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SOME REMARKS ON CHOQUET BOUNDARY 

E. Tarafdar 

ABSTRACT 

In this note we prove some results related to Choquet boundary and 

Korovkin functions without using measure theory and make some interesting 

remarks. Our tool is Weierstrass-Stone type of arguments. 

INTRODUCTION 

Let X be a compact Hansdorff space and L a linear subspace of 

C(X), the space of real valued continuous functions on X such that L 

contains the constant functions. If L separates the points of X and 

is separable, then the Choquet boundary dLX of X with respect to L 

{for definition see section 1) is a G0 set. This result is due to 

Bishop and de Leeuw [5] and a somewhat different proof of this result 

has been given by Edwards [7]. The proofs in [5] and [7] use measure 

theory as the principal tool. In this note we have given a completely 

different proof of this and related results without using any measure theory. 

Our approach also shows that there is hardly any usefulness in a theorem of 

Bauer [2] and Edwards ([7], Theorem 2, p.ll8) (see our remark 1.2). 
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CHOQUET BOUNDARY L-AFFINI AND KOROVKIN FUNCTIONS. 

Throughout this note X will denote a compact Hausdorff space with 

more than one point and C(X) the Banach space of all real valued continuous 

functions f on X with sup norm, i.e. lltll =sup lt(x) 1. L will denote 
xe:X 

a linear subspace, of C(X) which contains the constant functions. 

DEFINITIONS • Given f F. c (X) we define two real valued functions on X by 

f*(x) 

and f.,(x) 

inf {q(x) 

sup {q (x) 

f s q E L} 

f <:: q F. L} X E X , 

f* and f., are well defined as f being continuous on the compact space 

is bounded and L contains the constant functions. 

The following properties are obvious: for f, g F. C(X), 

(i) f* $ f $ f* (ii) (f+g)* $ f* + g*; (iii) (Af)* = Af* for A<:: 0; 

(iv) (~f)* = -f* and (v) f s g implies f* s g* and f, s g,, 

* A function f E C(X) is said to be L - affine if f* f ' We set 

* L = {f E C(X) : f., = f*} = the set of all L - affine functions. In view 

of the above properties (i) to (iv) L'~ is a linear subspace of C (X) 

and contains L as subspace. 

The set ClLX (x) = :E*(x) :tor 'if :E E C(X)} is called the 

Choquet boundary or the abstract boundary of X with respect to L. 

REJ.VJARK 1.1 By virtue of (iv) we have 

ClLX {x E X : f'~(x) '" f(x) for V f E C(X) L 

An equivalent definition of Choquet boundary is given in terms of Radon 

measures. A non negative Radon measure )l on X is a positive linear func-

tional on C(X). [By Riesz representation theorem for each such )l, there 

is a non negative regular Borel measure Jlo on X such that )l(f) = !fd)lo 

for V f E C(X)]. 

defined by e (f) 
X 

For each x F. X, the poin·t measure (Dirac measure 

f(x) for 'i f E C(X) is such a measure. 

e 
X 

denote 
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the set of all non negative Radon .measures and for x e: X, Mx (L) 

{]1 e: M+ : )l~q) 

(\X= {x : Mx(L) 

q(x) for V q E L}. Then the Choquet boundary 

{e)} . The equivalence of these two definitions 

can be proved by a simple application of Hahn - Banach theorem (for 

proof see [1], p,638). For yet another equivalent definition see 

[11], p.38. We note here that an important property of Choquet 

boundary 8Lx is that each q E L attains its global maximum and 

minimum on X at points of 3Lx, i.e. for each q € L,llqll = \q(y) I 
for some point y E 8LX. This is so called maximum principle (for 

proof see ([2], p.96) or ([11], p.40)). 

A related concept is of Korovkin functions. 

linear operators Fi C(X) + C(X) is called L-admissible if for each q e: L, 

the net {Fi(q)}i€I converges uniformly to q on X, i.e. 

