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HAMILTONIAN SYSTEMS WITH
MONOTONE TRAJECTORIES

John Toland

1. INTRODUCTION

Recently Helmut Hofer and I [1] studied a class of ordinary
differential equations on E@n which possess a Hamiltonian structure
of a non-standard type. We considered the class of equations which

can be written in the form
d(t) = splt) , plt) = =V'(q(t)) , (a(t),p(t)) € R™xR", te€R,

where S is a non-singular invertible self-adjoint operator on r®
with one negative and n-1 positive eigenvalues, and V' denotes the
gradient of a smooth potential function V. The total energy, or

Hamiltonian, which is conserved along trajectories is

N

H(q(t),p(t)) = 5 (Sp(t),p(t)) + V(q(t)) .

Because S is not positive-definite the quadratic form (Sp(t),p(t))
may be negative, and since the corresponding quadratic form in classical
Hamiltonian dynamics is the positive kinetic energy functional, our
theory does not include classical particle dynamics as a special case.
However, systems such as ours do arise in applied mathematics, the
most familiar example being the nonlinear Sturm Liouville problems for

equations and systems.
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EXAMPLE 1  NONLINEAR STURM LIOUVILLE -EQUATIONS

The familiar equation

—u" (t) = £(u(t)) , t€R ,

may be written as a Hamiltonian system

qle) = -plt) , p(t) =F'(q(t)), t€R,

where F denotes a primitive of £. In thiscase n=1, 8§ : R>+R =

and V = ~F.

REMARK 1In some ways this example is the prototype of the theory to be
developed shortly, since for n>1 the thrust of the hypothesis on S

is to make the problem essentially one-~dimensional.

EXAMPLE 2 BONA-SMITH EQUATIONS [2]

The equations

1w, 1.2
n3n +2u+dl,

c(u-%—u")

1
0(n-—3-n") u+un+d2 v

have solutions representing travelling wave solutions of Boussinesqg
equations modelling long waves in a nonlinear dispersive medium. Here
c is the phase speed of the wave and dl and d, are constants. If

2
we put g = (u,n)
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Vv{u,n) % (u2+n2+u2n) - cun+d T]+d2u ,

1

and

376 3/c

2]
it

3/c 0

then taking p = é , we obtain a system of the class about to be considered.

REMARK A rather complete picture of the travelling wave phenomena associated
with this and similar Boussinesq systems may be obtained as special cases

of the theory below. The same is true of the next example.

EXAMPLE 3 FITZ-HUGH NAGUMO EQUATION [3]

An extension of the Fitz~Hugh Nagumo equations

Y, = DlAu+f(u)—w yoW = D2Aw+€(u—yw) ’
has associated with it the stationary problem which in one dimension

takes the form

LD, >0,

Dlu" = w-f(u) , D,w" = g(yw-u), D1 5

which can be written in Hamiltonian form, where the Hamiltonian is

L 0 e, /e)p?) +F(a) -aq,+ v, and  (q,,q,) = (@), (B ,p,)=(a,m
2 P1P7 B /E)P, 97 T Q9T Ve 9109y’ = (W ipy Pyl =tu,w).
Clearly the quadratic form is indefinite, and the problem is in the class

we defined earlier.



54

The salient feature of the whole class of systems under consideration
is that conservation of total energy imposes a natural oxdering on
the trajectories of solutions. Before considering more general situations
it is instructive to examine EXAMPLE 1 where the observation is trivial.
In this example %-é(t)z + FP{g(t)) = ¢ , a constant, along trajectories,
and between the zeros of c¢-F(g(t)) the function &(t) does not change
sign ; in other words g is a monotonic function of t between the
zeros of c-F(g(t)). Of course this observation is central when one
comes to a phase plane analysis of solutions of such problems. The

higher dimensional analogue is the following.

Let e denote a normalised eigenvector corresponding to the unigue

negative eigenvalue of § , and let
n -1 < 20}
P={qge¢R : (5 qg,q)20, (g,e)20 .

