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BOUNDARY VALUE PROBLEMS FOR 

FULLY NONLINEAR ELLIPTIC EQUATIONS 

Neil S, Tntdinger 

We descx-ibe here some recent. es·tima·tes and exis"'cence ·theorems 

fo:c classical solutions of nonlinear, second order elliFtic boundary 

value p1~oblems of the general form, 

(1) 

(2) 

where :\l 

F[u] 

G[u] 

2 
F(x,u,Du,D u) 

G(x,u,Du) 0 

0 in 

on 

is a bounded domain in Euclidean 

real valued functions on the se·ts r = :\l x JR 

n 
n space, JF( 

denot.es the linear space of n><n 

F, G are 

n 
()0, X JR XJR 

symmetric 

real ma·trices. Le·t·ting X= (x,z,p,r ) , .X' = (x,z,p) denote points 

in r, r• we adopi: the following definitions of ellipticity cmd 

obliqueness for functions, F ,G differen'ciable 'JJith respect to 

r, p respec·ti vely. Namely, the operator F is e Z lip tic a·t 

X E f if the ma·trix 

F 
r 

is positive a·t X 

X G 
p 

[~] 
Clr .. 

l.J 

vlhile the operator G is obZique at X' E r I if 
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is positive at X' 1 where \i is the unit inner normal to ()Q 1 

(which for this definition we assume sufficiently smooth). Letting 

AlA denote the minimum and maximum eigenvalues of F 
r 

we shall 

call F uniformly elliptia with respect to a subset Ll cr if F 

is elliptic on U and the ratio A/A is bounded there. These 

definitions may be extended to non-differentiable F and G by 

replacing A1 A1X by the quantities 

A (X) 

A(X) 

X(X')= 

lim inf 

n-+ o+ 

lim sup 

n-+ o+ 

lim inf 

t-+ 0+ 

F (xlz 1P1r+n) - F(xlzlp1r) 

trace n 

F(x 1zlplr+nl - F (x1Z1!21r) 

trace n 

G(X 1Z1p 1+t\i) - G(x 1zlp) 

t 

where n E $n 1 and t E lR are positive. Accordingly F is elliptic 

and G oblique when A and X are positive. 

We shall confine attention here to operators which are uniformly 

elliptic (for bounded z) and either Dirichlet or oblique boundary 

operators. Important examples are furnished by the Bellman (or rather 

Hamilton-Jacobi-Bellman) equations of stochastic control theory. If 

L = {L 1 v E v} is a family of linear elliptic operators on Q 1 indexed 
\) 

by a parameter \i belonging to an index set V 1 and F {f) is a 

corresponding family of functions on Q 1 then the Bellman equation 

corresponding to L1 F is given by 

{4) F[u] inf (L u - f\)) 
vEv v 

0 
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Writing each LV in the form , 

(5) 

we find that F is uniformly elliptic on r if there exist positive 

constants A0 ,A0 such that 

(6) 

for all l; E JRn , x E Q , V E V • The connection between the Bellman 

equation and stochastic control theory is treated in Krylov's pioneering 

book [12]. The Bellman equations are also significant in the development 

of the theory of fully nonlinear equations as their study, notably by 

Krylov, Lions, Evans among others, paved the way for the more general 

theory that we outline below. 

NATURAL STRUCTURE CONDITIONS 

Appropriate hypotheses on the operators F and G can be 

expressed as growth restrictions on the corresponding functions. 

For quasiZinear uniformly elliptic equations, Ladyzhenskaya and 

Ural •tseva, (see [17]), introduced a set of conditions which they 

described as "natural". For elliptic, fully nonlinear operators 

of the form (1), we extended their conditions as follows [29] : 

F1 A ~ A~, (Uniform ellipticity) 
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These conditions are required t:o hold on any set of the form 

= {x = (x,z,p,r) E r I I zl ;;; K} and are positive cons·tant.s 

depending on K. 

