EIGENSTRUCTURE SPECIFICATIOR IN HILBERT SPACE

B.M.M. Clarke

INTRODUCTION

The solution of the problem of spectrum assignment by linear state feedback for linear finite dimensional systems, is by now a classical result of linear systems theory. The proof was first given in [14]. A statement of the problem and its solution is to be found in good texts on linear systems theory [1], [11]. In the maing the proofs rely on a transformation of the original linear system into a canonical form, wherein the effect of the feedback matrim on the closed loop characteristio polynomial is directly apparent: If the system is completely controllable, it is shown that the coefficients of the characteristic polynomial of the canonical form of the closed loop system, may be arbitrarily specified by choice of the feedback matrix.

There has been recent interest in this problem for infinite dimensional state spaces [2], [9], [4], [9], [10]: In [9], [10]for systems described by a class of linear hyperbolic partial differential equations, an approach analagous to the finite dimensional treatment deseribed above has been adopted. That is, a transformation to a canonical form and a choice of feedback to assign the spectrum of the canonical form. We have two main criticisms to make of this approach. Firstly, it does not seem readily adaptable to other olasses of infinita dimensional linear systems which are of interest. Secondy, the feedback sonstructed
for the canonical form does not readily lead to the required feedback for the original system.

Our viewpoint is more geometric than most Elucidated thus fare We strongly adopt the position that the closed loop spectrum of the linear system should not be the only concern of a theory of spectrum assignment. Whilst the spectrum provides important qualitative information, the eigenvectors provide equally important quantitative information. Indeed, in many cases the spectral representation of the closed loop system operator given by the closed loop eigenvectors, leads to effective construction of the closed loop system semi-group.

Our dictum is that a general theory of spectrum assignment should include naturally, the generation of the eigenvectors corresponding to the assigned closed loop spectrum. We eschew canonical forms and work directly with the given system. We show the possibility of spectrum assignment depends in a crucial way on the dimension of the control space being sufficiently large in relation to the dimension of the eigenspaces of the linear system operator: This problem was previously considered by Sun [131 for the case of a one dimensional control space. Our methods are unrelated to those of [13] and significantly improve on the main result which appears there.

To made matters concrete, we consider the linear system

$$
\begin{equation*}
\dot{r}=A r+B u \tag{1,1}
\end{equation*}
$$

where $\mathrm{M}[0,0, \infty) \mathrm{K}, \mathrm{X}$ a compler, seperable Hilbert space, u: $[0, \infty) \rightarrow U, U$ Einite dimensional compler inner product space,
 By \rightarrow X a non-singular bounded linear operator. Precise conditions on the pair (A,B) will be given presently. For the moment we assume that A has pure point spectrum o(A) $=\left\{\lambda_{i} j \quad i=1,2:=3\right.$ and the eigenvectors of A form a basis for X. There arises the question as to whether, given a countable set of comples numbers f $\mu_{i} i=1,2,=3$, there exists a bounded linear pperator $F: X \rightarrow U$ such that $\sigma(A+B F)=\{\mu i=1,2, \ldots\}=T h i s$ question arises after the introduction into (1.1) of a control of Iinear state feedbeck type, $\quad=F \mathrm{~F}$, wherein (1.1) becomes

$$
\begin{equation*}
H=(A+B F) H \tag{1.2}
\end{equation*}
$$

In the following sections of the paper we state conditions on the
 to this question. Moreover, we provide a constructive prooedure for obtaining F.

Our proof proceeds as follows: Corresponding to the set
$\left\{H_{i} \quad i=1,2=0\right.$ with corresponding multiplioities
Evain $i=1,2, \ldots\}$, we construct a countable set of vectors in X. Subject to the pair (A,B) being oontrollable and conditions on the sets $\left\{\mu_{i}\right\},\left\{v_{i}\right\}$, this set of vectors is shown to formariesz basisfor X. The linear operator F is then defined on X and shown to be bounded. The Riesz basis constructed for X is shown to consist of eigenvectors of $A+B F$ oorresponding to $\sigma(A+B F)=\left\{\mu_{i}\right\}$ with corresponding multiplicities $\varepsilon_{i}{ }^{\}}$.

Previously almost nothing wes known conoerning this problem for the case of multiple inputs (dim $J=m$) 1) or when A has
eigenvalmes of multiplicities greater than one We provide a complete solution for the general problem by a construction whoh can provide a basis for computation. Moreover our results improve in e significant way over previous results even for the single input case.

