SOME THEOREMS ON ORLICZ-SOBOLEV SPACES, AND AN APPLICATION TO NEMITSKY OPERATORS

Grahame Hardy

1. INTRODUCTION

We are concerned here with the problem of extending, to Orlicz-Sobolev spaces, certain theorems of Marcus and Mizel on Nemitsky operators on Sobolev spaces. (See [5].)

Marcus and Mizel's proofs rely upon, in particular,

- (i) Gagliardo's characterisation of the Sobolev space $W_{1,\mathcal{D}}$ in terms of absolute continuity; and
- (ii) bounds and limits of difference quotients in Sobolev spaces.

We shall give suitable extensions of (i) and (ii) to Orlicz-Sobolev spaces in §§ (2) and (3) below, which enables us to give an extension of the theorems of Marcus and Mizel. (See § 4.)

2. ORLICZ-SOBOLEV SPACES AND THE SPACES $A(\Omega)$

Throughout this paper, Ω denotes a domain in \mathbb{R}^n .

Since all the definitions of both Orlicz and Orlicz-Sobolev spaces which occur in the statements of our theorems—can be found in [1], we shall not repeat them here. For the spaces $A(\Omega)$ (i.e., Beppo Levi spaces), we shall follow [5]. (With a minor difference in notation, essentially that, in denoting certain equivalence classes, we use "~" instead of a dash, to avoid an obvious source of confusion.)

Thus $A(\Omega)$ denotes the class of real measurable functions u on Ω such that, for almost every line τ parallel to any co-ordinate axis, u is locally absolutely continuous on $\tau\cap\Omega$. $\tilde{A}(\Omega)$ denotes the class of functions u such that u coincides almost everywhere in Ω with a function \tilde{u} in $A(\Omega)$. For $u\in \tilde{A}(\Omega)$, \tilde{D}_ju (or $\tilde{D}_{x_j}u$), the strong approximate derivative of u with respect to x_j , denotes any member of the equivalence class of functions measurable on Ω which contains the classical partial derivative $D_j\tilde{u}$. We shall use ϑ_ju or $\vartheta_{x_j}u$ to denote a weak derivative. Our extension of Gagliardo's theorem is:

THEOREM 1 Let M be an N-function, and suppose Ω is a bounded domain in \mathbb{R}^n with the cone property. Then a function u defined on Ω belongs to $W^1L_M(\Omega)$ if and only if

- (a) $u \in \tilde{A}(\Omega)$;
- (b) $\tilde{D}_{j}u \in L_{\underline{M}}(\Omega)$, $j = 1, \ldots, n$.

Moreover, if $u \in W^1L_M(\Omega)$, then $\tilde{D}_{j}u = \partial_{j}u$ almost everywhere in Ω .

Using Theorem 1 (instead of Gagliardo's Theorem), we obtain the following version of a chain rule due to Serrin.

THEOREM 2 Let $f\colon R\to R$ be locally absolutely continuous, let M be an N-function and suppose $u\in W_{1,1}^{loc}(\Omega)$. Then $f\circ u\in W^1L_M(\Omega)$ if and only if

(i)
$$(f'\circ u)\partial_j u \in L_M(\Omega), j = 1, \ldots, n,$$

where we make the following convention:

(*) the product is zero if the term on the right is zero.

Moreover, if (i) holds, $\partial_j(f \circ u) = (f' \circ u) \, \partial_j u, \, j = 1, \ldots, n \, , \text{almost everywhere in } \Omega.$

3. DIFFERENCE QUOTIENTS IN ORLICZ-SOBOLEV SPACES

Definition. For $u:\Omega \to R$, e_j , $1 \le j \le n$, the standard basis for R^n , and $x \in R^n$, we define the difference quotient in the direction e_j by

$$\delta_{h}^{j}u\left(x\right)\ =\ \frac{u\left(x+he_{j}\right)\ -\ u\left(x\right)}{h}\ \text{, }h\neq0\text{, whenever }x\text{ and }x+he_{j}\in\Omega.$$

Using arguments similar to those used to establish the analagous results for Sobolev spaces, (see [2]), we can prove the following:

THEOREM 3. Suppose Ω is a bounded, and that Ω' is an open set such that $\Omega' \subset \Omega$. Then if $0 < |h| < dist(\Omega', bdry \Omega)$, and if $u \in W^m E_M(\Omega)$ for some $m \ge 1$,

$$\|\delta_h^j u\|_{m-1,M,\Omega'} \leq \|u\|_{m,M,\Omega}.$$

Further, if there exists a number C such that $\|\delta_h^j u\|_{m,M,\Omega'} \le C$, $1 \le j \le n$, for every open $\Omega' \subset \Omega$ and all h sufficiently small, then $u \in W^{m+1}L_M(\Omega)$ and $\|\partial_j u\|_{m,M,\Omega} \le C$, $1 \le j \le n$.

NEMITSKY OPERATORS

Definition. A function $g:\Omega\times R^m\to R$ is said to be a generalised locally absolutely continuous (briefly g.l.a.c.) Caratheodory function if:

(i) There exists a null subset N of Ω such that for every fixed $x \in \Omega \setminus \mathbf{N} \text{ we have}$

- (a) $g(x, \cdot)$ is separately continuous in R^m ;
- (b) for every line T parallel to one of the axes in R^m , $g(x,\cdot)\big|_T$ is locally absolutely continuous.
- (ii) For each fixed t ϵ R m , g(·,t) ϵ $\tilde{A}(\Omega)$.