As for t:he quasilinear: case ([17], [18], [9]), Fl, F2, F3 suffice 

for the establishment of apriori gradient and g-radient Holder es~:imates 

under appropriate boundary conditions [29] " But the 'creat:ment. of 

existence for fully nonlinea:t· ellipt:ic equa'cions, for example by the 

method of continui·ty, requires also second derivative es'cimates. It. 

·turns out that a co:n'\l·enient conditio~n on the second derivatives of F 

which embraces both a reasonable extension of the natural condi·tions 

and smooth approxima·tions to the Bellman equation, is 

F4 F (X) 
yy Y.Y. 

~ J 

for all Y = (Y' , s) E ~n . Condition F4 need only hold on 

sets of the form = {x (x,z,p,r) E r I lz I+IPI ;;; K} and is a 

further positive constant depending on Ko 1iJe observe tha·t F4 implies 

the concavity of F with respect to r and moreover will be satisfied 

if F is concave with :cespec·t 'co r and 

(7) 

where X' (x,z,p) and is a positive constant. 

For oblique boundary operators G , a notion of natural conditions, 

modelled on the linear case 



{8) G[u] i\iu-g 
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B .D.u + yu-g , 
l l 

corresponding to F2 ,_ F3 i' may be expressed as 

G2 

G., _, I G I' I G I 
X Z 

(l+IPiliG I;;; 
p 

where p' = p- (p•V)'~J is t:h.e t<:mgen-tial projection of p. Condit.ions 

G2 1 
r·~ ..;),) are required ·to hold for all XTI (x,z,p) E r ' wit:h I zl ~ K 

fo:r: any K and ar17} again constan·ts defJe:nding on K. 

.y 

A:n example of a :nonlinear op6rat:or G sat.isfying G2 1 G3 is furnished 

by the capilZ.art:ty bou:ndaJ~Y condition, 

(9) G[u] 0 on 

where sup I c;r I < 1 . 

THE CLASSICAL DIRICHLET PROBLEM 

Here G g (x) -z and a classica.l solution of the Dirichle·t problem 

(10) F[u] 0 in \1 , u g on 

is a func:·tion u E c'" (Q) n c0 satisfying (10) in the usual pointwise 

sense. ),,or the uniformly elliptic Bellman equations, the existence of 

c1 ' 1 (1'i) solutions of (10), (sa'cisfying F[u] = 0 alrnost ever_ywhere in Q) 
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was established through the work of Evans and Friedman [7], Lions 

and Menaldi [23] , Lions [22] and Evans and Lions [8] , and in special 

cases, namely two dimensions and two opera·tors, the classical solvability 

resulted from t.he Norrey estimates (see[9]) and the work of Brezis and 

Evans [1], respectively. 'rhe general interior Holder estimates fo:r· 

second deriva·tives \vhich facilit:ated the classical solvabili·ty in the 

general case were discovered independently by Evans [5],[6] and Krylov [13] 

and are treated in [9] . For operators F satisfying the natural structure 

conditions, we established the following estimates in [29]. 

THEOREM 1 Let uEc2 (Q) satisfy F[u] = 0 in Q , where FE (f) 

satisfies F1,F2,F3 Then any subdomain Q • cc Q , we have the estimate 

(11) lui ~ C l,a;D' 

whel"e a E (O ,1) and c > 0 , depend on 

with c also depending on dist (Q', ClQ). If F4 also holds3 then 

(12) 

for some a E (0,1) depending only on n,p and c depending also on 

We remark tha'c Theorem 1 continues t:o hold for solutions u E c1 ' 1 (Q) 

and operators F of the form 

(13) F [u] inf 
v E IT 

[u] 

where {F } satisfies ·the natu:r·al conditions Fl .. F4 uniformly in v, [ 31] . 
\) 

Furthermore condi·tions F3 and F4 may be relaxed slightly without 

significant adjus·tment of our proofs, so that in particular we may 

assume in their place : 



F3* 

F4* 

where now Y' 

OF 
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(y ,q), yEn X JR , q E ]Rn , and 

F z 

Further relaxation of F3* is also possible; (see [28], [4], [21]). 

