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MINIMUM PROBLEMS FOR NONCONVEX INTEGRALS

Nicola Fusco

1. INTRODUCTION

Let us consider an integral of the Calculus of Variations of

the following type :

(1.1) F(u;f) =f f(x,u(x),bu(x))dx ,
Q
where § is a bounded open set in Igl, u : R+ R" is a function
. 1,p m . -~
belonging to W R ) , p>1 and £(x,u,§) is a Carathéodory
function, i.e. measurable with respect to x , continuous in (u,§) .
The direct method to get the existence of minima for the Dirichlet

problem

{P) Inf {F(u;Q) : u—uOEW:(L)'p(Q; ®" N,

1,p

where u is a fixed function in W , is based on the sequential

0

lower semicontinuity of F(s.l.s.c.) in the weak topology of Wl'p.

If m=1 , it is well known (see [7],[8],[10]) that the l.s.c.
of F is equivalent, under very general growth assumptions on £ ,
to the condition that the integrand is a convex function of the
variable & . But if m>1 , convexity is no longer a necessary
condition. To see this, let us consider a continuous function

f: ™ +®R such that the functional J £(Du(x))dx is weakly*
. Q

4



15

1,

0
s.l.s.c. on W (Q;]Rm) . Let Q be a fixed cube containing Q .

1 c s
If we fix &€ ]Rmn , z(x) ECO(Q.;]Rm) , then, thinking of z as a
Cé functim defined on Q , we may extend it by periodicity to
a1 ®® . Let us still denote this extension by 2z . Then, if

uh(x) = £°x+2_hz (2hx), uh(x) +EZex weakly* and, by the l.s.c. of

the integral of f , we get :

£(&) (meas Q) £1lim inf J £ (E+(Dz) (2hx))dx) .
h Q '
h -1 f
Since £(E+(Dz) (2 %)) converges to (meas Q) J £(E+Dz(x)dx in

O(Loo,Ll) , from the above inequality we deduce that

(1.2) £(&) (meas Q) éJ £(E+Dz (x)dx

: Q

for any &€ B and any z¢€ Cé (Q;IRm ). We shall call quasi-convex

a function verifying the condition (1.2). If m=1, (1.2) is equivalent
to Jensen's inequality, and so quasi-convexity reduces to the usual
convexity. But if m>1 , (1,2) is a more general condition as ome

can see, for instance, in the simple case m=n apd £(&) = |detg| .

A study of the properties of qguasi-convex functions is contained in [12],

[13], and [3]. Here we just recall the following result ([2]) :

THEOREM 1.1 - Let us suppose £(x,u,E) : QX R XK is a Carathéodory

function verifying
0% £(x,u,8) éa(x)+C(|u|p+!£|p) p21,

where a(x) ELiOC(Q) , a(x)20 , C>0. Then F(u;Q) <s weakly s.l.s.c.
in w'P if and only if for a.e. x€Q and any u€ R the function

E+£(x,u,8) is quasi-convex.
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In this talk we shall be concerned with problems of the type (P)
in which the integrand £ is not quasi-convex. So, by the above
theorem, the integral is not l.s.c. and the problem in general will
lack a solution. However we shall see that the relaxation methods
introduced by Ekeland and Temam ([8]) in the case m=1 can be
extended also to integrals depending on vector-valued functions. What
they prove in the scalar case (see also [10]) is that if one considers

the so called 'relaxed problem'

(PR) Inf {Igvf**(x,u(x),Du(x))dx : u-ug ewé'P(Q)} '
*%

where for any fixed x and u,f (x,u,°) is the convex envelope of

the function f(x,u,°) , then Inf(P) = Inf(PR) and, if f verifies

the usual growth assumptions, (PR) has a solution. Moreover its

solutionsbare limit points in the weak topology of Wl'P(Q) of the

minimizing sequences of the problem * (P).

In the case m>1 , one can still define a relaxed problem by
replacing F(u;)) with the integral of %(x,u,g)r where now for any
x and u fixed E-*E(x,u,g) is the greatest quasi-convex function
‘less than or equal to &-+f(x,u,§) . We shall see that with such a
definition one can prove essentially the same results which hold in

the scalar case.