The Nemitsky operator G is then defined on functions $u:\Omega\to R^m$ by (Gu)(x) = g(x, u(x)).

Our extension of Marcus and Mizel's theorem (including a corollary) is then:

- THEOREM 4. Let Ω be a bounded domain in R^n having the cone property, and let g be a g.l.a.c. Caratheodory function on $\Omega \times R^m$. Let P, Q_k and Q_k^+ , $k=1,\ldots,m$, be N-functions having the following properties:
 - (i) P and Q_k , k = 1, ..., m, satisfy the Δ_2 condition;
 - (ii) $P < Q_k$, $k = 1, \ldots, m$;
 - (iii) there exist complementary N-functions \mathbf{R}_k and $\tilde{\mathbf{R}}_k$ such that the inequalities

$$R_k(s) \leq P^{-1}[Q_k(\alpha_k s)]$$

and.

$$\tilde{R}_k(s) \leq P^{-1}[Q_k^{\dagger}(\beta_k s)]$$

are satisfied for $s \ge c_k$, where a_k , β_k , c_k , $k = 1, \ldots, m$, are constants.

Suppose a, b, a_k , $b_{k,j}$ are functions such that for every fixed t $\in \mathbb{R}^m$

(iv) $|\tilde{D}_{x_i}g(x,t)| \le a(x) + b(t)$ a.e. in Ω , i = 1,...,n; and the inequality

(v)
$$\left|\frac{\partial g(x,t)}{\partial t_k}\right| \leq a_k(x) + \sum_{j=1}^m b_{k,j}(t_j), k = 1, \dots, m,$$

holds at every point $(x,t) \in (\Omega \setminus \mathbb{N}) \times \mathbb{R}^m$ at which the derivative exists in the classical sense. (Here \mathbb{N} is the null set of the definition above.)

Furthermore, a, b, a_k and $b_{k,j}$ have the properties (vi) - (x) listed below:

(vi)
$$0 \leq \alpha \in L_p(\Omega)$$
;

(vii) b is non-negative and separately continuous in R^m ;

(viii)
$$0 \le \alpha_k \in L_{Q_L^+}(\Omega), k = 1, \dots, m;$$

(ix) $0 \le b_{k,j}$ is an extended real valued Borel function on R, $k,j=1,\ldots,m;$

(x)
$$b_{k,k} \in L_1^{loc}$$
 (R), $k = 1, ..., m$.

Let $u_k \in W^1L_{Q_k}$ (Ω), $k=1,\ldots,m$, let $\mathbf{u}=(u_1,\ldots,u_m)$, and suppose that

(xi) bou
$$\in L_{\mathcal{D}}(\Omega)$$
;

(xii)
$$b_{k,j}ou_j \in L_{Q_k^+}(\Omega)$$
 $k,j=1,\ldots,m, k \neq j;$

and, with the convention (*)

(xiii)
$$[b_{k,k} \circ u_k] \partial_i u_k \in L_p(\Omega), k = 1,...,m, i = 1,...,n.$$

Then Gu belongs to $W^1L_p(\Omega)$, and, with the convention (*),

$$\left|\partial_{x}(Gu(x))\right| \leq \alpha(x) + (b \circ u)(x) +$$

$$+\sum_{k=1}^{m} \left[\alpha_k(x) + \sum_{j=1}^{m} (b_{k,j} \circ u_j)(x) |\partial_i u_k(x)| \right]$$

almost everywhere in Ω , i = 1, ..., n.

NOTE. Families of N-functions satisfying (i), (ii), and (iii) can be constructed from standard N-functions (such as those listed in [4]), using the following:

Proposition. Let P and R be N-functions satisfying the Δ_2 condition, and let $Q=P\circ R$, $Q^\dagger=P\circ \widetilde{R}$. Then Q and Q^\dagger are N-functions having the properties:

- (i) Q satisfies the Δ_2 condition;
- (ii) P < Q;
- (iii) $R = P^{-1} \circ Q$, $\tilde{R} = P^{-1} \circ Q^{\dagger}$.

REFERENCES

- [1] T.K. Donaldson, and N.S. Trudinger,: "Orlicz-Sobolev spaces and imbedding theorems." J. Functional Analysis, 8 (1971), 52-75.
- [2] A. Friedmann,: Partial Differential Equations. Holt, Rinehart, Winston, New York, 1969.
- [3] G. Hardy,: "Extensions of theorems of Gagliardo and Marcus and Mizel to Orlicz spaces. *Bull. Austral. Math. Soc.* 23 (1981), 121-138.
- [4] M.A. Krasnosel'skiĭ, and Y.B. Rutickiĭ,: Convex Functions and Orlicz Spaces. Translated by L.F. Boron. Nordhoff, Holland, 1961.
- [5] M. Marcus and V.J. Mizel,: "Nemitsky Operators on Sobolev Spaces."

 Arch. Rational Mech. Anal. 51 (1973), 347-370.

School of External Studies University of Queensland St Lucia QLD 4067 AUSTRALIA