The proofs of the first derivative estimates in Theorem 1 follow 

the analogous quasilinear situation, as treated by Ladyzhenskaya and 

Uralt'seva (see [9],[1]), with the exception that non-divergence results 

of Krylov and Safonov [16], Trudinger [28] are substituted for the 

divergence structure approach in these works. There are three different 

approaches to the second derivative bounds. A modification of Lions' 

technique [22], (which was extended to cover interior estimates by 

Lenhart [19]), is used by Caffarelli, Nirenberg and Spruck [4] while in 

[29] we deduced interior (and subsequently global) second derivative 

bounds by a completely different interpolation approach; (see also ['3-2]). 

In [24], [21] a further method based on Krylov's argument [13] is provided. 

These three approaches all have merit; the Lions' approach permits a slight 

weakening of the concavity condition, the author's approach dispenses with 

conidition F2 while the Krylov approach turned out to be essential for the 

treatment of second derivative bounds for oblique boundary value problems 

in [24] , [21] . 

Existence theorems follow from Theorem 1 when we adjoin a suitable 

hypothesis to control suplul . In particular, taking account of our 

first remark above, we have the following result which includes the 

Bellman case. 
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THEOREM 2. Let n be a bounded domain in JRn with boundary an 

satisfying an exterior aone aondition, g E c0 (ClQ) and suppose that F 

is of the form (13) where v is aountable and {F) satisfy 

Fl .. F4 uniformly in v , together with the aondition 

{14) 

for aU x E r, Jz I <;: M0 for some positive aonstants il,M0 . Then the 

Diriahlet problem (10} is alassiaally solvable with solution 

o - 2 a 
u E c (Q} n c ' (Q} for some a > o depending on n and . 11 

The solution of (10) is unique if F ~ 0 
\)Z 

for all vEv In fact 

the proof of Theorem 2 proceeds through this case, (which can be handled 

by the method of continuity and approximation near ()Q [29]) , using 

the Leray-Schauder method. The exterior cone condition yields the 

necessary equicontinuity at the boundary for solutions of approximating 

problems but can be replaced by weaker barrier conditions. 

Theorems 1 and 2 can be extended to parabolic equations of the form , 

(15) 
Clu 
Clt = F[u] 

2 F(t,x,u,Du,D u) 

in cylinders D = (O,T] xQ where now F is defined on the set fT =(O,T]X f 

for ~orne positive T. The natural conditions Fl •. F4 can be carried over 

in the form : 

Fl (Uniform parabolicity) 

F2 
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F3 

F4 

with f replaced by fT and A0 a further positive constant 

(depending on K). Conditions F3*, F4 1• may be extended analogously 

>..vi-"ch jFtl ;;;;\l12 (1+jrj) 3 in F4*. For a classical solution u of (15) ' 
>vith 

2 
D u, Clu E C (D) 

Clt ' 
we then obtain, in place of (11)' (12) ' the estimates 

(16) jnulo,a;D' ;;; c ' 

(17) 

where 0: and C are as before except tha·t they also depend on A0 , and 

rl' ,[l,()Q are replaced by D' ,D, Cl'D respectively where 

d 10 = ( ()Q X [ 0, T] ) U (Q X { 0}) • 

Extending i:he existence result, Theorem 2, we now deduce the classical 

solvability of >che first initial boundary value problem , 

(18) F[u] 
2 

inf FV(t,x,u,Du,D u) in D, 
vEv 

u g on Cl'D , 

where satisfies an exterior cone condi·tion, g E c0 ( 3 'D) and 

satisfy (for countable V) b'l.e amended structure conditions Fl. .F4 

uniformly in v , together with a condition ensuring an apriori sup 

bound such as 
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(19) z 

tb.e: Dirichlet:. p:Coble:nl 

deri.\rati·ve bounds in and Krylov~s 

deduce tJ:--J.e follov{i:n~t global :ce~rularity res.ul~t .. 

