$W^{2, p}$ REGULARITY FOR VARIFOLDS WITH MEAN CURVATURE

John Duggan

Suppose $V=\underline{\underline{V}}(\mathbb{M}, \tilde{\theta})$ is a rectifiable n-varifold in \mathbb{R}^{n+k} with generalised mean curvature $\underset{=}{H} \in I^{p}\left(\mu, \mathbb{R}^{n+k}\right)$ in U, that is

$$
\begin{equation*}
\int \operatorname{div}_{M} X d \mu=-\int X \cdot H \quad \mathrm{H} \mu \tag{I}
\end{equation*}
$$

for all $X \in C_{0}^{1}\left(U, \mathbb{R}^{n+k}\right)$, where $\mu=H^{n} L \tilde{\theta}$. Then, if $\tilde{\theta} \geq 1 \mu-a e$ in U. $p>n, 0 \in \operatorname{spt} \mu$ and $B_{\rho}(0) \subset U$, the regularity theorem ([A]) states that there are $\gamma=\gamma(n, k, p), \delta=\delta(n, k, p) \in(0,1)$ such that

$$
\frac{\mu\left(B_{\rho}(0)\right)}{\omega_{n} \rho^{n}} \leq 1+\delta, \quad\left(\int_{U}|\underline{\underline{H}}|^{p} d \mu\right)^{1 / p} \rho^{1-n / p} \leq \delta
$$

imply that spt $\mu \cap B_{\gamma \rho}(0)=q(g r a p h \quad u) \cap B_{\gamma \rho}(0)$ for some linear isometry q of \mathbb{R}^{n+k} and some $u \in C^{1,1-n / p}\left(B_{\gamma \rho}(0), \mathbb{R}^{k}\right)$. (Here $\left.B_{\gamma \rho}^{n}(0)=B_{\gamma \rho}(0) \cap \mathbb{R}^{n}.\right)$ we show here that a higher regularity prevails, and that u is actually $W^{2} p$ and that the density function $\tilde{\theta}$ is $W^{1, p}$. We write (1) in non-parametric form:
(2) $\left\{\begin{array}{cl}\int \theta \sqrt{g} g^{i \ell} D_{\ell} \eta=-\int \theta \sqrt{g} H^{i} \eta, & 1 \leq i \leq n \\ \int \theta \sqrt{g} g^{m \ell} D_{m} u^{j} D_{\ell} \eta=-\int \theta \sqrt{g} H^{n+j} \eta, & 1 \leq j \leq k,\end{array}\right.$ for $\eta \in C_{0}^{1}(\Omega)$, Ω a domain in \mathbb{R}^{n}. Because the results we obtain hold quite generally, as well as in order to simplify the exposition, we consider, instead of (2), the following system:

Then we have

THEOREM: Suppose $\Phi_{i}^{S}=\mathbb{R}^{n k} \rightarrow \mathbb{R}$ is c^{1} for each $1 \leq s \leq n+k, 1 \leq i \leq n$, that Φ_{i}^{s} has a C^{1} right inverse, that is there is $\tilde{\Phi}_{S}^{j}: \mathbb{R}^{n k} \rightarrow \mathbb{R}$ which is c^{1} for each $l \leq s \leq n+k, l \leq j \leq n$ and satisfies
(4)

$$
\sum_{s=1}^{n+k} \Phi_{i}^{S}(p) \tilde{\Phi}_{S}^{j}(p)=\delta_{i j} \quad p \in \mathbb{R}^{n k}
$$

that the following skew symmetry condition holds:

$$
\begin{equation*}
\sum_{s=1}^{n+k}\left(\left(D_{p_{m}^{t}}{ }_{\Phi_{i}^{s}}^{s}(p)\right) \tilde{\Phi}_{s}^{j}(p)+\left(D_{p_{m}^{t}} \Phi_{m}^{s}(p) \tilde{\Phi}_{s}^{j}(p)\right)=0\right. \tag{5}
\end{equation*}
$$

for all $p \in \mathbb{R}^{n k}, I \leq t \leq k, I \leq i, j, m \leq n$, and that the last k equations of (3) satisfy the Legendre-Hadamard ellipticity condition, that is

$$
\begin{equation*}
\sum_{s, t=1}^{k} \sum_{i, j=1}^{n} D_{n_{j}^{t}} \Phi_{i}^{n+s}(p) \zeta_{s} \zeta_{t} \xi^{i} \xi^{j} \geq \lambda_{p}|\zeta|^{2}|\xi|^{2} \tag{6}
\end{equation*}
$$

