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A SEMILINEAR ELLIPTIC BOUNDARY-VALUE PROBLEM
DESCRIBING SMALL PATCHES OF VORTICITY
IN AN OTHERWISE IRROTATIONAL FLOW

Grant Keady

SYNOPSIS
Let ) be & bounded domain in IR%. The study, begun in Keady{1981] and Keady and
Kloeden[1984] of the boundary-value problem, for (A/k, ¢)
—Agp € AH (% — k) in QcR?,
=0 on a0,
is continued. Here A denotes the Laplacian, H is the Heaviside step function and one of

XA or k is & given positive constant. The solutions considered always have ¢ > 0 in ( and

AJE > 0, and have cores
A={(z,9) € 0| ¥(z,9) > k}.

In the special case 1 = B(0, R) , a disc, the explicit exact solutions are available.
They satisfy

(*) (o — E) [ — 0 as area(d) — 0,

where ¥, is the maximum of ¢ over {1. Here (%) will be established for other domains.
Axn adaptation of the maximum principles of Gidas, Ni and Nirenberg [1979] is an

important step in establishing the above result.

1. INTRODUCTION
The boundary-value problem studied in this paper arises in connection with the steady

flow of an inviscid incompressible fluid with compact vortex cores.
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For real numbers ¢ define the set-valued Heaviside step-function H ,
BH{t)=0 if t<0,H(0)=[0,1],H{)=1 if ¢>0.

Let O be a bounded planar domain with C? boundary and consider the boundary-
value problem

Ay € \H(p — k) in o,
$=0 on on ,

where A , k are both positive. Problem (P) is to find, given one of A or k , pairs (A/k, ¢)
solving the preceding boundary-value problem.
The subset

A= {(z,5) € 0| ¥(z,9) >k},

is called the (vortex) core of such a solution.

To make the above precise requires the definition of ’solution’. We say (A/k,¥) solves
problem (P) if A/k > 0 and ¢ belongs to V?’?(O) NCY(Q) for 0 < a < 1 and if the
boundary of A has zero measure.

Using slightly different techniques and with different restrictions on {1 ,A this problem
was studied in Keady[1981] and Keady and Kloeden[1984], which are henceforth denoted
as (I) and (II) respectively. The notation here will follow that of (I) and (II).

In (I) the asymptotic estimate (*) was established for doubly-symmetrised domains
§). In (II) it was established for other domains but with restrictions on the cores A : as
an example, A convex is a sufficient restriction.

The main results of (II} including the asymptotic estimate () are comsequences of
Theorem II.1.1. This shows that the points z,, belong to a compact subset M (1) of
constructed by means of domain folding argnments of Gidas, Ni and Nirenberg[1979]. This
subset is defined in Section 3 of (I1).
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THEOREM I1.1.1. Let (A/k, ) be a solution with core A of problem (P) with ¢ attaining

it maezimum value at 2, in A. Then
zm € M(DQ) ,
where M (1) ie a compact subset of Q , and hence
distance(zy, , 80) 2d >0,

where

d=dnf{lz—-2°|| z€ 80 ,2* € M(D)} .

For symmetrised domains M () lies on the axis of symmetry of Q.

For strictly convex domains (3 Theorem II.1.1. is true with Mj((2) defined in Section
2 below, replacing M(Q).

In this paper it will be shown that it is possible to use more information from Gidas,
Ni and Nirenberg[1979] than that given in Theorem II.1.1. The technique is similar to that
in de Figueiredo, Lions and Nussbaum([1981]. The information will be used to establish
the asymptotic estimate (#) when 2 is strictly convex with a uniform positive lower bound
on the curvature on the boundary of {J. As this restriction on ) is known, by the results
of (I) and (I}, not to be necessary, the proofs of various intermediate steps are arranged,

where possible, to be independent of it.

2. RESULTS OF GIDAS, NI AND NIRENBERG

The subset M(02) containing the points z,, of Theorem IL.1.1 is defined by means of
domain folding arguments of Gidas, Ni and Nirenberg[1979]. Let D denote an arbitrary
bounded domain in IR? with smooth boundary and define the subsets

D) ={(z9)€D|y>1},
D) ={(=9)eD|y<t},
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and
DL(t) = {(z,2t - 9) | (=,9) € D+ ()},

for any real number ¢t . Also define the real number 2, (D) as in (II). For convex D the
definition is,
to(D) = sup{t e R | D (t) C DL(t)} .