;Lim llpi(q) - qll "'o. 
iEI 

A function f € C (X) is called a Korovkin function with respect to L if 

the net {F. (f)}. I 
~ ~€ 

converges uniformly to f on X for each L-admissible 

net {Fi}iEI of positive linear operations Fi : C(X) -+ C(X). 

We note that a function f € C(X) is a Korovkin function with respect 

to L if and only if f is an L - affine function (for proof of this 

result see [1] and [3] and for further development of the topic see [4] 

[6] , [8] to [10] , [12] to [15] and references thereof), 

For each f e C(X) we denote by Wf the set {x € X : f*(x) > f(x) }, 

Then we have 

(1) oLX ~ n {W }c where Ac denote the complement of the set A. 
feC(X) f 

This follows from our remark 1.1, 

(2) For each f e C(X), Wf is a F0 - set, 

Since f* and hence f* - f are uppe'r semi continuous, for each 

positive integer n, 

Hence 

F 
n 

1 
{x r:: X : f* (x) - f (x) > -} is a clo·sed set, 

n 

00 

u 
U"'l 

F 
n 

is a set. 
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In what follows the following lemmas will be useful. 

LEMMA 1.1. L* is a closed linear subspace of C(X). 

PROOF. We recall that L* = {f E C(X) : f* = f = f*}. 

Let f be a limit point of L.* and E > 0 be given. Then there exists 

g E L* such that II f-gll < E/2 , i.e. 

g(x) - E/2 < f(x) < g(x) + E/2 for V X E X . 

Now by (i) and (v) 

(g-E/2) * (x) ::; f* (x) ::; f (x) ::; f* (x) ::; (g+E/2) * (x) for V x E X. 

Since L* is a linear subspace containing the cons·tant functions, these 

reduce to 

g(x) E/2::; f*(x)::; f(x) s f''(x)::; g(x) + E/2 for V x EX. 

Hence 

f*(x) - (x) = f*(x) - g(x) + g(x) - (x) < E/2 + E/2 = E for Y x I X 

Since E is arbitrary, we have f* 

LEMMA 1.2. L* 
a 

{f E C(X) f,. (a) f*(a)} is a closed linear subspace 

of C(X). 

The proof is exactly the same as that of the above lenuna if we restrict ·the 

argument ·to the point a only. 

LEMMA 1. 3. 
A 

L 
a 

{f E C(X) f* (a) f(a)} is a closed set. 

A 

PROOF. Let f be a limit point of La and E > 0 be given. 

have such that II f-gll < E/2' i.e. 

g(x) - E/2 < f(x) < g(x) + €/2 for '<! X E X. 

By (v) f (x) ::; f* (x) ::; (g+E/2) * (x) . 

Then we 
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Hence 

g(a) - E:/2 < f(a) :<:; f*(a) :<:; (g+t:/2)*(a :<:; g*(a) + E/2 by (ii) 

= g(a) + t:/2 

Thus f*(a) - f(a) = f*(a) - g(a) + g(a) - f(a) < t:/2 + t:/2 

As E is arbitrary, f*(a)=f(a), Le. f E L 
a 

E: . 

THEOP-EM l .1. If L separates ·the points of X (i.e. given points 

x, y E X with x * y, there exists q E L such that q(x) * q(y)) and 

is a vector lattice with usual ordering, then L* = C(X), Le. ClLX = X 

and evel.'Y function is a Ko:rovkin function with respect to Lo 

PROOF. By Stone-Weierstrass theorem L is dense in C(X). In lemma 1.1 

we have proved that L* is a closed subspace of C(X) o Also L* always 

con-tains L as a subspace. Hence i·t follows that L* C (X). The rest 

follows from our previous observations. 

The following remark is the main objective of this section. 

REMARK 1. 2 o We now consider the following· result which is originally due 

to Bauer [ 2] · ahd of which a ner,r proof has been given by Edwards ( [ 7], Th 0 2, 

p.l18). 