Because of the fact that quasi-convexity is defined by an integral
condition, one cannot expect that the formula which represents £
should have the same simple geometrical character as the formula
representing the convex envelope f** of the function £ with respect

to & . But it is interesting to note that in some special cases one can

explicitly say how f is obtained from f£.
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The proofs given in this talk are essentially, with some minor
changes and simplifications, the ones given in [2] and [1]. However,
similar results of relaxation have been also given by Dacorogna in [4],

[5] and [6], but his proofs are based on completely different techniques.

2. MAIN RESULTS

Although most of the results given here can be extended to the
case in which f is a function depending on (x,u,f) , verifying some
kind of uniform continuity in u with respect to & , for simplicity-
we shall restrict to the case in which £ does not depend on u .

m. - .
So we shall assume f£(x,§) : BJIX R n+JR to be a Caratheodory function,
(o]
2 a bounded open set. We shall say that § is regular if CO(BQH is

dense in Wl'P(Q) (for instance if § has the segment property) and

we shall put

F(u; Q) =[ f(x,Du(x))dx |,
Q

where u : Q'*]fn is any function for which the integral on the right

(possibly = +®) has sense. Let us denote by Ep(u;ﬂ) the greatest

functional less than or equal to F(u;fl) and which is weakly s.l.s.c.

in Wl'P(Q;Ifn). The following result gives a representation of Ep’
THEOREM 2.1 - If f£(x,E) <8 a Carathéodory function verifying
(2.1) 0s£(x,6) < am+c|g|P

1

where a(x) €L (BY) , atx) 20 , C>0 , p21,then there exists a

loc

Caratheodory function %(x,E) such that for any Q regular and any

wewt P @ EY
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F_(u;0) =J f(x,Du(x))dx .
p Q

Moreover for a.e. x¢€ ®" the funetion E-+f(x,8) s the greatest

quasi-convex function less than or equal to &E~£(x,E) .

In the scalar case this characterization becomes (see [8],[101)
%(x,?—;) = f**(x,i) , since if m=1 guasi-convexity is equivalent to
convexity. The above result shows also that in order to represent F
it is sufficient to consider the case in which £ is just a function

of & . 1In this case, denoting by Y the unit cube (O,l)n we can

prove the following.

THEOREM 2.2 - If £ : R >R is a continuous function, then the

quasi-convex envelope of £ 1is given by

- f -
£(E) = Inf {limhinf JY f(Duh(x))dx 2 uhﬁcl(y;mm), uh =Eex on oY
b (x)+E in o@’,Lh)}

Although in general this foxmula is not very easy to handle, it
may be used to obtain a sharper characterization of f in particular
cases. Let us regard now the vector £ € ]Rmn as an mXn matrix
and denote by X (&) . the vector whose components are the subdeterminants
of & of highest order . Let N(n,m) denote the dimension of X(&) .
For instance, if n=m X(§) = detf and N(n,m) =1 , and if m=n+1
N(n,n+1) = n+1 and so on. Then the following result holds (see [1]) :

THEOREM 2.3 - Let us suppose mzn and £(x,8) = ¢(x,X(E)), where

0Ge,x) : Bx® W, g is a Carathéodory function such that

(2.2) 0 £ ¢(x,X) £ glx,|x])
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and g : R'X[0,+°) >R 1is a Carathéodory function such that for any

1

t20,g(°,t) € Lo

c(IRn) and for any x¢€ B a.e. g(x,°) s a non-
decreasing function, then there exists another Carethéodory function
(U By s g . 8till verifying (2.2) such that for any regular $

and any w €W ®

F_(u;Q) =J P(x,X(Du(x)))dx .
n Q

Exd
Moreover, if m=n 0 m=n+1 P(x,X) = ¢ (x,X)
From Theorem 2.1 one can prove the following relaxation result :

THEOREM 2.4 - Let us suppose £ is a Carathéodory function such that
(2.3) —a(x)+|E|P < £(x,8) S ax)+c|g|P

where a(x)€ Lioc(mn)' a(x) 20, c21 and p>1. Let us fix an open

regular set  and u € wteP (@ R") and consider the following problems :

0
(P) Inf {J £(x,Du(x))dx : u—uOEWé'P R}
Q
(PR) Inf {J F(x,Du(x))dx : u—uOEWé'p (Q;]Rm)}
Q
Then 1Inf(P) = Inf(PR). Moreoecver, if u is a solution of (PR}, there

exists a sequence () minimizing (P) which converges weakly to u

in WP Conversely, if (u) is a minimizing sequence of |(P),

there exists a subsequence which converges to a solution of (PR].
Using the regularity arguments of [11] and [9], from the above theorem

one can easily deduce the following.
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COROLLARY 2.5 -  Under the hypothesis of Theorem 2.4, if a(x) €z’
for some ©>1 , therefore for any solution wu of the problem (PR)
there emists a minimizing () of (P] such that uh+f1 weakly

in wl RY , with g€ [p,pte) and € = e(a(x),0,p,C).

