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BOUNDARY VALUE PROBLEMS FOR
FULLY NONLINEAR ELLIPTIC EQUATIONS

Neil S. Trudinger

We describe here some recent estimates and existence theorems
for classical solutions of nonlinear, second order elliptic boundary

value problems of the general foxm,

(1) Flul

i

F(X,u,Du,D2u) =0 in Q o,

it

(2) Glul G(x,u,bu) =0 on 90 ,

where §} is a bounded domain in Euclidean =n space, ® ; F, G are

. _ o .0 . n
real valued functions on the sets ' = QX RXR $ ; 'Y o= 30 X RXIR
respectively and $n denotes the linear space of nXn symmetric
real matrices. Letting X = (x,z,p,r ), X' = (x,z,p) denote points
in T, 'Y , we adopt the following definitions of ellipticity and
obliqueness for functions, F,G differentiable with respect to
r, p respectively. Namely, the operator F is elliptic at
Xe€Tl if the matrix

ij oF

F = [F j] = [z—/1

r

or, .
ij

is positive at X ; while the operator G is oblique at X'€ I'' if
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is positive at X', where V is the unit inner normal to 0of,
(which for this definition we assume sufficiently smooth). Letting
A, denote the minimum and maximum eigenvalues of Fr ;, we shall
call F uniformly elliptic with respect to a subset [cI if F
is elliptic on U and the ratio A/ is bounded there. These
definitions may be extended to non-differentiable F and G by

replacing A,A,X by the quantities

F(x,z,p,ri) - F(x,z,p,r)

A(X) = lim inf v
+
n-+o trace N
Ay = lim sup Flx,2,p,xH) - F(x,2,p,¥) ,
ﬂ'*0+ trace n

G(x,z,p,+tV) - G(x,z,p)

X(X')=  lim inf
t

t‘*O+
where 1€ $n , and t€ R are positive. Accordingly F 1is elliptic

and G obligue when A and ¥ are positive.

We shall confine attention here to operators which are uniformly
elliptic (for bounded z) and either Dirichlet or oblique boundary
operators. Important examples are furnished by the Bellman (oxr rathexr
Hamilton-Jacobi~Bellman) equations of stochastic control theory. If
L= {Lv, VE€V} is a family of linear elliptic operators on § , indexed
by a parameter V Dbelonging to an index set V , and F = {fv} is a
corresponding family of functions on ) , then the Bellman equation

corresponding to L,F is given by

(4) Flu}] = inf (Lu - £ ) =0
vev Y v
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Writing each Lv in the form ,

_ i3 i
(5) LVu . av (x) Diju + bv(x) Diu + cv(x)u y

we find that F is uniformly elliptic on [ if there exist positive

constants XO’AO such that
2 _ _ij 2
(6) A lElT s a7 S Ay lE]

for all £ € Igl, x€§Q , V€V . The connection between the Bellman
equation and stochastic control theory is treated in Krylov's pioneering
book [12]. The Bellman equations are also significant in the development
of the theory of fully nonlinear equations as their study, notably by
krylov, Lions, Evans among others, paved the way for the more general

theory that we outline below.

NATURAL STRUCTURE CONDITIONS

Appropriate hypotheses on the operators F and G can be
expressed as growth restrictions on the corresponding functions.
For quasilinear uniformly elliptic equations, Ladyzhenskaya and
Ural 'tseva, (see [17]), introduced a set of conditions which they
described as "natural®. For elliptic, fully nonlinear operators
of the form (1), we extended their conditions as folloWs [29] -

F1 A £ Ay, (Uniform ellipticity)

v

F2 |F(x,2,0,0)] < Xu0(1+|plz) ;

2
F3 : |FX|,|FZ[, (1+(p])|Fp| < Au1(1+}p| +z]) .
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These conditions are required to hold on any set of the form
UK ={X = (x,2,p,x) €T l |z|§£ﬂ and u,uo,ul are positive constants
depending on K.

