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HAI~ILTONIAN SYSTEMS lHTH 

r~ONOTONE TRIIJECTORI ES 

John Toland 

1. INTRODUCTION 

Recen·tly Helmu·t Hofer and I [1] studied a class of ordinary 

differential equations on JR2n which possess a Hamiltonian structure 

of a non-standard type. We considered the class of equations which 

can be w:rit·ten in the fo:an 

Sp(t) , p(·t) -V' (q(t)) , (q(t) ,p(t)) E JRnXJRn, t E lR, 

where S is a non-sing-ular inver'cible self-adjoint operator on JRn 

with one negative and n-1 positive eigenvalues, and V' denotes the 

gra.dient of a smooth potential function V. The total energy, or 

Hamiltonian, which is conserved along trajectories is 

H(q(t) ,p(t)) 1 
2 ( Sp ( t) , p ( t) ) + V ( q ( t) ) . 

Because S is not positive-definite the quadratic fm:m (Sp (t) ,p (t)) 

may be negative, and since the corresponding quadratic fonu in classical 

Hamiltonian dynamics is "the posi'cive kinetic energy functional, our 

theory does not include classical particle dynamics as a special case. 

However, systems such as ours do arise in applied mathematics, the 

most: familiar example being the nonlinear S'curm Liouville problems for 

equations and systems. 
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EXAMPLE 1 NONLINEAR STURM LIOUVILLE EQUATIONS 

The familiar equation 

-u" (t) f(u(t)), tElR, 

may be written as a Hamiltonian system 

-p(t) , p(t) F'(q{t)), tElR, 

where F denotes a primitive of f. In this case n = 1, S lR+lR 

and v =-F. 

REMARK In some ways this example is the prototype of the theory to be 

developed shortly, since for n > 1 the thrust of the hypothesis on s 

is to make the problem essentially one-dimensional. 

EXAMPLE 2 BONA-SMITH EQUATIONS [2] 

The equations 

c (u- .!.u") 
3 

have solutions representing travelling wave solutions of Boussinesq 

equations modelling long waves in a nonlinear dispersive medium. Here 

c is the phase speed of the wave and d 1 and d 2 are constants. If 

we put q = (u,n) 

-Id, 
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and 

8 [ 3/c
2 

3/c l 
3/c 0 

then taking p = q , we obtain a system of the class about to be considered. 

REMARK A rather complete picture of the travelling wave phenomena associated 

with this and similar Boussinesq systems may be obtained as special cases 

of the theory below. The same is true of the next example. 

EXAMPLE 3 FITZ-HUGH NAGUMO EQUATION [3] 

An extension of the Fitz-Hugh Nagumo equations 

has associated with it the stationary problem which in one dimension 

takes the form 

E (yw-u) , o1 ,D2 > 0 

which can be written in Hamiltonian form, where the Hamiltonian is 

Clearly the quadratic form is indefinite, and the problem is in the class 

we defined earlier. 
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The salient feature of the whole class of systems under consideration 

is t.hat conservation of total energy imposes a natural ordering on 

the ·trajec·tories of solutions o Befm~e considering more general situations 

it is instructive ·to examine EXAt1PLE 1 r.vhere the obser,lati.on is trivial 0 

In this example t q ('c) 2 + F (q (t)) ~ c , a constan·t, along trajectories, 

and bebreen the zeros of o-F (q (t)) the function q (t) does not change 

sign ; in other \!Jo:t·ds q is a mon.o·toni.c func·tion of ·t betc11een the 

zeros of c-F(q(t) Of course l;his observation is cent:ral when one 

comes 'co a phase plane analysis of solu.·tions of such problems. The 

higher dimensional analogue is the following. 

Let e deno·te a noaoalised eigenvector corresponding to the unique 

negative eigenvalue of .S , and let 

p {q E (S ,q);;; 0, (q,e)?: 0} 

Then P is a closed convex cone in 

induces the natural ordering on 

i.f and only if 

IRn , and in the usual way i'c 

E P " 

Now suppose that (q(t.) ,p(t)) is a solu-tion of the Hamil·tonian 

system q Sp ' p -V' (q) so that 

(Sp(·t) ,p(t)) + V(q(J:j) c, tEJR. 
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'I'hen beb>Jeen the zeros of c-V(q(t)) , the function (Sp,p) does 

no·t change sign"' In order v1ord.s 
-lt> "' 

(S q(t),q(t) = (Sp(t),p(t)) 

does no·t change sign be·tween the zeros of c-V (q (t)) " Now if ·the 

two of its zeros (if any), then 

. 
q(t:) E P or -P , and so ·the ·tz·ajectm::y q(t:) is mono·tonic .in this 

interval~ (Note than q cannot pass from P to ~p :; or vice versar 

except at a zero of c-V(q ('t)).) In t.he· case v1hen n := 2 ~· ·the si·tuation 

is even more straightfonrard, for then ·the complement of P0 U(-P 0 ) 

(vvherc denotes interior) is ·the union of t:wo disjoint convex cones 

Q and -Q In this case q is monotonic increasing with respect 

to ±P or to ±Q whe.n c-V (q (-t)) 4 0 , and the ·type monotonicity 

involved changes only a.t the zeros of c-V (q (t.)) . 