3.PROOFS

In order to prove the results stated in the previous section,
following an idea introduced in [10], we shall look first at the case

p=+0 . Let us suppose then that £ verifies
(3.1) 05 £(x,8) £ gx,[E]D ,

where g is a Carathéodory function, non decreasing in IF,|

1,° 1 .
(2; R) we shall write:

F(u;9) = Inf {lim inf ¥ (uh;Q) : u.h-*u weakly* in Wl'w(Q;JRm)} . Our
h
main goal is to prove the following

and g(°, lEI)GL (JR) for any £ . If u€w

THEOREM 3.1 - If £ wverifies (3.1) , then there exists a Carathéodory
function E(x,8) : RXR >R quasi-convex in & , such that for any 9

and any u € Cé(]Rn;JRm)
(3.2) F(u;9) =J £ (x,Du(x))dx .
Q

In order to prove this result we shall prove some preliminary lemmas.

<
L(Q]R )=r let us put
1,0

F(r,u;Q) = Inf {limhian (uh;ﬂ) : u > u weakly* in W' (RY) and

First, if w€w ' (2 R®™ with |pul

D, || <}



21

REMARK 3.2 - By a standard diagonalization argument it is easy to check
that the above infimum is actually a minimum and that the functional
. 1, bt}
F(r,u;Q) is weakly* s.l.s.c. on the set {u€w ' (R ) : []DuIILwé r} .
If now u€w’” (R R, and |pull.®,_n _mn St , for any § we shall
loc 7 ! ! L(R;®R )~

denote

O (r,u;) = lim F(xr',u;Q) = sup F(x',u;N) .
r'Vr ' >r

Then we may prove

LEMMA 3.3 - If wu€wW

1
1o

1, n__m o
Loo (B iRY) and ||r>u||L (]Rn;]Rmn)é

c(JRn) such that for any

r, there exists

a function hu €L

D (x,u;) =J h (x)dx
. g

PROOF: 1et us fix u and prove that

(3.3) O (x,u;Q) = 1lim Fo(r',u;Q)
r'Yr

where F0 is defined by

E’O(r',u;Q) = Inf {lim infF (uh;Q) : u_+*u weakly* in Wl'oo(Q; ]Rm) ,

h h

w =u on 3  and ”Duh”Loo < r'}.

If we fix €30 there exists 6>0 such that for any =x' € (r,r+8]

lim F _(x',u;Q) £ F (r',u;Q)+€; lim F(r'u;Q) 2 F(z',u;Q)~-€.
0 0
Y r'Yr
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If we fix now r'€ (r,r+8) , let (uh) be a sequence such that uh*u

weakly*, llDuh||L°°§r' and PF(x',u;Q) = lim F(uh;Q). Let us take a
h

compact set K€ § such that

J gl(x,r+8)dx < €
Q -K

and let ¢ be a Cé(ﬂ) function such that ¢(x) =1 on K, 0Z¢(x)<1 ;

i = - %* =
if we denote vh u+c]>(uh u), then Vﬁ* u weakly*, v, Su on o0 and

there exists h = such that for any h2hj [leh||L°°§I+ §. So we have :

lim F_(r'u;Q) £F_(r+6,u;Q) + € £1liminf F(v ;) + €
; 0 0 h
r'Yyr hZhO

A

1im inf [F(vh;Q) -F(uh;Q)] +F(r'u;Q) + €
h

AN

O(x,u;0) +[ gz, r+8)dx+2¢ .
Q-K

Then letting s:—>0+, we get lim Fo(r'u;Q) S ¢(r,u;). Since the reverse
:

inequality is obviously verifie; ]iy definition, we have proved (3.3).