As for the quasilinear case ([17]1, [181, [9]) F1, F2, F3 suffice
for the establishment of apriori gradient and gradient Hb6lder estimates
under appropriate boundary conditions [29]. But the treatment of
existence for fully nonlinear elliptic eguations, for example by the
method of continuity, requires also second derivative estimates. It.
turns out that a convenient condition on the second derivatives of F ,

which embraces both a reasonable extension of the natural conditions

and smooth approximations to the Bellman equation, is

82F
F4 : Fyy(X) =ax—ia—x~i' Yin

IA

wy A L]z e +]s] My

for all Y = (¥',s) € (I@XI(XIJH X $n . Condition F4 need only hold on
sets of the form GK =1{X = (x,z,p,x) €T l 1z|+l;ﬂ <Kk} and uz is a
further positive constant depending on K. We observe that F4 implies
the concavity of F with respect to r and moreover will be satisfied
if F 1is concave with respect to r and

(7) 3

ol o @l lE, | iz

where X' = (x,z,p) and ﬁz is a positive constant.

For oblique boundary operators G , a notion of natural conditions,

modelled on the linear case
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(8) Glul = Mu~g = BiDiu + Yu-g ,

was introduced by Lieberman and Trudinger [21]. These conditions,

corresponding to F2, F3, may be expressed as

G2 : letx,z,00 ] s uxa+le'h ;
G3 : le .16 |, a+lphle | suxa+leh .
X z p
where p' = p-(p°V)V is the tangential projection of p. Conditions
G2, G3 are required to hold for all X' = (x,z,p) €' with |z|§ K ,

for any’ K and uo,ul are again positive constants depending on K.
An example of a nonlinear operator G satisfying G2, G3 is furnished

by the capillarity boundary condition,

(9) clu] = veDu - g(x)Vl+!Du 2=0 on 00,

where sup[g|< 1.

THE CLASSICAL DIRICHLET PROBLEM

Here G = g(x)=z and a classical solution of the Dirichlet problem

(10) Flul =0 in £ , u=g on 0of

is a function wu € CZ(Q) ﬂco(ﬁ) satisfying (10) in the usual pointwise

sense. For the uniformly elliptic Bellman equations, the existence of

Cl'l(ﬁ) solutions of (10), (satisfying F[u] = 0 almost everywhere in )
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was established through the work of Evans and Friedman [7], Lions

and Menaldi [23], Lions [22] and Evans and Lions [8], and in special

cases, namely two dimensions and two operators,the classical solvability
resulted from the Morrey estimates (see[9]) and the work of Brezis and
Evans [1], respectively. The general interior HOlder estimates for

second derivatives which facilitated the classical solvability in the
general case were discovered independéntly by Evans [5],[6] and Krylov [13]
and are treated in [9]. Foxr operators F satisfying the natural structure

conditions, we established the following estimates in [29].

THEOREM 1 et w€c?(@) satisfy Flul =0 in § , where € c2(T)

satisfies F1,F2,F3 . Then for any subdomain 'CCQ, we have the estimate

v bl g
where o €(0,1) and C>0 , depend on n,u,uo,ul,lulo;Q
with C also depending on dist(Q',00). If F4 also holds, then

(12) [u] <c

2,0;0°
for some o€ (0,1) depending only on n,n and C depending also on
HgrHy by, dist(§',00) .

1

. . 1
We remark that Theorem 1 continues to hold for solutions u€C™ ' {Q)

and operators F of the form

(13) Flu] = inf Fv[u]
VEV
where {Ev} satisfies the natural conditions F1l..F4 uniformly in v,[31].
Furthermore conditions F3 and F4 may be relaxed slightly without
Jsignificant adjustment of our proofs, so that in particular we may

assume in their place :
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F3* aleh e [, 67 S, Ai+le| 4z

31212 2 y
pax v S uplaszD1717 ¢ aslehlal® +casleh13l+lah]s)3
where now Y' = (§,q), §€QXR'q€]Rn » and

- S
SF = F_ + 5°F

Further relaxation of F3* is also possible; (see [28],[41,[211).