. . n . .
Then P is a closed convex cone in R, and in the usual way it

. . n
induces the natural orxdering on R :

< i i ~q, €P .
ql_.q2 if and only if q2 ql 4

Now suppose that (g(t),p(t)) is a solution of the Hamiltonian

system é = Sp ., ﬁ = =V'(g) , so that

(sp(t) ,p(t))+ V(g{t)) =c , tE€R.
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Then between the zeros of c¢c-V(g(t)) , the function (Sp,p) does

not change sign. In order words (S—lé(t),é(t)) = (Sp(t),p(t))

does not change sign between the zeros of c¢-V(g(t)). Now if the
latter is positive between two of its zeros (if any), then

c';(t) €P or -P , and so the trajectory g(t) is monotonic in this
interval. (Note than é cannot pass from P to =P , or vice versa,
except at a zero of c-V(g(t)).) In the case when n=2 , the situation
is even more straightforward, for then the complement of P°U(-P°)
(where ©° denotes interior) is the union of two disjoint convex cones
Q and ~Q . In this case g is monotonic increasing with respect

to *P ox to *Q when c¢-V(q(t))#0 , and the type monotonicity

involved changes only at the zeros of c=V(g(t)).

Returning to the general case there is one further observation
which is central in this theory. If a trajectbry is monoténic with
respect to P, say, and V(g(t))-c>0 on (a,b) where V(g()) = c
then (s™1q(b),q(b)) = (Sp(b),p(b)) = c-V(q(b)) = 0. In other words
as the spatial component ¢ of a solution passes through a point of
potential energy ¢, then the velocity of the trajectory is constrained
to lie in a vexry small subset of E{I, namely on the conical surxface

{q : (S-lq,q) =0}cm™.

These features of this class of systems are very potent in an
analysis of their trajectories. Essentially what distinguishes them
from classical Hamiltonian systems is that here the "kintic energy"”
term (Sp,p) can get very large and negative to compensate for the
potential energy V becoming very large and positive. Of course

this would be true if S were simple indefinite: the fact that it is
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indefinite with precisely one negative eigenvalue gives the monotonicity
of trajactories which is so essential to the subsequent development.
At this stage it is not clear what analogous theory might be available

when S has more than one negative eigenvalue.

We make the following assumptions about V in oxrder to cbtain

the main results of [1].

Suppose that there exists a bounded, open convex set ccr®
such that V>0 in C,v=0 on 3C , and if g€dC with V'(q) =0, then CCg+p.
(Note we do not exclude the possibility that V' (g) #0, g€aC .
Howeper, there is at most one zero of V' on 3C, and C lies
completely in the cone q+P in this case.) We also require that at
certain points 93C 1is strictly convex ; namely 1f (sV'(g),V'(g)) = 0,

then (V" (q)SVi(q),SV'(g)) <0 .

REMARK 1f the boundary 0OC is strongly convex everywhere then the last
condition is automatically satisfied. Even when we do not have a strongly
convex boundary, the result below may still be true, being proved by

an approximation argument.

Under the above hypotheses we obtain a result about the existence
of bounded orbits whose projection onto g-space connect two points of
the boundary of 3 . These orbits are of a very special type among the

class of periodic orbits for dynamical systems.

DEFINITION We say an orbit is of type s (or an s-orbit)
1f q(t+T) = q(T-t) for all t€® oand p(T) =0 for every TER

such that (T) =0 for some i = 1,2,...,n.
pl

This means that all the components of p = (pl""’Pn) are
synchronised sothat if one vanishes, then they all vanish, and the orbit

in g space is symmetric about t = T.
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The hypotheses above led to the following observation.

THEOREM  There exists an s-orbit such that q(0) €3C , p(0) =0 ,

and q(t)€ C for all t€R. Moreover, if V'(q)#0, g€3C , there

is at least one periodic s-orbit, of period T, Joining two points

of dC by monotone trajectories in C every half period, and

q(0) = qg(T/2) €3C , p(0) = p(T/2) = O.

If vV'(g¥) = 0 , g* €3C, then there are no periodic s~orbits with

q(0) € 3C and p(0) =0, but there exists a homoclinic s-orbit such that
g(0) €3C,p(0) =0 , and g(t)+g* as t+® , g(t) €C , £>0 .

The proof of this is obtained using a shooting argument in ]fl,

and the main tool to be employed is the Brouwer degree of a continuous
mapping on an open subset of ®' . To define precisely what map is
involved, we need to examine the geometrical set-up. The details of
these proofs are to be found in [1], so here i will confine attention to
a heuristic justification of the claims made in the next section. In
the next section also the result is established using an argument

slightly different from that given in [1].