Re·turning t:o the general case thex·e is one further obs(~r.ration 

which is cerrtral in this theory. If a trajectory is monotonic with 

respect to P, say, and V(q(-t))-c>O on (a,b) where V(q(b)) = c 

·-1 • • 
(S ~q(b),q(b)) = (Sp(b),p(b}) = c-V(q(b)) then 0" In other words 

as the spatial component q of a solution passes through a point of 

poten·tial enerqy c, then the velocity of the trajectory is constrained 

to lie in a very small subse·t of namely on the conical surface 

-1 1 n 
(S q,q) = 0; c JR • 

'l'hese features of this class of systems are very potent in an 

analysis of ·their trajec·tories. Essentially wha·t dist.inguishes them 

from classical Hamiltonian systems is that here the "kintic energy" 

term (Sp,p) can get ve~y large and negative to compensate for the 

po-tential energy V becoming v·ery large and positive. Of course 

this would be tr..Je if S were simple indefinite: the fact that it is 
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indefinite with precisely one negative eigenvalue gives the monotonicity 

of trajactories which is so essential to the subsequent development. 

At this stage it is not clear what analogous theory might be available 

when S has more than one negative eigenvalue. 

We make the following assumptions about V in order to obtain 

the main results of [1]. 

Suppose that there exists a bounded~ open aonvex set c c lRn 

suahthat V>O in c,v=o on ac, andif qE3C with V'(q)=o,·thenccq+P. 

(Note we do not exa'Lude the possibility that V' (q) of o, q E ac . 

Howeper, there is at most one zero of ~ on ac, and c Lies 

aompLeteLy in the aone q+P in this ease.) We aLso require that at 

aertain points ac is striaUy aonvex ; nameLy if (SV' (q) ,v• (q)) = o, 

then (V" (q) SV' (q) ,SV' (q)) < 0 • 

REMARK If the boundary ac is strongly convex everywhere then the last 

condition is automatically satisfied. Even when we do not have a strongly 

convex boundary, the result below may still be true, being proved by 

an approximation argument. 

Under the above hypotheses we obtain a result about the existence 

of bounded orbits whose projection onto q-space connect two points of 

the boundary of a . These orbits are of a very special type among the 

class of periodic orbits for dynamical systems. 

DEFINITION We say an orbit is of type s (or an s-orbit) 

if q(t+T) q (T-t) for aU t E lR and p (T) o for every T E lR 

suah that p. (T) = o for some i = 1,2, ... ,n. 
~ 

This means that all the components of p = (p1 , ••• ,pn) are 

synchronised so that if one vanishes, then they all vanish, and the orbit 

in q space is symmetric about t = T. 
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The hypoH1eses above led ·i~o •:h.e following obsexvcttion, 

THEOREfii 11here e~r::ists an s-orb·it such tha-t q (0) E 3c ., p (O) = o ff 

crad q (t)E c aU t E JR. Moreover, ij' V" (q) i o, q E Clc , there 

is at Zeast one period T ' 
-cwo 

ClC monotone t1oajecrto1oies in C every h.aZj' peri.od, and 

q(O) = q(T/2) E ClC ,. p(O) = p(T/2) = 0, 

If' v' ( q'') = 0 , q* E 3 c, then -thePe w•e no pePioclic s-or•bi-ts with 

q (0) E and p ( 0 l = 0, but there e:.ciei;a a homoc Unic s-or•b·z:t such -that 

q(O) E ClC,p(O) = 0 , and q(t) +q* as t+c<> , q(t) E C , t > 0 . 

The proof of this is obtained using a shoo·ting argument in mn 

and ·the main tool ·to be employed is the ~J::OU'i!ler deqree of a continuous 

mapping on an open su.bs-at of 
n 

]R To define precisely what nmp is 

involved, ''le need to examine the geometrical set-up. The details of 

these proofs are ·to be found in [1], so here I will confine attention ·to 

a heuristic jus'cification of the claims made in the nex-t section. In 

the next section also ·the result is established using an argument 

slightly different from that qiven in [1] . 