The proofs of the first derivative estimates in Theorem 1 follow
the analogous quasilinear situation, és treated by Ladyzhenskaya and
Uralt'seva (see [91,[11), with the exception that non-divergence results
of Krylov and Safonov [16], Trudinger [28] are substituted for the
divergence structure approach in these works. There are three different
approaches to the second derivative bounds. A modification of Lions'
technique [22], (which was extended to cover interior estimates by
Lenhart [19]), is used by Caffarelli, Nirenberg and Spruck [4] while in
[29] we deduced interior (and subsequently global) second derivative
bounds by a completely different interpolation approach; (see also [32]).
In [24], [21] a further method based on Krylov's argument [13] is provided.
These three approaches all have merit; the Lions' approach permits a slight
weakening of the concavity condition, the author's approach dispenses with
conidition F2 while the Krylov approach turned out to be essential for the
treatment of second derivative bounds for oblique boundary value problems

in [24], [21].

Existence theorems follow from Theorem 1 when we adjoin a suitable
hypothesis to control suplu| . In particular, taking account of our
first remark above, we have the following result which includes the

Bellman case.
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THEOREM 2. et Q be a bounded domain in R with boundary 30
satisfying an exterior cone condition, g € CO(BQ) aond suppose that F
is of the form (13) where vV <is countable and {F\)]' satisfy

Fl..P4 wniformly in Vv , together with the condition
(14) (sign z) F, (x,2,0,0) $ PA (1+[p])

for all x€T,[z]2 M, for some positive constants ﬂ,MO . Then the
Dirichlet problem (10} is classieally solvable with solution

wec? [0 ﬂcz'a(ﬂ) for some o> 0 depending on n  and . u .

The solution of (10) is unique if szgo for all ve&€V . In fact
the proof of Theorem 2 proceeds through this case, (which can be handled
by the method of continuity and approximation near 098 [29]) , using
the Leray-Schauder method. The exterior cone condition yields the
necessary equicontinuity at the boundary for solutions of approximating

problems but can be replaced by weaker barrier conditions.

Theorems 1 and 2 can be extended to parabolic equations of the form ,
2
(15) +— = F[u] = F(t,x,u,Du,D"u)

in cylinders D = (0,T] X} where now F is defined on the set [’T =(0,TxT
for some positive T. The natural conditions Fl..F4 can be carried over
in the form :

F1l : AzA

Agyuh (Uniform parabolicity) ;

o’ 0

F2 : |7 (ex,2,0,0 | S Agug(1+[pl?)



73

F3

o0

2
D E [ 1 e ] S Ay @slp[+]z))

F4 : Fo %) S Agu, {@a+]eDy e |+]s]d e 7, | SAgh, ]y

t
with T replaced by FT and XO a further positive constant
(depending on K). Conditions F3%, F4* may be extended analogously

with ]Ft[§x0u2(1+|r|)3 in F4*. For a classical solution u of (15) ,

with D2u, g%*EC(D) ;, we then obtain, in place of (11), (12), the estimates
<
(16) |Du|0,0“D, <c,
2 du
—— <
(17) |p%u, 5tlo,am: S C

where o and C are as before except that they also depend on XO’ and
Q',Q,90 are replaced by D',D, 3'D respectively where

3'D= (30 x [0,T]) U (@ x{o}).

Extending the existence result, Theorem 2, we now deduce the classical
solvability of the first initial boundary value problem ,

(18) §E-= Flul] = inf F (t,x,u,Du,Dzu) in D,

ot vEeEv

u=g on 0D,

R . L 0
where o) satisfies an exterior cone condition, g€ C (9'D) and F\)
satisfy (for countable V) the amended structure conditions Fl..F4
uniformly in Vv , together with a condition ensuring an apriori sup

bound such as



{19} zEb(x,z,0,0) S Uz

for Iz[ éMO .

* GLOBAL REGULARITY

When the boundary data are sufficiently smooth, the solutions of
the Dirichlet problem (10), (whose existence are asserted in Theorem 2)
are corraspondingly globally smooth. In fact, by combining the global
derivative bounds in [29] and XKrylov's boundary Holder estimates [141,

we can deduce the following global regularity result.