2. AN OUTLINE OF THE PROOF

We take as cooxrdinate axes orthogonal lines spanned by the eigen-

vectors of S , and we may assume, without loss of geneality, that the

nth eigenvector corresponds to the unique negative eigenvalue which

is -1. Thus Se = -e and Se, = Aiei, Ai> 0, i=1,2...,n-1,”eﬂ|=l,i=1,2,...,n.

For the sake of a convenient notation, abbreviate by putting e = e, -

Recall that P = {g€ R : (S‘.lq,q) <0, (g,e)20}. So now let I'C 3C

be the set
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{g€dc : (sv'(q),V'(qQ)) <0 , (V'(g),e) <O} .

REMARK T is the set of all points ¢ €93C whose outward normal makes an
acute angle with e (that is, (V'(qg),e) <0) , and whose tangent plane
to 0C is parallel to a tangent plane to the level set (S_lq,q) = a

for some a<0 . In particular, the boundaxry 9dI' of I in 0oC , is

the set

T = {g€dc : (SV'(q),v'(q)) =0, (V'(q),e) <0}

and consists of those points of 9C whose outward normal makes an acute
angle with e , and whose tangent plane is parallel to one of the tangent

planes to the conical surface (S_lq:q) =0 .

~

If V'(g) # 0 , g€09C , then there is another set [ defined
analogously using (V'(q),e) >0 , instead of (V'{(qg),e)<0 . 1If
Vi(g*) =0, g¥€03C , then CCg* + P, and as a consequence
I'={g€dc : (sv'(@),v'(q)) <0} .

This remark is very easily observed by drawing a diagram in Eg , and

is proved in [1].

Let P denote the orthogonal projection defined in Igl by

Pg = q - (q,e)e ,

The following result is geometrically clear, and may be proved

from the Implicit Function Theorem.
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LEMMA The projection P : T=+p(I) is a homeomorphism and P (dT) =23 (PT)cC w7

The next result is also geometrically obvious, but its proof is
slightly more subtle .
= = -1 . .
LEMMA The sets T<cdc and Pp(T)CR" are contractible in themselves

to a point.

The proof of this is based on the observation that the evolution

equation

GE) = SV'(q(E)) - ((SV' (q(E)), V' (q(t))V* (q(t)) /Iv' (qe)) %)

leaves [I' invariant, and contracts it to a neighbourhood of the convex
set {qE aC v'(q)/HV'(q)“ = ra}. Hence T is contractible to a point,
and consequently so is P(I').
Now for any open bounded set §) CIP_I and any continuous function
£ ﬁﬁ-mp_l with £(q) # 0 , g€ 29, let deg(,£f,0) denote the Brouwer

degree of £ with respect to § and O . Then the following result is

well-known.

LEMMA IFf Q <4s contractible in itself to a point, and 1f (£(q),v(q)) > 0O
for all g€ , where v(q) ts8 the outward unit normal to 3R

at q (which is supposed to be well-defined) then
deg (R,£,0) = 1 .

We will use this in the next section, after we have defined a shooting

map. The significance of the set I is revealed by the following.
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If  (g(t),p(t), £t>0 , is a solution of the initial-value problem

sp(t), p(t) = -V(q(t)), t>0 ,

ae)

p(0) 0, q(0)€oc ,

then from elementary calculus we find that

7(q(0)) = sup {£>0 : gty €cl>0 if q(0) €T

and

{£>0 : g(t) €C,'€ (0,t)}=¢ if q(0) € al'.

Moreover, if q(0) €23C , p(0) 0 , we know by conservation of energy

0 for all t , whence c.l(t) €~ p for

that 2 (sp(t),p(t) + V(a(e))
all t€ (0,7) . It is an immediate consequence of our hypotheses that
the mapping g(0) +T(g(0)) is continuous from T into R, and hence
by standard continuous dependence theory for initial value problems
that ¢(0) '*C.J(T(q(o))) = Sp(t(a(0))) is a continuous mapping from I

to ]Rn . There is no guarantee that T(g(0) <= , and indeed, in the
case wher homoclinic orbits are sought, it is important that the
possibility T(q(0)) = +o, g(0) €' , should not be excluded. WNote
howe;rer that in any case {Hé(t)”:t € (0,7(q(0)))} is bounded because
of the differential equation, and hence the mapping

0(g(0)) = {a(t(q(0))/T(g(0))} defines a continuous mapping © on T .