The following lemma is established in II:

THEOREM 11.3.3. Let (\/k,¥) be a solution of problem (P}. Then for all {z,y) sn O with

) < t'(n))
qb(:c, 2t — g) - ¢(ziy) >0,

¢y(3 ) >0,
These results also apply for domain foldings relative to a general direction (cosf, siné),

in which case the sabset
D+(t30) = {(2,’) €D I zcosd + ysind >t} ,

replaces the subset D (t) corresponding to the angle § = #/2. Similar generalizations give
the subsets D_(¢,0) and D% (¢,0) and the number ¢,(D,0). A subset My(D) of D is then
defined as

My(D)= () Dy((D,0),6) .
0<0<2x

From Theorem I1.3.3 (or Theorem I1.3.4) it follows that
Zm € My(0) .

When Q is a symmetrised domain My () is a subset of the axis of symmetry of {1.
When Q is a convex domain My((}) is convex. When () is strictly convex with the
boundary of 0 of class C* and with the curvature bounded away from zero, we will say

that O belongs to U. For () a member of U

d(Mo(D),80) > 0 .
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De Figueiredo, Lions and Nussbaum|{1982] observe (in their Theorem 1.1) the follow-
ing:

THEOREM 2.1. Let Q belong to U. There ezist )2 > 6 > 0 and 75 > 0 with 6 and
depending only on (1 with the following property.
Let zy be e point on the boundary of O and n = n(z) be the unit outward normal
frem Q0 at zo. Then for any solution of problem {P) , ¥(zc — 7v) ¢ nondecreasing for 7
increasing between 0 and 1y, for unit vectors v satisfying (v, n(zy)) > cosb. With e suitable

choice of 8,1y, this is true with the same 6,7, for any 2 on the boundary of Q.

COROLLARY 2.1. There ezist positive numbers € and 0, with 0 < 5/2, depending only
on {1, such that the following, called property (F-L-NJ, holds:
For all z in Q with d(z, 8) < ¢ there eziste ¢ cone (or wedge) I(2) with vertez at z,

with semi-vertez angle 0 and with azis {s—en(2) | ¢ > 0} such that
¥(€) 2 9(z) VEel(z) with d(§,00) <e.

Here nfz) is the negative of the direction of the shovtest line from z to the boundary of 0.

3. THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

Several ideas for the proof of Theorem 3.1 below were suggested by Norm Dancer.

THEOREM 3.1. Let (A /ky %) be a sequence of solutions of problem (P) with cores A,
such that area({A, ) tends to zero. Suppose that '

limsup (Yomfks) =c < o0 as area(A,) — 0,
{where ¢ > 1 is independent of v and depends only on ) ) . Then ¢ = 1, that e

(¢um - kv)/ku -~ 0 as area(A,,) — 0.
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Proof. If the electrostatic capacity, defined in (I) and (II), cap(4,0) tends to zero as
area{A) tends to zero then we already have, as in (I), (¥m — k)/k tends to zero. Hence
assume, taking subsequences if necessary that cap(A, Q) tends to ¢, > 0. Hence
area{A) tends to zero implies A/k tends to infinity.

Consider a subsequence with z,,, tending to z,. We now choose origins, different for

different v, at z,y,. Rescale the coordinates so that
X =V, Y =V,
and write
»(X,Y) = o(z,9)/k and O ={(Viz,V2y) | (z,9) €Q}.
We now have
2
=A== ——==H(¥r~1) aein 0O,.

Next consider any compact subset of IR?. We assert that (a subsequence of) ¢, with A

tending to infinity converges uniformly on that compact subset. We will denote the Hmit

function by v. It will suffice to establish the result on any closed disc B, with radius E.
The proof of the assertion of the previous paragraph is, by Arzela-Ascoli, to use the

uniform boundedness that ¢\ < ¢ and uniform equicontinaity from
| Voos 1€ Cile + (R+1)%) .