THEOREM 3 Let u be a solution of the classical Divichlet problem (10)

where 30 €CS, g€c(Q) and F satisfies ¥1..F4 . Then uec? @
for some positive o depending on n,u and
p S
@ Il c
where C depends on n,U,g .U, sV, 00,9 and iuko;g-
3 . N 2,8 2,8
We remark that we can permit 9Q€C s g€cC {2y  for some
B>0 , in the above theorem and moreover if only 09f ¢ cl’B s g€ Cl'B(f-Z)

and FL..F3 hold, we conclude wu € Cl'a(ﬁ), [15]1. 1In these situations, o
depends also on B . The key to the boundary regularity is a remarkable
result of Krylov [14] concerning linear, uniformly elliptic equations,
(21) Lu a " (x) Diju £,

with principal coefficients satisfying

2 ij 2
Aolel® s a™ee, < ajlel” .



75

+ +
for all &€ R", for some positive AO’AO . If u ECO(B ur)n C2(B )
C s . + + + .
satisfies (21) in B = B1 and u=0 on T = T1 , where Bp is

the half ball {lxl< p,xn3>0} and Tp the flat boundary portion

{Ix|< p,xn==0} , then the function v = u/xn ECa(B+lJT) for some

0L=0L(n,Ao/)\o) >0 and moreover, for any p<1 ,

(22) (vl o+ S c(|u|O + |f/A010) )
"p

where C depends on n,Ao/}\0 and p . Krylov's original proof was
simplified by Caffarelli; a version is presented in [21]. An alternative
approach to boundary regularity, also relying on an interesting linear
result, was given by Caffarelli, Nirenberg and Spruck [3],(4]. For

the assertions of Theorem 3,it suffices to only have the HOlder estimate
k22) for v = Dnu on T. However the following consequence of the

full strength of Krylov's estimate is crucial for more general regularity

considerations.

THEOREM 4 Let uec?@ Nc®@) satisfy (21) in Q with u=g on
where 9Q € cl’B,g€ cl’B(ﬁ) for some B>0 . Suppose that for any

Qrcc ,
(23) Dulg o+ /25,0 < K (dist(Q',00)) P
Then u € cl'a(ﬁ), for some o = a(n,AO/AO.B) and

(24) Iull’m;Q sc (]u[O;Q + K+ Igll,B;Q) ,

where C depends on n,AO/AO,B and 39N .
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2 [
, E€L () and g = 0. The

We indicate the proof when Q€ C
general case follows by modification similar to the barrier arguments
in [10], [20]. By locally flattening the boundary 92 , we can reduce
to the situation described above in the half ball B+. Extending u

by odd reflection to the entire ball {|x|<1} , we consider the

function

w(x,y) = u(x+y) + u(x-y) - 2u(x)

for |x|,|y|< 1/4. Using (22), we estimate

le = |(xn+yn)v(x+y)+(xn—yn)v(x-y)-2xnv(x)|
o
s cx l+y DIvl™ dulg + lengly
1+y i
s c ly[77 dulg + leagly
provided 0<y<o and |[x| §|Yl1+Y-a . Next, by the assumed interior

estimate (23), we have

1+8 B
jul < 2y [/l |-l )
< c(o,Y)K [y[l+8(a_¥)
1+y-0.

for Ixn[ 2|y| Choosing Y appropriately, say 7Y = aB/(1+B8)

we now conclude u € Cl'Y(§+ )
1/4

Theorem 4 follows.  ~ The above considerations also extend to parabolic

by virtue of [27, Ch,5,Prop.8] and

problems. Theorem 4 also extends an earlier result of Lieberman which

requires the interior estimate for Du in (23) to have a special form.
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OBLIQUE BOUNDARY VALUE PROBLEMS

When G 1is oblique, we call u a classical solution of the
boundary value problem (1),(2) if 11€C1(§)Y]C2(Q) satisfies (1)
and (2) pointwise. TFor linear boundary conditions of the form (8),
the classical solvability of the uniformly elliptic Bellman equation,
undexr appropriate coefficient and boundary smoothness was established
by Lions and Trudinger [24]. This work ﬁas extended to operators F
and G satisfying the natural structure conditions by Lieberman and

Trudinger [21] resulting in the following theorem.

THEOREM 5 Let 9 be a bounded domain in R with boundary 30 GCZ'B
for some B>0 . Suppose that F satisfies the hypotheses of
Theorem 2 and that G ¢ co'l(T") satisfies the structure conditions

G2,G3 together with the condition
(25) (sign z) G(x,z,p) <0

for |z| 2M (Ip])  for some increasing function M Then the

0 -
boundary value problem (1),(2) is classically solvable with solution

uECl’q(ﬁ) nc?%q) for some a>0 .

