y) ;, 0Sgsps® , denote
those functions in CP(X,Y) whose derivatives of orxrder less than or equal

cPrq

to g are bounded. Call a Banach space X , -gmooth if there exists a

nonzero Cp,q

~function on X with bounded support. In this notation,
PR . . ©0, 00 . . iy el
finite dimensional spaces are C -smooth and if an LP space is C~-smooth,

then it is also Cp'q—smooth. Consider the space ¢ of all real bounded
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o0
null sequences with the supremum norm. There exists a C -function on o

which is nonzero in the open ball and zero off it. To see this, let

0
g : R> R be a C -function satisfying

1 if |e]s4
gty =43 if 3<|t|<1

o if |t|z1.
co
let £ (x) = I g(x.,) . Then £ is the
n . i
i=1
. However, J. Wells [8] showed that if £ is a

If x = (xl,xz,...) € co ’
required function on o

real valued continuous function on cO with a uniformly continuous derivative,
then the support of £ must be unbounded. Thus o is not C2'2—smooth.
R. Aron [1] has shown that such a result is true for C(X) , the space of all

real continuous functions on a compact Hausdorff space X .

The guestion arises, then, as to what type of spaces X have the
property that there exist a nonzero real continuous function £ on X such
that the derivative Df is uniformly continuous and £ has a bounded
support. Let us call a space U-b-smooth if it possesses the above property.
The examples of spaces which are not U-b-smooth, namely 4 and C(X), are
not reflexive. Is reflexivity essential for a space to be U-b-smooth?

The answer is yes and it was proved by Sundaresan [6], and also by K. John,
H. Torunczyk and V. Zizler [7] using different methods. Actually, the

property of U-b-smoothness characterises an important subclass of reflexive

spaces, known as superreflexive spaces.

2.  SUPERREFLEXIVE SPACES

Let X be a Banach space. X is uniformly convex if, for any pair

x_+y
{xn} ' {yn} of sequences in the unit ball of X such that | n2 2+ o

then Hxn—ynn -0 .
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X is uniformly smooth iff the norm of X is uniformly Frechet
differentiable. Uniform convexity and uniform smoothness are dual properties
in the sense that X is uniformly convex iff X* is uniformly smooth; and,
in either case, the space is reflexive. It was a long-standing open problem
whether X having a uniformly convex norm implied that X also had a
uniformly smooth norm. The concept of‘shperreflexivity arose from a solution
to this problem by R.C. James and Per Enflo. Se€ van Dulst [4] for details.

A Banach space Y is finitely-representable in X , iff, for a finite
dimensional subspace Y of Y and A > 1, there exists an isomorphism

0

T of Y0 into X such that

-1
Ayl s dleyll s Myl
for all y € YO .

A Banach space X 'is called superreflexive if every Banach space Y

that is finitely representable in X is reflexive.

For € >0, an €E-tree T in a Banach space X is a set of points

xij in X, 1i,3=0,1,2,...,3 < 2l , such that for each such i, j ,

X,. = %(

ij Xiv1,29 T¥i41, 2941 24

- > .
I 557 %5 2540l 2 €

If i is restricted to be only £ n , then we have an (n-g£)tree, denoted

It is a beautiful theorem of R.C. James-Per Enflo that the following are
equivalent for a Banach space X .
(a) X 1is superreflexive,

(b) X has an equivalent uniformly convex norm,
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(c) X has an equivalent uniformly smooth norm,

(d) X has an equivalent norm which is both uniformly convex and
uniformly smooth,

(e) For each € > 0 , there exists n  such that no (n-g)tree,

Tn e ! lies in the unit ball of X .
14

3. ULTRAPOWERS AND U-b-SMOOTHNESS

Let S be an infinite set and U , a non-trivial ultrafilter on S .
The limit of a real bounded function f on S with respect to U is

defined by:
lim {f(s)} = sup{r: {s€s: £(s)>A}c U} .
u
If X 1is a Banach space and f 1is a bounded X-valued function on § , let
[£] = rim {|EG) ]} .
u

Then I°] is a semi~-norm on the vector space V of all bounded X-valued
functions on S . The quotient space of V modulo the kernel of [-I A
equipped with the quotient-norm is called the ultrapower of X with respect
to the pair (s,U) and is denoted by X(sS,U) . The space X 1is isometrically
embedded in X(sS,U) . The usefulness of this notion in Banach space theory
stems from the following results: (a) The ultrapower of a Banach space is
also a Banach space. (b) If a Banach space Y 1is finitely represented in

a Banach space X , then Y is isometric with a subspace of some ultrapower

x(s,U) . For proofs of these results and other allied results, see [7].