Now, let us denote by F the class of all the finite unions of cubes
of the type {aigxi§ai+z :i=1,...,n} and define u(P) = &(r,u;P-3P)
for any P¢€ F . From (3.3) it follows that u(P) is finitely additive,
since it is easy to verify that F(r,u;Q) is sub~additive with respect
to  , while F0 is super additive. Let us now extend | to the class
of all Lebesgue measurable sets in JRn . If we denote still by y the
resulting extension, then using again (3.3) it is easy to check that

Q) = @(xr,u;) for any open set § . Finally, the existence of hu

comes easily from the fact that for any

0su@) = J g(x,r)dx . L
Q
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1,0 n m < -
LEMMA 3.4 - If wu ,u, €W (K ,R) ,IIDuiIIL“(]Rn; ST 51,2,

Then for any § :

I@(r,ul;ﬂ) - @(r,uz;Q) < L‘z w(x,2x, ”Dul_DuZHLm(Q;]Rmn))dx ,
where
wix,2r,8) = sup {|£(x,£)-f(x,E,)] : |Ei} <2r and |g1-52| <8 .

PROOF: wLet us take «r'€ (r,2r) and (uh) such that u> u weakly*,

< gt Yy ) = 14 , = _
[IDuhHLm_ r' and F(r ul,Q) 1:.lm F(uh,Q) . If we take v, =t (u2 ul)
we obtain

F(r',uz;Q) - F(r',ul;Q) < limhinf [F(vh;Q) F(lih;Q)]

IA

ng(x,2r, ||Du1~Du2||L°°)dx

Then the result follows by changing uy with u, and taking the limit as

r' >t L]

PROOF OF THEOREM 3.1 - 1Let us fix r and consider the class Ar of all

linear functions u(x) = £°¢x , with ]El <r , £ ¢ an . Let us say L
the set of all the Lebesgue points for the functions _hu (x) with u € Ar.

then for any x€L , EEan with ]£| <r we may put :
¢r(X,£) =h (x)

where u(x) = £°x . From Lemma 3.4 we can deduce that for a.e. x€L,

mn .
£,,8,€Q with |gi[§r
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M)r(x’gl) - ¢’r(x152)| s (.L)(X,ZI,1|3£1— 2|) .
This means that for a.e. x¢€ L,d)r (x,°) can be extended by continuity
to the set {E€ R : |E] £z} . Moreover, using again Lemma 3.4,
it is clear that for such an extension of ¢r we still have d)r(x,i) =hu(x),
for any u(x) = E°x with |E| £ r. If u(x)¢€ Cé (B ") , with

|Du (x)I £r, there exists a sequence (uh) of piecewise affine functions,

. . . n
such that u, *u and Duh* Du uniformly in TR , and [Duh(x)l <r '
(see [8], Ch.X, prop.2.1). Then by Lemmas 3.3 and 3.4 and by the

definition of d)r we get :

(3.4) O (x,u;Q) =f Cbr(x,Du(x)dx
Q
1, n m .
for any uGCO(]R ;R ) with |Du(x)| £r. So by the weakly* s.l.s.c.
(o]
of the functional &(r,u;2) on the set {uEWl’ ,(Qz:JRIg):.HDuHLWér}, and
by the representation formula (3.4), using the same argument as Theorem
II.2 in [2], we have that (i)r is guasi-convex in & , where

]EI £r , i.e. for any x. a.e., any EEJRmn and any z(y) 6Cé(Q;ZIRm)

0
such that || + |Dz(y)|s«r

)
(3.5) - ¢r(x0,g) (meas Q) £ JQ ¢r(x0, £ +Dz(y))dy .

Finally, if we define for any x a.e. and any &€ JRmni_:'(x,E) = lim | ¢r(x,E),
rz|g

Then by (3.5), £ is clearly a Carathéodory function quasi-convex in & .