for all $p \in \mathbb{R}^{\mathrm{nk}}$ with $|\mathrm{p}| \leq \mathrm{P}$, and all $\zeta \in \mathbb{R}^{k}, \xi \in \mathbb{R}^{\mathrm{n}}$, where $\lambda_{\mathrm{P}}>0$.
Suppose also that $u=\left(u^{1}, \ldots, u^{k}\right): \Omega \rightarrow \mathbb{R}^{k}$ is in $C^{1, \alpha_{0}}\left(\bar{\Omega}, \mathbb{R}^{k}\right)$ for
some $\alpha \in(0,1)$, with $\sup _{\bar{\Omega}}|D u| \leq P$, and that u solves (3), with
$\theta \in L^{\infty}(\Omega), 1 \leq \theta \leq L_{1} L^{\mathrm{L}^{\bar{\Omega}}}-$ a.e. in Ω, and $\left(H^{1} \ldots H^{n+k}\right) \in L^{p}\left(\Omega, \mathbb{R}^{n+k}\right)$
for $p_{0}>n$; then

$$
u \in \mathbb{W}_{l o c}^{2, p_{0}}\left(\Omega, \mathbb{R}^{k}\right), \quad \theta \in \mathbb{W}^{1, p_{0}}(\Omega)
$$

and

$$
\begin{equation*}
D_{j} \theta(x)=H^{s}(x) \cdot \Phi_{s}^{j}(D u(x)) \quad L^{n}-\text { a.e. in } \Omega . \tag{7}
\end{equation*}
$$

Proof: (Outline) Let Ω_{0} cc: Ω with $\mathrm{d}=\mathrm{dist}\left(\bar{\Omega}_{0}, \partial \Omega\right)$. Let

$$
r=2\left(\frac{\log \alpha}{\log (1-\alpha)}\right)+1
$$

and choose domains $\Omega_{i}, l \leq i \leq r$, with

$$
\Omega_{0} \subset \subset \Omega_{r} \subset \Omega_{r-1} \subset \subset \ldots \subset \subset \Omega_{1} \subset \subset \Omega,
$$

with $\operatorname{dist}\left(\bar{\Omega}_{j}, \partial \Omega_{j-1}\right), \operatorname{dist}\left(\bar{\Omega}_{0}, \partial \Omega_{r}\right), \operatorname{dist}\left(\bar{\Omega}_{1}, \partial \Omega\right) \geq \frac{d}{r+1}, j=2, \ldots r$.
Let $0<h<h_{0}=\frac{d}{6(r+1)}, 1 \leq j \leq n$, and replace η in (3) by $\Phi_{s}^{j}\left(D u_{h}\right) \eta$ for each $l \leq s \leq n+k$, where for any $I_{\in} \in L^{1}(\Omega)$, f_{h} denotes its mollification. Then, using (4) and (5), we have

$$
\begin{equation*}
\int_{\Omega_{1}} \theta D_{j \eta}=\int_{\Omega_{l}} f_{h}^{j, i} D_{i \eta}+\int\left(f_{h}^{j}+\tilde{f}_{h}^{j}\right) \eta \tag{8}
\end{equation*}
$$

$j=1 \ldots n, n \in C_{0}^{1}\left(\Omega_{1}\right)$, where
(9)

$$
\left\{\begin{array}{l}
f_{h}^{j}{ }_{h}^{i}=\theta\left(\Phi_{i}^{S}\left(D u_{h}\right)-\Phi_{i}^{S}(D u)\right) \Phi_{S}^{j}\left(D u_{h}\right) \\
\tilde{f}_{h}^{S}=-\theta H^{s} \tilde{\Phi}_{S}^{j}\left(D u_{h}\right) \\
f_{h}^{j}=\theta\left(\Phi_{i}^{S}\left(D u_{h}\right)-\Phi_{i}^{S}(D u)\right) D_{z_{i}} \tilde{\Phi}_{S}^{j}\left(D u_{h}\right)
\end{array}\right.
$$

We digress here to develop some general results concerning functions which satisfy (8) and (9). For $0<h \leq h_{0}$ we let

$$
\Omega_{h}=\{x \in \Omega: \operatorname{dist}(\mathrm{x}, \partial \Omega)>\mathrm{h}\}
$$

and for $f \in L^{q}(\Omega), I \leq q \leq \infty, \gamma \in(0,1)$ and $z \in \bar{B}_{I}(0)$ we let

$$
\Delta_{z}^{h} f(x)=f(x+h z)-f(x)
$$

and

$$
\|^{\gamma} q^{q}(\Omega)=\left\{f \in L^{q}(\Omega): \sup _{z \in \partial B_{1}(0)} \frac{1}{h^{\gamma}}\left\|\Delta_{z}^{h} f\right\|_{q_{0} \Omega_{h}}<\infty\right\}
$$