We state our main result
THEOREM 1 Let A be a discrete spectral operator of sealar type
 Let B be a nonsingular operator from $\mathbb{I}^{\text {mint }}$ into X and let bhe pair (A,B) be controllables

Then for any countable distinct set of complex numbers in it and any conntable set af positive integers ry ${ }^{2}$ satisfying conditions 4,5 below here exists b hounded linear operator $F: \mathrm{X} \rightarrow \mathbb{U}^{\mathrm{m}}$ such that $\mathrm{A}+\mathrm{BF}$ is discrete, spectral and scalary $0(A+B F)=\left(\mu_{i}\right)$ and dimmer $\left(A+B F-H_{i}\right)=v_{i}$

MATH RESULTS: Let $A=X \rightarrow X$ be disorete, spectral and or solar type and $\sigma(A)=\left\{A_{i} \quad i=1,2_{3}=3\right.$ with the following properties 1: $\quad \inf _{i \neq H}\left|\lambda_{i}-\lambda_{\underline{1}}\right|=\sigma \geqslant D$
2. $\operatorname{sip}_{\mathrm{H}} \sum_{i \neq \mathrm{H}} \frac{1}{\left|\lambda_{i}-\lambda_{i}\right|^{2}}<\infty$

Let $E_{i}=\operatorname{Her}_{\mathrm{H}}\left(\lambda_{i}-A\right), \operatorname{dim} E_{i}=0_{i}\langle\infty=\operatorname{The} \operatorname{adjoint}$

Let $B: \mathbb{C}^{m} \rightarrow X ; \mathcal{H e r}^{\mathrm{m}} \mathrm{B}=\{0 \boldsymbol{O}$: A orucial property of the Linear system (A,B) is that it be controliable. We recall the
following result [6].
 an isomorphism on the subspace Fi for each $i=1,2,==$

From the above result it is necessary for controllability of (A, B) that $v_{i} \leq m$ for $i=1,2, \ldots=$ If (A,B) is not controllable, then dim $B^{*} F_{i}=r_{i}$ (w_{i} for some $i=$ Let $F_{i}{ }^{\prime} C_{i} F_{i}$ be a subspace
 Gonsider

That iss $\bar{\lambda}_{i}\left(\lambda_{i}\right) \quad i=a n$ eigenvalue of $(A+B F)^{*}(A+B F)$ with corresponding eigenspace of dimension $\left.v_{i}-r_{i}\right\rangle$. We assume that
3. (A,B) is controllable.

We choose an orthonormal basis tor Each $\mathbb{B}^{*}{ }_{i}$,
 $\psi_{j}^{i} \in F_{i}=\operatorname{That} i s_{3}$

$$
B^{3} \psi_{j}^{i}=Y_{j}^{i}, \quad j=1_{y}==w_{i} v_{i}
$$

The collection of eigenvectors of
 and cqiv is the mique dual biorthogonal basis for X oonsisting of eigenvectors of $A=$ That is.
for $K \in \mathbb{X}, \quad \mathbb{K}=\sum_{i=1}^{\infty} \sum_{j=1}^{v i}\left\langle\oiint_{j} \psi_{j}^{i}\right\rangle \psi_{j}^{i}$,

We complete the set $\left[y_{j}^{\frac{j}{j}}\right.$ to an orthonormal basis for $\mathbb{C}^{m},\left\{y_{j}^{i} j, j=1, \ldots, m\right\}$,

$$
\left\langle y_{j}^{i}, y_{1}^{i}\right\rangle=b_{j 1} ; \quad j, 1=1_{3}=\ldots, m
$$

We choose a sequence of complex numbers f $\mu_{i}{ }^{\text {b }}$ and a sequence of positive integers fun $_{i}{ }^{3}$ satisfying
4. $\quad \sum_{i=1}^{\infty}\left|\mu_{i}-\lambda_{i}\right|^{2}<\infty$
5. (i) $v_{i} \subseteq m$

(iii) $\sum_{i=1}^{k} \stackrel{v}{i}_{i}^{k}=\sum_{i=1}^{k} v_{i}$

We initially assume that $\mu_{\text {R }} E \rho(A)$ and define a sequence of

for $\quad 1=1, \ldots, v_{k}$.

$$
\left.=\left\langle E v_{1}^{K}, \frac{\psi_{j}^{i}}{\mu_{k}-\lambda_{i}}\right\rangle=\frac{\left\langle Y_{1}^{k}, B^{*} \psi_{j}^{i}\right.}{\mu_{k}-\lambda_{i}}\right\rangle\left\langle y_{1}^{k}, Y_{j}^{i}\right\rangle
$$

for $\quad 1=1, \ldots, v_{k}, j=1, \ldots, v_{i}$.

Then,

for $1=1, \ldots, v_{\text {Ie }}$.
Consider the expansion

$$
\begin{aligned}
& \tilde{e}_{1}^{\mathrm{K}}=\sum_{i=1}^{\infty} \sum_{\mathrm{j}=1}^{v_{i}}\left\langle\tilde{e}_{1}^{\mathrm{K}}, \psi_{\mathrm{j}}^{\mathrm{i}}\right\rangle \phi_{\mathrm{j}}^{\mathrm{i}}
\end{aligned}
$$

for $1=1, \ldots, v_{k}=$ We now remove our assumption $\mu_{k} \in \rho(A)$. If $\mu_{\text {K }}=\lambda_{\text {l }} \in \sigma(A)$, we define $e_{1}^{e_{k}}$ by the above formula, obtaining
for $1=1, \ldots, v_{k}=$
It is our intention to show that the sequence fen $_{1}$) defined above is a Riesz basis for X. To this end we recall the following definitions:
 clase if

$$
\sum_{i=1}^{\sum}\left\|x_{i}-y_{i}\right\|^{2}<\infty
$$

The sequence $\left\{r_{i}\right\}$ is w-linearly independent if $\sum_{i=1}^{\infty} 0_{i}{ }_{i}{ }_{i}=0$ implies $c_{i}=0, i=1,2, \ldots=$

THEOREM 3. (Bari [7]). Any w-1inearly independent sequence which is quadratically close to a Riesz basis of X, is also a Riesz basis of X .