Alternative conditions to (25), (14) are possible [21]. Furthermore
in the papers [24],[21] global second derivative bounds are established
under further smoothness of 08 and G and global second derivative
HOlder estimates are derived in the case of one operator F. These
latter estimates can be improved by means of Theorem 4 so that they also
embrace the uniformly elliptic Bellman equation and facilitate the
derivation of the second derivative bounds by the interpolation argument
of [29]. Corresponding to Theorem 3, we now have the following global

estimates [24].
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THEOREM 6 Let wu be a classical solution of the boundary value problem
(1),(2) where M€c® and rec?(I), cec®(I') satisfy Fl..F4,G2,G3.

Then wu¢€ Cz'a(ﬁ) for some positive o depending on n,y and

(26) |u|2'q;n <c

2
where C depends on n,u,uo,ul,uz,BQ,IuIO;Q and D G.

The smoothness hypotheses on 0f), F and G can be relaxed slightly.
The effect of Theorem 4 above is to eliminate a restriction (6.3)
(involving Holder continuity of Fr) in the corresponding estimates
in [24], Theorems 1.1, 6.2. Both Theorems 3 and 6 extend to operators
of the form (13), thereby extending Krylov's Cz'd(ﬁ) regularity for
the Dirichlet problem for the uniformly elliptic Bellman equation to
oblique boundary conditions satisfying the natural conditions G2,G3.
We note here that in the papers [21], [24] only Cl’l(ﬁ) regularity is
proved in this case; accordingly Cz'a(ﬁ) may be substituted for

Cl’l(ﬁ) in Theorem 1.2 of [24] and Theorem 7.11 of [21].

BELLMAN OBSTACLE PROBLEMS

Obstacle problems for the Bellman equation are related to the
optimal stopping of controlled diffusion processes [13]. If Y is

a smooth function on ) we may consider the following types of problems:

I inf (F[ul ,P-u) 0 in © , G[ul =0 on 030 ;

IT Fful =0 in Q , inf(Glul ,P-u) = 0 on 90 ;

IITI inf(F[ul ,P-u) 0 in ©Q , inf(G[u],Y-u) = 0 on o .
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Problems I, II, III will be referred to as obstacle, Signorini,
Signorini-obstacle respectively and in the last two cases the operator

G should be oblique. Let us assume here that F is a uniformly
elliptic Bellman operator (4) with coefficients alj, bt, c

v
1,1

v’ f\)’

V=1,...0,¢ Cl'l(ﬁ) with uniformly bounded C (©) norms, and

Cvé()Vv . The classical Dirichlet problem, G = g-z, for I was

treated by Lenhardt [19] and more recently by Perthame [26] who established
global Cl'l(ﬁ) regularity, following Jensen's work [11] for the linear
operator case. Oblique boundary value problems are treated by Lions and
Trudinger [25], utilizing the key linear equation result of Caffarelli,

Nirenberg and Spruck [3]. We may formulate some resultant existence theorems

as follows, for operators G of the form

(27) Glul = i:f (Mvu—gv)

where the linear operators

i
(28) Mvu =B vDiu+Yvu ,
satisfy :
< < LAVIER
(29) 0 AO s Bv v o;

B; Yyr 9y, ecl'l(ﬁ) with uniformly bounded Cl’l(ﬁ) norms ;

< Ve <
Yv £0 vEev, supyv + supev 0
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THEOREM 7 Let 9 be a bounded domain in R with boundary BQGEC4,

and ¢)€C1'1(ﬁ) . Then the above problems I,1I,III are uniquely solvable

with solutions u€ co'l(ﬁ)Flc;’ng), Glul € Co(ﬁ) , provided in case I we .aleo have
GIy1S 0on o . In this case u € Cl(Q) n Cl'l(Q) and moreover if

1,1 5

(Mv'gv) = (M,g) <s constant in VvV , then u € C (Q) .

These results also extend to parabolic operators and to more
general F[25].  It is known from the linear case [2], that one cannot
s . 1,0 ,= . .
expect global regularity beyond ' C "7(Q), for certain o<1 , for the

Signorini problems II and III.
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