2. AN OUTLINE OF THE PROOF 

We take as com::dinate axes ort:hogonal lines spanned by ·the eiqen-

vectors of S , and we may assume, wi·thout loss of geneali·ty, ·tha·t the 

nth eigen.vec·tor corresponds to the unique negative eigenvalue l'llhich 

is -1. Thus Se 
n 

For the sake of a convenient notation, abbreviate by putting e = e 
n 

Recall that P = {q E JRn ' 
-1 

(S q,q) ;; o, (q,e) ~ o}. So now let f C () C 

be the set 
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{q E ac (SV'(q),V'(q))<O, {V'(q),e)<O}. 

REMARK r is the sei: of all poin·ts q E 3c whose outward normal makes an 

acute angle with e (that is, (V'(q),e) <0) , and whose tangent: plane 

to ()c is parallel to a t:angent plane to ·the level set 
-1 

(S q,q) ~ a 

for some a < 0 . In particular, the boundary d f of f in dC , is 

the set 

ar E ac (SV' (q) ,V' (q)) 0, (V' (q),e) < 

and consis·ts of ·those points of 3C whose outward normal makes an acute 

angle with e , and whose tangent plane is parallel 'to one of the tan~rent~ 

planes to the conical surface (S = 0 . 

If V' (q) of 0 , q E (lc , then there is ano-tl~<.e:•:· set f defined 

analogously using (V' (g) ,e) 0 , instead of (V' (q) ,e) 0 If 

V" (q*) = 0 , q* E 3C , then C Cq* + P, and as a consequence 

r = E 3c (SV' (qi ,V' (q)) < 

'rhis rel1'ark is veri easily obseJL--ved by drawing a diagram in v a.nd 

is proved in [1] " 

Let P denote i:he m::·tho9onal projec·t.ion defined in by 

Pq q - (q,e)e , 

The following resul·t is geome'crically olea~:,, and may be proved 

from the Implici·t Function Theorem. 
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LEMMA The projection P is a homeomm•ph·ism and P (CJf) ~ 3 (Pf) c 

The next :r·esul·t is also geome·trically obvious, but its proof is 

sligh·tly more subtle 

LEMMA The sets f c 3c and p c JRn-l are contractible in themselves 

to a point" 

The proof of this is based on the observation ·tha·t the evolution 

equation 

q(t) SV' (q(t)) - ( (SV' (q(t.)) ,V' (q (t) )V' (q (-t)) 
2 

(q (tl l II l 

.leaves r invaria:n·t, and contracts it ·to a neighbouxhood of the convex 

set {q E 3c , V" (q) /llv• (q) II = -et. Hence f is contractible to a point, 

and consequently so is P(F). 

No\<¥ for any open bounded set n CJRn-1 and any continuous function 

f Q-+JRn-1 with f(q) 'i-0, qE ()Q, le·t deg{n,f,O) denote·theBrou.wer 

degree of f with respect to Q and 0 . Then the following result. is 

well-knovm. 

LEM!'4A If n is contractible in itself to a point, and if (f (q) ,v (q)) > o 

for all q E 3\l , whel"e 'J (q) is the outward unU normal to ()Q 

at q (which is supposed to be well-defined) then 

deg (Q , f , 0) 1 . 

We '"i11 use this in the next section, after we have defined a shooting 

map. The significance of the set r is revealed by the following. 
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If (q (t) ,p (t)), t > 0 , is a solu-tion of ·the initial-value p:wblem 

. . 
q (t) Sp(t), p(t) -V(q(t)), t>O, 

p (0) 0, q (0) E 3C , 

·then from elementary calculus we find that. 

T(q(O)) sup { t > 0 q(t)Ec}>o if q (Ol E r 

and 

{t > 0 q("c') Ec,t'E (O,t)}~<jl if q(O) Ear" 

Moreover, if q(O) E ac , p(O) 0 , we know by conseJ..-vai:ion of energy 

that ; (Sp(t) ,p(t)) + V(q(t)) 0 for all t. ·~o1hence ~ (t) E - P for 

all t E (O,T) . It is an immediate consequence of oux:hypotheses that 

the mapping q (0) + T (q (0)) is cont.ii1110US from f into JR , and hence 

by standard continuous dependence t.heOJe<J for initial value problems 

·that q(O) +q(--r(q(O))) = Sp(T(q(O))) is a continuous mapping from f 

to JRn. There is no guarantee that T(q(O) <oo , and indeed, in the 

orbits are sought, i·t is importan·t ·that the 

possibility T(q(O)) ~ +"', q(O) E f , should not: be excluded. Note 

hmo~ever thai: in any case { • (t) II :t E (0 ,T (q (0)))} is bounded because 

of the differential equation, and hence the mapping 

8(q(O)) = {q(T(q(O))/--r(q(O))} defines a continuous mapping 8 on r . 