$$
h>0
$$

(The spaces ${ }_{H E} \gamma, q$ are known as Nikolskii spaces.) The following inequalities are easy to prove:
(10) $\left\|\Delta_{z}^{h} f\right\|_{q \cdot \Omega_{2 h}} \leq h\left(\int_{\Omega_{h_{0}}}\left|\left(\frac{1}{h^{n}} \int_{B_{h}(x)} f(y) D_{y} \rho\left(\frac{x-y}{h}\right) d y\right) \cdot z\right|^{q} d x\right)^{1 / q}$

$$
+2 \sum_{i=1}^{n} \int_{0}^{h} \frac{1}{t^{n+1}}\left\|\int_{B_{t}(x)} f(y) D_{y_{i}}\left(\left(x_{i}-y_{i}\right) \rho\left(\frac{x-y}{t}\right)\right) d y\right\|_{q_{\theta} \Omega_{h_{0}}} d t
$$

(11) $\sup _{\Omega_{2 h}}\left|\Delta_{z}^{h} f(x)\right| \leq h \sup _{x \in \Omega_{h_{0}}}\left|\frac{1}{h^{n}}\left(\int_{B_{h}(x)} f(y) D_{y} \rho\left(\frac{x-y}{h}\right) d y\right) \cdot z\right|$ $+2 \sum_{i=1}^{n} \int_{0}^{h} \frac{1}{t^{n+1}} \sup _{x \in \Omega_{h_{0}}}\left|\int_{B_{t}(x)} f(y) D_{y_{i}}\left(\left(x_{i}-y_{i}\right) \rho\left(\frac{x-y}{t}\right)\right) d y\right| d t$.

Using (10) and (11) we can prove
LEMMA 1: If $f \in L^{q}(\Omega), I \leq q \leq \infty, f_{h}^{j}{ }^{i}, f_{h}^{j} \in L^{q}(\Omega), f_{h}^{j} \in L^{q_{0}}(\Omega)$, $1 \leq i_{, j} \leq n, 0<h \leq h_{0}$ with $q_{0}=\frac{n}{1-\gamma},\left\|f_{h}^{j}\right\|_{q_{0}, \Omega} \leq c$,

$$
\begin{equation*}
\left\|f_{h}^{j}{ }_{h}^{i}\right\|_{q, \Omega} \leq \mathrm{ch}^{\gamma}, \quad\left\|f_{h}^{j}\right\|_{q, \Omega} \leq \mathrm{ch}^{\gamma-1} \tag{12}
\end{equation*}
$$

for each $1 \leq i_{, j} \leq n$ and each $0<h \leq h_{0}$, where $\gamma \in(0,1)$ and c is independent of h and with

$$
\int f D_{j} \eta=\int f_{h}^{j, i_{D}}{ }_{i} \eta+\int\left(f_{h}^{j}+\tilde{f}_{h}^{j}\right) \eta
$$

for each $n \in C_{0}^{1}(\Omega), I \leq j \leq n$ and $0<h \leq h_{0}$, then $f \in \eta^{\gamma} q_{\left(\Omega_{h_{0}}\right) \text {. }}$
Also, by a simple variation of the difference quotient method, we have

LEMMA 2: Let $\mathrm{v}^{\mathrm{s}} \in \mathrm{C}^{1}(\bar{\Omega}), 1 \leq \mathrm{s} \leq \mathrm{k}$, be a solution to the system

$$
\int_{\Omega} \omega(x) \Psi_{i}^{s}(D v) D_{i} \eta=\int_{\Omega} g^{s} n, \quad 1 \leq s \leq k
$$

for $n \in C_{0}^{1}(\Omega)$, where $\omega \in C(\bar{\Omega})$, $\omega \geq 1, g^{s} \in L^{2}(\Omega), 1 \leq s \leq k$, Ψ_{i}^{s} is c^{1} in all its variables, $1 \leq i \leq n, 1 \leq s \leq k$ and

$$
\sum_{s, t=1}^{k} \sum_{i, j=1}^{n} D_{p_{j}^{t}} \Psi_{i}^{s}(p) \zeta_{s} \zeta_{t} \xi^{i} \xi^{j} \geq \lambda|\zeta|^{2}|\xi|^{2}
$$

for all $\zeta \in \mathbb{R}^{k}, \xi \in \mathbb{R}^{n}$ and $p \in \mathbb{R}^{n k}$ with $|p| \leq \sup _{\Omega}|D v|$, where $\lambda>0$. Then, if $\omega \in \operatorname{Hy}^{\gamma, 2}(\Omega)$, we have

$$
D_{i} \cdot v^{s} \in H^{\gamma}{ }^{2}\left(\Omega_{0}\right), \quad l \leq i \leq n, l \leq s \leq k .
$$

for any $\Omega_{0} \subset \subset$.