Moreover (3.4) implies that f verifies (3.2). L]

REMARK 3.5 - since f is guasi-convex in & , then (see [2]) the
functional J( f(x,Du)dx is weakly* s.l.s.c.. So from Theorem 3.1 it
Q

m .
is clear that it is the greatest functional defined on Cé(]Rn; R ) which

is weakly* s.l.s.c. and less than or equal to J f(x,Du)dx.
Q
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LEMMA 3.6 - For ag.e. x€ R' E~+E(x,E) is the greatest quasi-convew
function less than or equal to &+ £(x,§)

PROOF: ret us fix O . Using the same argument as in the proof of
Theorem 3.1, we dedupe that for a.e. X, € @ there exists a continuous
function g %) (é) such that for any u¢€ cé(mn JRY) with [Du(x)| sz

J g (XO) (Du(x)dx = sup Inf {lim inff f(xO,Du(y))dy : uh+u weakly®
Q * r'>r h Q

and HDuhHLOO(Q;]Rmn)é '},
Since f is a Carathéodory function, for any €>0 there exists a
compact set KE €0 such that £ 1is continuous on KEX R and

meas (Q-Ke) < €. Let us put gr(x,i) = gix) (§) for any x EKe and any

£ . By the uniform continuity of £ on the bounded subsets of Ke x B
it folléws that gr(x,g) is continuous on KEX {&: |£| <r} . So, because
of the arbitrarinessof € , we may define gr(x,g) for a.e. x€ Q0 .

Moreoever 9, will be a Carathéodory function. Then if we define for

a.e. x€0Q and any EE]Rm

g(x,&) = 1lim gr(xri) ’
rz|g]

from the Remark 3.5 it follows that for a.e. xoé Q the functional
u -+ JrQ'g(xo,Du(x)dx is the greatest functional on Cé (]Rn; IRm) which
is weakly* s.l.s.c. and less than or equal to u > L) f(xO,Du(x))dx.
This implies that E-*g(xo,é;) is the greatest quasi-convex function
less than oxr equal to E—*f(xo,é). So g(xO,E) Z%(xo,é) . But also

! g(x,Du(x))dx is weakly* s.l.s.c., since ¢ is quasi-convex in & .
So by the Remark 3.5 it follows that for any u¢€ Cg)'(IRn ;JRm)

J g(x,Du) éJ f(x,Du)dx , which implies f(x,E) 2 g(x,£) for a.e. x
Q Q

and § . This inequality , combined with the previous one shows then

that £ = g , thus proving the Lemma. =
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PROOF OF THEOREM 2.1 - From the Theorem 1.1 we have that the
functional [ f(x,Du)dx is weakly s.l.s.c. on Wl’P(Q;]Rn). So
0
- = i,p m
(3.6) J f(x,Du)dx £ Fp(u;Q) for any u €W "T(;R) .
Q

But if u €C$(1Rn; ]Rm) , from Theorem 3.1 it follows that for any
£>0 there exists a sequence (uh) such that uh->u weakly* and

[ _
J F(x,Du)dx 2 1im inf J f(x,Duh)—&: . From this we get :
Q h Q

f(x,Du)dx 2 1im inf F (0 ;Q) ~c2F (u;) -¢ .

ph p
Q h

This inequality, together with (3.6), proves the theorem when u is a

Cé function on ]Rn . The general case, when () is a regular open

set, follows easily by approximation. L

PROOF OF THEOREM 2.2 - Folliows at once from Theorem.3.1 and the proof

of Lemma 3.6 ]

PROOF OF THEOREM 2.4 - If u is a solution of (PR) , then for any h

there exists a C1 (25 IRm) function w such that ||Dv,_||l.1,p él and
Of h h'w h
] £ (x,Du(x)Dx - £ (x,Du(x) + Dv (x)ax| £ L . If we apply
Q Q h h

Theorem 3.1 and the formula (3.3) to the function K(x,£) = f(x,Dﬁ(x)+£) A

co
we may say that for any h there exists w € Wl'

m _
h ;R ), w =0 on N

such that

]f E(x,Du(x) + Dvy (x))dx - J £(x,Du(x) + Dw_ (x))dx| <L
Q h

Q
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1 -
—w, |Los= . i = ;
and ”Vh whHL =n So if we put uh u+wh , then obviously
uh-*ﬁ in LP(Q;]£H). Moreover from (2.3) we have also that

HDu H p S constant, so we may suppose that (u ) converges weakly in
b Yn

Wl'P to u. BAnd by construction we have also

it

[ _ -
f(x,Du)dx lim J £f(x,Du, )dx .
Jsz Q E

h

This proves that Inf(P)

Inf (PR) and also that for any solution u
of (PR) there exists a minimizing sequence of (P) which converges

. - . 1 . .
to the solution u weakly in W ‘P The converse is then obvious 8
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