This last statement follows from Theorem 3.9 and Problem 8.4 of Gilbarg and Trudinger,
where their {) is taken as By, a ball of radius (R + 1) with the same centre as B. Then,

with d, = dist{z, By)
d. | Vir | < Cylsup | 9x | +oup d7)

< Cile+(R+1)%).
Thus, since for z belongingto B ,1< d; ,

[Vor I Cile+ (R+1)%) .
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Next we observe that we can find a subsequence such that ¢, tends to v uniformiy
on compact subsets of R?. Let By, » be the unit disk centred at (m, n) with integer m, n.
Then index the plane lattice of pairs of integers so that B; = By, .. We start with a
sequence ¢ tending to v on Fy. Having found a sequence #;,) tending to v on the union
of By with 1 < k& € 5 we refine it so that 9,43, fends to v on the union of By with
1 <& < (54 1). We are left with a sequence ¢ tending to v uniformly on every Bj ,
which suffices.

Bach of the ¢, is superharmonic. Thus v is also superharmonic on IR?. Also v € ¢
and hence v is constant on IR®. Since 92(0) > 1, v{(0) > 1.

Since

~Ayy = H(¢r — 1)

we expect

~AvE H(v—1) in R2 .

We have (Gilbarg and Trudinger p67),

» (z) = r;_’ B(z,R) V2t % L(:,r} eH('l’k - 1) ’
where
O(r,R) =log(R/r) - 1/2(1 - (r/R)?) .
Assume z is such that v(z) < 1 at some point 2, and hence in some B{z, R). Then for
A sufficiently large the ¥ < 1 in B(z, R). Thus v is harmonic at z.
Assume 2z is such that {2} > 1 . Then, similasly,

—(Av)z)=1.

This suffices for our purposes.
We know that v is constant with ¥(0) > 1. If ¥(0) > 1 then —Av = 1 in IR? and hence
v is not constant, a contradicition. Thus »(0) = 1.

The conclusion is that

(Om—E)/E) =45 (0)—1—v(0)—1=0
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as asserted.

Remark. For the uniform convergence of 4, to v we used an interior gradient estimate.

Is there a global gradient estimate of the form
maz | V¢ [* < CA(Aarea(4))? in o,
or maz | Vi |* < CAdpm in 07

In a convex domain ) Sperb[1981] has shown that
| V9 P<I VO +22(% = )4 < 2A($m — ) < 20¢m

so that the second form is true with C = 2.

THEOREM 3.2, Let (A, /k,,%,) be a sequence of solutions of problem (P) . Suppose that
liminf d(A,,80)=c4 >0 as wv— o0

{where ca is independent of v and depends only on 0 ) . Then
limeup (Yymfby) =c<o0 a8 v— oo,

(where ¢ > 1 is obviously independent of v J.

Proof. Let € < ¢4 and
N(Q)={2€0|d(z,80)>cs~5}.
For v sufficiently large 4, is a subset of Ng(Q2). Thus
cap(4y, Q) < ecap(Ne(01),0) < 00

and

limsup cap(A,, ) < eap(No(f1),0) < oo .
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Using inequalities from the torsion problem for ¥ = ¢ — k in (components of) 4 we
have
1
—k< = .
Pm—k < yr;\area(A)
Since Aarea(A) = k cap(A, (1) the result of the previous paragraph gives

limeup (Yum/k) < 1+ cap(No(D),0)/(47) .

THEOREM 3.3. Let (A, /ky,,¥,) be a sequence of solutions of problem (P} with cores A,
such that area(A,) tends to zero.
Suppose that there exist positive numbers &€ and 8 , with 0 < /2, depending only on
{1 such that property (F-L-N) holds:
Then
liminf d(4,,00)=c4 2 as area(d,)—0.

Proof. Suppose there exist points of 4, within e of the boundary of { (If not, for all v,
there is nothing to prove.) Let 2, be such that
d{z,,00) = min{d(z,80) |2 € 4, },
and let
L, =e—d(z,80) .
Then

12

tan® = area(A )
v v

and hence L, tends to zero as area(A,) tends to zero, and thus the distance between 2,

and the boundary of {) tends to &. This establishes the theorem.

Remark. We expect that the distance between z, and My{Q) tends to zero but have

not yet attempted to prove this stronger statement.
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