Now from the differential equation and the fact that T(g(0))=0,q(0) € 23T

we find that
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T(q, (0))
6(a,(0)) = { —f SV' (q (w))dw }/r (q,, (0))
0

> =sV'{(q(0)) ’

where qn(O) €T and qn(0)+q(0) €9I' as n > . Hence O can be

extended continuously to T by putting 0(g(0)) = =SV'(g(0)),q(0) €T
Now recall from the introduction that there is a natural constraint on
é(T) since V{g(T)) = 0 ; namely (S—lé[(t),c.{('[)) =0 . Now we define

a mapping O : P(f)-*]Rn‘1 as follows : for xéP(f) E

B(x) = Po@oP;]'(x) , where PF denotes the restriction

of P to I' .
Now on P(3I') = 3(Pl') we know that
-1
0 (x) ='—PSV'(PI. (x))

and a straightforward calculation of the normal Vv(x) to d(PI') at x
ensures that (0(x),v(x)) >0 for all x€3(P ). Hence deg(Pl',0,0) =1 ,
and there exists a point =x €PI' such that ©6(x) = 0 . This means that

there exists a point q(0) €T such that ©O(g(0)) = 0.

There are only two circumstances under which this can happen. One
is when ci(“r(q(O))) = 0 , and the other is when T(qg, (‘O)) =0
In the first case the fact that c.;(T(q(O))) = 0 means that the orbit
is symmetric about t = T(g(0)) , by the uniqueness theorem for initial

value problems. Hence we have established the existence of a periodic
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s-orbit. In the second case T(q(0)) =« , and so the trajectory q(t)

lies in C and q(t) €-P for all t>0 . Hence for all £ >t,>0,

t

1 2
= | J (g(t),e)| 2 (const.) J lgce) llae ,
€ %

(ale))=a(e,) se)

and since qg(t) € C , a bounded set, for all t©>0 , we find that
“C.IH € L (0,) . Now the fact that Ilé_[l] = |Vt (g)]| is bounded for all
t>0 implies that c:;(t) +0 as t—+w . We then infer from the
monotonicity of trajectories in g-space that q(t)>g* € 93C where

V'(g*) = 0. This completes the outline of the proof.

REMARK It is clear from this sketch that homoclinic s-orbits exist
only if there is a point where V'(g*) =0, g*¥€0C . It is also

clear that if there is a point g* € 9C where V'(g*) = 0 , then there
cannot be a periodic s-oxbit in C of the type described. To see this
it is sufficient to observe that if q(0) € I', then q(T(q(0))) ¢T,
because no point of ' is ordered relative to any other point of T

and g(T(g(0)) <g(0) for all q(0) € T . However, since the hypothesis
CCp+g* implies that I = {gedc\{0} : (sV'(q),V'(q)) £0} , the only
possibility is that (SV'(g(T(g(0)))),V'(g(T(g(0)))) >0. Cleaxly if
g(t(g(0))) = g* , then T(g(0))< +©. It is a matter of elementary
calculus then to verify that V(g(t))<0 , £t>T1(g(0)) , and so g(t)

does not lie in C for all t>0 .
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FURTHER EXTENSIONS

The proof whose outline has just been given will be given in an
article by Helmut Héfer and myself, to appear shortly. It has
obviously the potential to treat situations a great deal more general
than those described in the hypotheses above. Additionally, because
of the stability of the Brouwer degree methods, we can obtain continuous
dependence results for parameter dependent problems at no extra éost.
Further, using the Brouwer degree to define a local index of solutions,
we can obtain an algebraic count of their multiplicity, and consider
questions of their bifurcation. It might be amusing to finish by
explaining how the methdds above lead to existence of solutions in
examples where uniqueness is certainly false. ‘Consider two bounded
strongly convex regions C1 and C2 where two functions V1 and V2
are positive, and where Vi(q) #0 , g€ BCi, i=1,2. Then we know
that in each of these sets there is an s-periodic solution of the

corresponding Hamiltonian system.

Now take a tubular neighbourhood Ti of each of these orbits,
and define a new function V such that Vi =V on Ti’ i=1,2, and
V>0 in C , V=0 on 0C where C 1is a strongly convex set containing
Ti' i=1,2. Then the Hamiltonian system corresponding to V has at least
one periodic orbit, according to our theory. But we know it has at least

two by construction. The Brouwer degree probably suggests it has three!
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