Now from the differential equation and the fact that T(q(O))~O,q(O) Ear 

we find that 
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0 ( 0) ) 
·' ([ (~ (0) 
~ -1 n 
l J 0 

SV' (q,_ (w) )dw 
ol 

(0)) 

-+ -SV' (q(O)) 

t<Ihere (0) E f and (0) -+q(O) E ()I' as n-+ co Hence 0 can be 

extended continuously to r by pu'cting 0 (q (0)) -BV' (q(O)) ,q(O) Ear 

Nov1 recall from t:he introduction ·that ·there is a natural constraint on 

q(T) since V(q(T)) = 0 ; namely (S ('c) ,q(T) = 0 Now we define 

a mapp.ing as follows for x E P (r) 

e(x) denotes ·the res'triction 

Now on P (31') 

8 (x) = -PSV'(P~l (x)) , 

and a st.raightforv<ard calcula·tion of i:he normal \! (x) to 8 (Pf) at x 

ensures tha·t (8 (x), \! (x)) > 0 fo:c all x E d (P ) • Hence deg (Pf, 8, 0) 1 

and there exists a point :x: E Pf such that 8 (x) = 0 . This means ·tha·t 

there exists a point q(O) E f such that 0(q(O)) = 0. 

There are only ·tvvo circumstances under which ·this can happen. One 

is when q(T(q(O))) 0 , and the other is when T(q, (0)) ="". 

In "che first case the fact that q(T(q(Oj)) = 0 means ·that the orbit 

is symmet:cic about t = T (q (0)) , by the uniqueness theorem for initial 

value problems. Hence we have established the existence of a periodic 
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s~orbit. In the second case T(q(O)) = 00 , and so the trajectory q(t) 

lies in C and q (t.) E -P for all t > 0 . Hence for all t 1 > t 2 > 0 , 

I (q (t) ,e) I ;;: (const.) 

and since q(t) E C , a bounded set:, fox· all t > 0 , we find that 

( 0 ,oo) Now the fact that liqll llv• (q) II is bounded for all 

t > 0 implies that q (t) + 0 as t: -roo We ·then infer from the 

monotonicity of t.rajectories in q-space that q (t:) + q·" E ClC where 

V' (q*) = 0. This comple'ces the outline of the proof. 

REMARK It is clear from this sl~:etch that homoclinic s-orbi·ts exis'c 

only if t.here is a point where V' (q*) = 0, q* E dC • It is also 

clear ·that if there is a point q* E Clc whe:t:e V' (q'') = 0 , ·then there 

cannot be a periodic s-orbi t in C of 'che type described. To see this 

it is sufficien·t to observe that if q (0) E f , then q (T (q (0))) f f , 

because no point of r is ordered relative to any other point of f 

and q(T(q(O)) <q(O) for all q(O) E f However, since the hypothesis 

C c P+q* implies that f = Ed C\ {O} : (SV' (q) ,V' (q)) ;"; the only 

possibility is tha·t (SV" (q (T (q (0)))) ,v • (q (T (q (0)))) > 0. Clearly if 

q (T (q (0))) = q"' , ·then T (q (0)) < + oo • It is a ma·tter of elementary 

calculus ·then to verify that V(q(t)) < , t>T(q(O)), and so q(t) 

does· not lie in C for all ·t > 0 . 
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FURTHER EXTENSIONS 

The proof whose OU"tline has just been given 1tlill be given in an 

article by Helmu"t Hofer and myself, to appea:>:" shortly. It has 

obviously the po"ten~cial to treat situa"cions a. grea'c deal more general 

than t.hose described in t:he hypotheses above o 1\ddi tionally, because 

of the S"i:ability of the Brouwer degree methods, \ve can obtain continuous 

dependence resul"tS for parameter dependent problems at no extra cos"t. 

Furt.her ,~· usin9 the Brou..tver degree ·to define a local index of solu·tionsv 

we can obtain an algebraic count of "their muTtiplicity, and consider 

ques·tions of their· bifurcat~ion. I'c migh·t be amusing ·to finish by 

explaining how the methods above lead to existence of solutions in 

exampl.es where uniqueness is certainly false. Consider two bounded 

strongly convex regions and vJhere two functions and 

are positive, and wher·e (q) ,~. 0 , q E ac1 , i=1,2. "rhen '<le know 

that in each of ·these sets there is an s-periodic solution of the 

corresponding Hamil·tonian system. 

Now ·take a tubular neighbourhood T. 
:l 

and define a new function V such ·that V. 
:l 

of each of these orbits, 

V on Ti' i=1,2, and 

V > 0 in C , V = 0 on Clc where C is a strongly convex set containing 

, i=l, 2. Then the Hamiltonian syste.'TI corresponding to V has at least 

one periodic orbit, according to our theor_'{. But vle knmv it has at least 

two by construction. The Brouv7er degree probably suggests it has three! 
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