Eat u be (10) 

E 

some 

(20) 

whel'e C depends on n, v, ,dr.!;g and 

for scrm.e 

S .> 0 r in ·the abov·e theox:em and moreover if only ();;?, E gE 

and Fl .. ~'3 hold, 11m conclude [ 15] . In tJ1ese si1:uat:ions., a~ 

depends also on S 'I'he key t:o the boundary regularicty a rerGarkable 

of Kr-tlov [14] concerning linear, uniformly elliptic equ<rtions, 

(21) Lu (x) f 

with principal coefficients satisfying 
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satisfies (21) in + 
B and u = 0 on T = T1 , where is 

the half ball {ixl <p,x >o} 
n 

and the flat boundary portion 

{jxl<p,x =O} 
n 

, then the function 
a + 

v = u/xn E C (B U T) for some 

(22) 

where C depends on n,A0 /A0 and p . Krylov's original proof was 

simplified by Caffarelli; a version is presented in [21]. An alternative 

approach to boundary regularity, also relying on an interesting linear 

result, was given by Caffax·elli, Nirenberg and Spruck [3], [4]. For 

the assertions of Theorem 3,it suffices to only have the Holder estimate 

(22) for v Dnu on T. However the following consequence of the 

full strength of Krylov's estimate is crucial for more general regularity 

considerations. 

THEOREM 4 Let u E c2 (s-2) n c0 d'h satisfy (21) in f2 with u = g on orl 

for some S > 0 • Suppose that for any 

n•ccQ ' 

(23) 

Then 1 a -
u E c ' (Q) , for some 

(24) 
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We indicate the proof when an E c2 , f E L00 (r!) and g = 0. The 

general case follows by modification similar to the barrier arguments 

in [10], [20]. By locally flattening the boundary an, we can reduce 

to the situation described above in the half ball + B • Extending u 

by odd reflection to the entire ball { \xI < 1} , we consider the 

function 

w(x,y) u{x+y) + u(x-y) - 2u(x) 

for \xI , \ y I < 1 /4. Using (22), we estimate 

\wj I (x +y )v(x+y)+(x -y )v(x-y)-2x v(x)! 
n n n n n 

'd d 0 < < d \x I ~ Jy\ Hy-a • N t b th d · t · prov~ e y a an n ex , y e assume ~n er~or 

estimate (23), we have 

I x I ::::_ I Y ll+y-a. S S for n Choosing y appropriately, say y =a /(1+ ) 

we now conclude by virtue of [27, Ch,S,Prop.B] and 

Theorem 4 follows. The above considerations also extend to parabolic 

problems. Theorem 4 also extends an earlier result of Lieberman which 

requires the interior estimate for Du in (23) to have a special form. 
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OBLIQUE BOUNDARY VALUE PROBLEMS 

When G is oblique, we call u a classical solution of the 

boundary value problem (1), (2) if u E c1 d"il n c2 (Q) sa·tisfies (1) 

and (2) pointwise. For linear boundary conditions of the form (8), 

the classical solvability of ·the uniformly elliptic Bellman equation, 

under appropriate coefficient and boundary smoothness was es'cablished 

by Lions and Trudinger [24] . This work ~>Jas extended to opera·tors F 

and G satisfying the natural structure conditions by Lieberman and 

Trudinger [21] resulting in the following theorem. 

for some B > 0 Suppose that F satisfies the hypotheses of 

Theorem 2 a:nd that G E c0 ' 1 (T') satisfies the str'Uature cond-i-tions 

G2,G3 together with the condition 

(25) (sign z) G(x,z,p) < 0 

for• I z I ~ M0 ( I pI ) for some increasing funct?:on M0 Then the 

boundar•y value problem (1), (2) is classically solvable with soluti.O"a 

u E c1 'ad'h n c2 'a(Q) for some a> o • 

.IUternative conditions to (25), (14) are possible [21]. Furthermore 

in ·the papers [24], [21] global second derivative bounds are established 

under further smoothness of a~ and G and global second derivative 

Hblder es·tima·tes are derived in the case of one operator F. These 

latter es·timates can be improved by means of Theorem 4 so that they also 

~.furace the uniformly elliptic Bellman equation and facilitate the 

derivation of the second derivative bounds by the in:terpolation argument 

of [29]. Corresponding to Theorem 3, we now have the following global 

estimates [24] . 
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THEOREI~ 6 Let u be a alass1:cal solution of the bounda:ry value probZ.em 

(1),(2) where f:lQEc4 and ~"Ec2 (f), GEC2 (f') sat;isfy FL"F4,G2,G3. 