We show that $f_{i} e_{i}^{k}$ is quadratically close to the Riesa basis $\left\{\phi_{j}^{i}\right\}$. Because of $5(i i), 1$) $v_{\text {l }}$ occurs at most finitely often. Therefore for $k \mathbb{K}$,

$$
\begin{aligned}
& \leq c\left|\mu_{k}-\lambda_{k}\right|^{2}\left\|\underset{i \neq k}{\sum} \sum_{j}^{\sum} \frac{\left\langle y_{1}^{k}, y_{j}^{i}\right\rangle}{\lambda_{k}-\lambda_{i}} \quad \phi_{j}^{i}\right\|^{2} \quad \text { (from 1, 4) } \\
& \leq C \cdot\left|\beta_{\mathrm{K}}-\lambda_{\mathrm{K}}\right|^{2} \underset{i \neq \mathbb{R}}{\sum} \frac{1}{\left|\lambda_{\mathrm{K}}-\lambda_{i}\right|^{2}} \quad\left(\text { Erom }\left\|\gamma_{j}^{i}\right\|=1\right)
\end{aligned}
$$

Therefore
$\leq \infty$

Quadratic closeness to a basis already implies that
 and it is easy to prove that $\mathrm{Ce}_{\mathrm{I}} \mathrm{k}\{\mathrm{K} \leq \mathrm{N}$ is linearly independent for any N. $\left\{_{1}^{k}\right.$, can be made into a basis by replacing at most finitely many vectors. Defining $F: X \rightarrow \mathbb{C}^{m}$ by
for $1=1, \ldots$ og it easily follows that

$$
(A+B F) e_{1}^{M_{R}}=\mu_{\mathbb{R}}^{E_{R}^{M}}, 1=1, \ldots, \tilde{v}_{\mathbb{K}}
$$

 \&-1.nearly independent and hence is Riesz basis for x, by the theorem of Bari.

We can extend F to $\%$ by
and
where teky is the unique duel basis of X, biorthogonal to $\mathrm{Fe}_{1}^{\mathrm{L}} \mathrm{It}$ only remaing to show that F is boundei, A+BF has no other eigenvalues than bik and each eigenspace of $A+B F$ has dimension Uk, which is easily cone. This completes the proof of our man rescit.

A ntmber of cancluding remarks are worth making:
 (b) F is not migue. Is there a smallest F and how is it
characterized:?
(c) It would be useful to remove the condition that $A, A+B F$
is scalar. The Riesz bases would then consist of
generalized eigenvectors. This would alloweigenvalues of (generalized) multiplicity greater than m.

HEFERENCES

[1] S. Barnett, Introductian to mathematical cantral theary, OUP; OMford, 1975.
[2] B.M. N. Clarke, figenwalue assignment of an augmented hyperbolic system by linear feedback; J= Math. Anal= Appl.: 97, 1983, 417-440.
[7] B.M.N. Clarte and D. Williamson, Control canonical forms and eigenvalue assignment by feedback for a olass af linear hyperbolio systems, SIAM J. Control and Opt: 19. 1981, 711-729.
[4] R. Curtain; Spectral systems, Int: J. Control, 39, 1984, 657-666.

N: Dunford and J:T: Schwartz, Linear operators, Part III; Interscience, NY, 1971.
[6] H. Fattorini, Some remarks on complete controliability; SIAM J. Control, 4, 1966, 686-694.
[7] I. Gomhberg and M. G. Kreing Matroduction to the theory af linear non-self adjoint operators, Amer. Math. Soo: Providence; RI; 1969.
[日] G. Polya and G.P. Szego, Problems and Theorems in Analysis, Vol = II, Springer, 1976.
[9] D. L: Russell, Canonical Eorms and spectral determination
for a olass of hyperbolie distributed parameter systems.

[10] D. L. Russell, Chosed baop eigenualue specifioation for infinite dimensional systems: Augmented and deficient hyperbolic ceses, MRC, Tech, Soience Report \#2021, 1979
[11] D. \quad Russell, hathemetios of finite dimencionel control systems, Dekrer, 稘; 1979.
[121 J. T= Sobwartz, Perturbations of spectral perators and
 $1954,415-459=$
[13] S. H . Sun, Dn spectram distribution of oompletery ontraliable linear systems, SIAM J. Gontrol and Optimization, is, 3 B1. $730-743=$
[14I W. M. Wenham, Dr pole assignment in multi-input oqntrollabue Iinear systens. TEEE Trans, Antomatio Contral, AC12, 1967, $560-665$.