If L separates poin'cs and is a vector lat'cice, then Cl X is a closed 
L 

set and the restric·tion map f + f/()Lx from L into R(ClLX) is an isometric 

linear and lattice isomorphism onto a dense subset of R(CJLX). Furthermore, 

given T E M, the set of Radon measures, t.here exists a unique ]l = 11, E Jvl 

satisfying 

(i) ]l (g) T (g) for '1 g E L; 

{ii) .supp 11 c: ()Lx -
"~"Nhere supp ]l deno'ce.s the support of ]l ·and R(ClLX) the set of real valued 

continuous functions on Cl_X. 
L 
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itself. 
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is linear and it maps + m isometrically into 

In view of our theorem l.l the c:hoquet boundary ClLll: in the above 

I'esult coincides with X and hence this result loses all its interest, 

2. In this section our aim is to prove without using measure theory a 

result of Bishop and Leeuw in the form as stated in [ 7]. 

(2 .1) 

We first note the following facts: 

" For £1 , f 2 , ,,,.fnE C(X) with fi(x) 

we have 

we have 

v .... v 

fi(x) for i 

) (x) • 

To see (2.1) let us denote by Af(x) "' {q(x) : f ::; q E L}. 

clear that 1,2,,,. ,n. 

(:ElAf.} ..•• 
11 

that * (x) ::; fi(x) :Eor each i "' 1,2,.,.,n. 

Thus 

1, 2, •.•• ,n 

Then it is 

•:rhis implies 

A A •••• A * A A.,, .A * (f1 A A •• "A (fl f2 * :;:; (fl fn) (x) "' f (x) 
2 

Now (2.1) follows from the property (i) of section 1. 

The proof of (2.2) .is similar. 

PROPOSITION 2.1 Assume that L separates the points of x. Then 
~-------------

L>~ "'C(X), i.e. aLx ., X (also each f E C(X) is a Korovkin function with 

respect to L) if for each f e: C(X) with f* = f we have f* "' f and 

for each f € C(X) with "" f we have f'' "' f. 
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PROOF. By (2.1),(2.2) and hypothesis L* is a vector lattice. 

Hence by Stone-Weierstrass theorem L* = C(X) as L* is closed, 

A subset A of cOO is said to be a lower (an upper) semilattice if 

f A g(f v g) e: A whenever f, g € A. 

To prove our next result we will need the following lenwa. 

LEMMA 2.1 Let A c c (X) be a lower semi lattice and B. c' A satisfy the 

following: 

(0) f v g ,; A whenever f, g c;: B; a:nd 

(00) given distinct poini;s x and y in X and real ntunbers a and b, 

there exists f e: B such 'l:l1at f (x) = a and f (y) "' b, Then A is dense 

in C(X). 

PROOF. Let f e: C(X) be arbitrary. Let € > 0 be given. We choose 

a point X e: X and fix it. Then for each y e: X with y * X by (00) 

there exists ~e: B such that ~(x) .. f(x) and ~(y) :E (y) ' The set 

0 = {u e: X ~(u) > f(u) - d is an open set containing X and y. 
y 

Clearly {o y e: X and y * x} is an open 
y 

compact, there is a finite open sub covering, 

The function q = 
X 

q__ V q__ V , • • V g is in 
:!1 :!2 Yn 

covering of lL Since X is 

,o , ... ,o' 
Y2 Yn 

say , 

A by condition (O) and has 

the property that qx(x) = f(x) and ~(u) > f(u) for all u e x. ~1'his 

way for each X e: X 

the set G 
X 

{u e: X 

Thus G X € X 
X 

subcovering, 

that llt-qll < e:. 

we obtain 

: ~(u) < 

is an open 

~ € A having 

f(u) +d is an 

covering of X 

say. Since 

A •• ,1\ q 
X 

Ill 

Similarly we can prove the following lemma. 

the above property, Again 

open set containing x. 

and· has, therefore, a finite 

A is a lower semilattice, 

and clearly has the p1·operty 



272 

LEMMA 2.2. Let A c C(X) be an upper semilattice and a c A satisfy 

the following: 

(0) 1 f A g € A whenever f, g € B; 

and (00) I same as (00) of lemma 2.1 

Then A is dense in C (X) • 

THEOREM 2 .1. If L separates the points of X, then a € oLX if and 

only if jgf*(a). = fg(a) I for Y g € L. 