Then u E c2 ,a d'h for some posi·tive a depending on n, f.\ and 

(26) 

where c depends on n 

The smooi:hness hypotheses on (lQ, F and G can be relaxed slightly. 

The effect of Theorem 4 above is to eliminate a restriction (6.3) 

(involving Holder continuity of Fr) in the corresponding estimates 

in [24], Theorems 1.1, 6.2. Both Theorems 3 and 6 extend to operators 

of the form (13), thereby extending Krylov's regularity for 

the Dirichlet problem for the uniformly elliptic Bellman equation to 

oblique boundary conditions satisfying the natural conditions G2,G3. 

'h h . h ["1] [2 ., 1 1 • 1 r'n) 1 . . We note ere t.at J.n t,e papers -. . , _ 4J on y C '" regu arJ.ty :ts 

proved in this case; accordingly 

in Theorem 1.2 of [24] and 'I'heorem 7"11 of [21]" 

BELLMAN OBSTACLE PROBLEMS 

Obstacle problems for the Bellman equation are related to the 

optimal s"copping of corrl:rolled diffusion processes [13] . If 1jJ is 

a smooth function on Q we may consider the following types of problems: 

I inf(Ff.u],l/J-u) = 0 in Q, G[u] 0 on an ; 

II F [u] 0 in l2 , inf(G[u],l/J-u) 0 on (lQ 

III inf{F[u],ljJ-u) 0 in Q, inf(G[u],l/J-u) 0 on 



79 

Problems I, II, III will be referred to as obstacle, Signorini, 

Signorini-obstacle respectively and in the last t.wo cases the operator 

G should be oblique. Let us assume here that F is a uniformly 

ij i 
elliptic Bellman opera·tor (4) wi'ch coefficients a\! , b\!, c\!, f\!, 

l 1 - 1 v = 1,. 0 • 00 , E C ' (i:l) with uniformly bounded ' (i''lJ norms, and 

;;; 0 V v . The classical Dirichlet problem, G = g-z, for I \vas 

·treated by Lenhardt [19] and more recently by Perthame [26] who established 

global c1 ' 1 (fj) regularity, following Jensen's work [11] for the linear 

opera·tor case o Oblique boundary value problems are treated by Lions and 

Trudinger [25] , utilizing the key linear equation result of Caffarelli, 

Nirenberg and Spruck [3] • We may formulate some resultant exis·tence theorems 

as follo•tl"s, for operators G of the fonn 

(27) G[u] 

where the linear operators 

(28) 

satisfy 

(29) 

i S D.u+y u 
\) ~ \) 

with uniformly bounded 

y ::.o'rivEv, 
\) 

1 1 -
C ' (:ll) norms 

< 0 



THEOREM 7 Let n be a bounded domain in :JRn with boundary an E c4 , 

l 1 -and 1jJ E c - ' m) Then the above problems I I II I II I are uniqueLy 80 Z.vab Ze 

with soLutions u E 1 (i'i) n c1 ' 1 r,QJ , G [ul E (Q) , provided in ease I~ we ,a1.so l1ave 

G [1/Jl :;; o on an In this case u E (Q) n c1 ' 1 (S1) and moreover if 

(Mv,gv) = (M,g) is constant in v, then u E c 1 ' 1 (Q) . 

These results also extend to parabolic operators and 'tO more 

general F[25]. It is known from the linear case [2], that one cannot 

expect global regularity beyond 
1 0!, -

C ' (Q) , for certain a < 1 , for the 

Signorini problems II and III. 
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