We return to the proof of the theorem: Lemma 1 , with $q=\infty$, and (8)
and (9) immediately imply the Hólder continuity of θ with exponent $\min \left(\alpha, 1-\frac{p}{p_{0}}\right)$. From (9) we have

$$
\left\{\begin{array}{c}
\left\|f_{h}^{i}\right\|_{2, \Omega_{1}} \leq c\left\|D u_{h}-D u\right\|_{2, \Omega_{1}} \tag{13}\\
\left\|f_{h}^{j}+\check{f}_{h}^{j}\right\|_{2, \Omega_{1}} \leq c h^{\alpha-1}\left\|_{D} u_{h}-D u\right\|_{2, \Omega_{1}}+c
\end{array}\right.
$$

so that replacing h by $h^{\frac{1}{1-\alpha}}$ and using Lemma 1 , we have

$$
\theta \in \frac{\alpha}{H^{1-\alpha}} \cdot 2\left(\Omega_{2}\right)
$$

provided $\alpha \leq \frac{1}{2}$. Lemma 2 now implies that

$$
D_{i} u^{s} \in \operatorname{ki}^{\frac{\alpha}{1-\alpha}}, 2\left(\Omega_{3}\right), \quad l \leq i \leq n, l \leq s \leq k
$$

Again replacing h by $h^{\frac{\alpha}{1-\alpha}}$ in (13) we see that

$$
\theta \in \mathbb{Z t}^{(1-\alpha)^{2}} \cdot 2\left(\Omega_{3}\right)
$$

provided $\frac{\alpha}{(1-\alpha)^{2}} \leq 1$. This procedure can be iterated $t=\left[\frac{\log \alpha}{\log (1-\alpha)}\right]$ times (so that $\frac{\alpha}{(1-\alpha)^{t}} \leq 1$ and $\frac{\alpha}{(1-\alpha)^{t}}+\alpha>1$) to obtain

$$
D_{i} u^{s} \in \mathbb{H}^{(1-\alpha)^{t}}\left(\Omega_{r}\right), \quad 1 \leq i \leq n, 1 \leq s \leq k
$$

Letting $h \downarrow 0$ in (8) and noting that none of the quantities depends on Ω_{0}, gives (7). The regularity of u follows by standard elliptic theory.

It is straightforward to check that the Euler-Lagrange equations arising from arbitrary C^{2} elliptic parametric integrands satisfy the hypotheses of the theorem. Thus we have the regularity as stated.

Furthermore we see that the theorem readily implies a constancy theorem for any varifold, stationary with respect to a C^{2} elliptic parametric integrand, whose support is contained in a $C^{1, \alpha}$ manifold for some $\alpha>0$.

REFERENCES

[A] W.K. Allard, 'On the first variation of a varifold', Annals of Math. 95 (1972), 417-491.
[Dl] J. Duggan, "Regularity theorems for varifolds with mean curvature", to appear.
[D2] J. Duggan, "W ${ }^{2} \mathrm{P}$ regularity for varifolds with mean curvature' to appear.
[F] H. Federer, Geometric Measure Theory, Springer-Verlag, Berlin, Heidelberg, New York (1969).
[GM] M. Giaquinta. Multiple integrals in the calculus of variations and non-linear elliptic systems', Vorlesungsreihe SFB 72, no. 6, Bonn (1981).
[GT] D: Gilbarg and N. Trudinger, ElZiptic Partial Differential Equations of Second Order, 2nd ed. Springer-Verlag, Berlin, Heidelberg, New York (1984).
[K] A. Kufner, O. John, and S. Fučik, Function Spaces, Noordhoff International Publishing, Prague, Academia (1977).
[MS] J. Michael and L. Simon. 'Sobolev and mean-value inequalities on generalised submanifolds of \mathbb{R}^{n}, Comm. Pure Appl. Math. 26 (1973), 361-379.
[MC] C. Morrey. Multiple Integrals in the Calculus of Variations, Springer--Verlag, Berlin, Heidelberg, New York (1966).
[P]
J. Peetre, 'New thoughts on Besov spaces" Duke University Mathematics Series 1 (1976).
[SL] L. Simon, "Lectures on geometric measure theory' "Proc. of C.M.A. . A.N.U., Vol. 3 (1983).
[SE] E. Stein, Singuzar Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton (1960).