PROOF. If a E oLX, then f*(a) = f(a) for Y f E C(x) and hence in 

particular lgj.*(a} = jgl (a) for y g € L. So let us assume that 

lgj~(a) = jgl (a) for y g € L. We set A= L = {f E C(X) : f* (a) .f(a)} 
a 

which is nonempty as A ::J L. By (2.1) A is a lower semilattice 

We take B = L. Then by using (i) , (ii) and (iii) of section 1 and 

hypothesis we have for p, q E B, 

(pVq) (a) ~ (pVq)*(a) = !:i(p+q+jp-qj)*(a) ~ :l:i[(p+q)*+lp-qj*(a)] 

= ~[(p+q)(al+lp-qf(a)] = (pVq)(a). 

Thus (pVq) * (a) (pVq) (a) whenever p,q E L. Hence B satisfies the 

condition (0) of lemma 2.1. Finally since L separates the points of 

X, given x, y E X with x * y, there exists g E L such that g(x) * q·(y). 

The function f defined by 

f(u) = a g(u) - g(y) + b g(u) - g(x) 
g(x) - g(y) / g(y) - g(x) u E X is in L 

and satisfies the condition (00) of lemma 2.1. Thus by lemma 2.1 and 

1.3, A= C(X). By remark 1.1 this implies that a E oLX. 

REMARK. 2.1 If M is a linear subspace of L such that M contains the 

constant functions and separates the points of X, then a E oLX if and only 

if jgj*(a) = jgl (a) for Y gEM. 

To prove this we take A=£ a and B M and repeat the same argument as 

in the above theorem. 
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THEOREM 2.2. If L is a separable subspace of C(X) and separates the 

points of X, then there exists a function f E C(X} such that 

PROOF. 

a_x 
L 

Let {g : n = 1,2, ••• } be a countable dense subset of L. 
n 

Let M Then M being 

a linear dense subspace of L also separates ·the points of X. Let 

{r : n=l,2, •.• } be an enumeration of the rationals. 
n 

f(x) X E X 

where h (x) = jg (x) -
mn m 

m,n"' 1,2,. •• 

We define 

and X E X. 

Let a i ClLX. Then by remark 2.1 there e1dsts g E m such that 

I g I * (a) > I g I (a) • Thus 

(2. 3) Jg- g(a) J*(a) ?: (jgj - Jgj (a))*(a) = lgl*(a) - Jgl (a) > O. 

a 0 + apgp + •••.• 

being real numbers, we have by (V) of section 1 

g is of ·the form a a ...... a 
0' p, ' s 

I g - g (a) I* S: I a II g -g (a) I* (a) + I a II g - g (a) I'' (a) • This together 
p p p s s s 

voith (2. 3) above implies that o = Jg - g (a) l*(a) > 0 
p p 

for some p. 

Now we can find a rational number r such tha·t I g - r I < l;;o • 
q p q 

Hence by (v) again 

jh J*(a) = 
pq 

.1\.lso by (1) 

I g - r I* (a) ?: I g - g (a) I* (a) - I g - r I > o - !;;o p q 'p p p q 

jh !*(a) ?: jh I (a) for V m,n m,n m.n 

Hence .it follOitlS that f*(a) > f(a). Hence a E wf. 

l:!o. 

Thus On the other hand Wf n ()LX = ¢ by definition of ClLX 

and hence 'che conclusion of the t.h.eorem follows. 

COROLLARY 2.1 If L is a separable subspace of C (X) and separates the 
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PROOF By the.orem 2. 2, there. exists a function f E C (X) such that 

aLx (Wf} c: Now since wf is a Fa set (vide (2) of section 1), 

a:r.,x is a Go set. 
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