Sundaresan [6] proved that:

If X is U-b-smooth, then an ultrapower X(S,U) of X is also U-b-smooth.

For a proof, see [6] or [7]. It follows from this theorem that, if Y

is finitely representable in a U-b-smooth space, then Y is also U-b-smooth.
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Since U-b-smooth spaces are reflexive, it follows further that if X is
U-b=-smooth, then X is superreflexive. The converse result that when X

is superreflexive then X is U-b-smooth is also true. To see this, we
first note that when X 1is superreflexive, then X 1is isomorphic to a
uniformly smooth space, and that U-b-smoothness is invariant under
isomorphisms. The norm of a uniformly,gmooth space is uniformly continuously
differentiable on regions {x: A< |x| £ u} and by composing the norm with a
suitable real Cl—function on the reals, it can be shown that the composition
is also uniformly continuously differentiable. One can then construct,

given ¥,€ > 0 , a function f:X +> R such that 0££f£1 , f is uniformly
continuously differentiable, and £ = 1 on an open ball of radius ¢ ,
centered at 0 , while £ vanishes outside the closed ball of radius

r+€ , center 0 . The details can be had from [6], [7].

4,  UNIFORMLY SMOOTH PARTITIONS OF UNITY

K. John, H. Torunczyk and V. Zizler approach the problem in a different
manner. They introduce the notion of a dual tree as follows and show that
a space is superreflexive if it admits partitions of unity formed by functions
with uniformly continuous differentials. Let X Dbe a Banach space and
K,eg,n>0,8>1 begiven. Let l-1 < K||°|| be a pseudonorm on - X .

Then a dual tree D(X,e,

,8,n) is a set of points xij € X,
i,3=0,1,...,3< 2% such that, for each such i,j

x,, = §(

+ .
i3 251,29 T Fi41, 2941 ¢

- <
%5, 25~ %5, 2542015 28

Ix. S

i3 xi+1,2j— xij)] 2 ‘xijli-eﬁlt‘— n

for any lti £1 . If i is restricted to be only <n then we have a

dual n~tree Dn(K,E, ,8,M) . Dual trees canbe constructed in, say, the

space Rl .
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With such a definition, these three authors devote their paper [4]

proving the following theorem:
The following are eguivalent on a Banach space X :

(i) X 1is superreflexive.
(ii) X is U-b-smooth.

(iii) For any open cover U of X , there is a locally finite
partition of unity on X subordinated to U and consisting of

functions which are uniformly continuously differentiable.

(iv) Negation of: There exist € > 0 and K > 0 such that, for any
n and & € (0,1) , n >0 , there is a pseudo-norm ]~| < K| el

on X and a dual-n-tree, Dn(K,€,|'|,5,n) C X .

For proving the implications, they do not use ultrapowers; the most
involved part of the prcof is in the implication (i) = (iii). We refer

to [4] for details.

5.  APPLICATIONS

(1) It is a well known fact that all separable Banach spaces are
homeomorphic. It can be shown, using the results of section 3 that there
cannot exist uniformly continuously differentiable homeomorphisms for
certain Banach space, whether they are separable or not. Specifically, the
following result is proved [6]: Suppose E and F are Banach spaces and
there exists a uniformly continuously differentiable homeomorphism from E

to F , then E is superreflexive.

(2) Let ¢ Dbe a real function on a Banach space X such that
o(x) 0 as |x|| o . Let O be a non-trivial continuous function on

R to R with compact support, and let Q: X =+ space of symmetric bilinear
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forms on X , such that Q is bounded and a(|x])Q(x) # 0 for at least
one point x € X . Then the following differential equation is of interest
in theory of dynamical flows: D2¢(x) fﬁu(”x”).g(x) . It can be shown [2 ]
that for a non-superreflexive space X , there can be no solution ¢

vanishing at infinity.
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