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EIGEHSTRUCTURE S~ECIFICRTION IN HILBERT SPACE 

B,rt,lil, Clarke 

:nllTRODUCTION 

The solution of the problem of spectrum assignment by linear 

state feedback for linear- finite dimensional systems, is by IUH-l a 

classical result of linear systems theory. The proof 1.'/as first 

g i ue n in [ 1 4 L A statement of the p;~oblem and its solution is to be 

found in good texts on linear systems theory [11, [111. In the 

main, the proofs rely on a tran.sformation of the original lin,e;u·

system into a canonical fot'm, '-·ihePein the effect of the feedback 

w1atriR on the closed loop characteristic polynomial is dh-ectly 

apparent, If the system is completely controllable, it is shown 

that the coefficients of the characteristic polynomial of the 

canonical fcn:'"'m of the closed loop systerni ~nay be arbit:r·arily 

specified by cho~ice of the feedback ft~ath-..iK: 

There has been recent interest in this problem for infinite 

din1.1ensional state spaces [2]J [3Jy [q:]~ f9J, [1f!i],. In [ 9 J ~ [ 10] f 0}:"'" 

systems described by a class of linear hyperbolic partial 

differential equations, an approach analagous to the finite 

That is, a 

assign the spectrum of the canonical form. 

Firstly, it does not seem 

Secondly, the feedback constructed 
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for the canonical form does not ~eadily lead to the required 

feedback for the original system. 

Our •Jiewpoint is mol~e geometric than most elucidated thus f.ar-. 

We strongly adopt the position that the closed loop spectrum of the 

linear system should not be the only concern of a theory of spectrum 

assignment. Whilst the spectrum pro•.>ide·s important qualitative 

i.nformat ion, the eigent.>ectoans pro•; ide equally in;portant quanti tat i•.•e 

information. Indeed, in many cases the spectral representation of 

the closed loop system operator giuen by the closed loop 

eigenvectors, leads to etfectiue construction of the closed loop 

system semi-group. 

Our dictum is that a gener-al theory of spech~um as·signment 

should include naturally, the generation of the eigenvectors 

corresponding to the assigned closed loop spectrum. 

the possibility of spectrum assigrnnent depends in a crucial \>l'ay on 

the dimension of the control space being suff .i.cient ly large in 

~~elation to the dimension of the eigenspa.ces of the linear· system 

operator. This problem W'aS pre•.>iously considered hy Sun [ 13] for 

the case of a one dimensional control space. Ot.n~ methods are 

unrelated to those of [ 13J and significantly impro<.<e on the main 

result \''hich appear·s there. 

fiJi: + Bu u.u 

H:£1l•,co} ·-t }(, H a cmnpleH, seperable Hilbert space, 

u;[0,«·) ....; U , U a finite dime·nsional complex inner product space, 
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dim U m, A:X ~X , a closed, linear operator with dense domain, 

B:U ~X a non-singular bounded linear operator. Precise conditions 

on the pair <A,B> will be gi•Jen presently. For the moment we 

assume that A has pure point spectrum a<A> ={Xi; i = 1,2 •.. } 

and the eigenvectors of A form a basis for X . There arises the 

question as to whether, given a countable set of complex numbers 

{~i; i = 1,2, ..• } , there exists a bounded linear operator 

F: X~ U such that a<A + BF> = {~i ; i = 1,2, ... } This 

question arises after th~ introduction into <1.1) of a control of 

linear state feedback type, u = Fx , wherein (1.1> becomes 

X <A + BF>x ( 1. 2) 

In the following sections of the paper \~ state conditions on the 

pair <A,B> 1 and the set {pi} which protJide an affirmative answer 

to this question. l'IoreotJer, we provide a constructit.•e procedure for 

obtaining F . 

Our proof proceeds as follows: Corresponding to the set 

{pi ; i = 1,2 ..• } with corresponding multiplicities 

{ui; i = 1,2, ... } we construct a countable set of vectors in X. 

Subject to the pair <A,B> being controllable and conditions on the 

sets {pi} {ui} , this set of vectors is shown to form a Riesz 

basis for X The linear operator F is then defined on X and 

sho\-m to be bounded. The Riesz basis constructed for X is shown 

to consist of eigenvectors of A + B.F corresponding to 

a<A + BF> = {pi} with corresponding multiplicities {ui} 

Previously almost nothing was kno\-m concerning this problem for 

the case of multiple inputs (dim U = m > 1 > or ,.,hen A has 
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eigenvalues of multiplicities greater than one. We provide a 

complete solution for the general problem by a construction which 

can pro•1ide a basis for computation. Moreover our results improlle 

in a significant way over pre•1ious results, even for the single 

input case. 

We state our main result 

THEOREI"' 1 Let A be a discrete spectral operator of scalar type 

an a Hilbert space K and let A satisfy canditian5 1,2 below. 

Let B be a nonsingular operator from Em into K and let the 

pair <A,B> be controllable. 

Then far any countable distinct set at complex numbers {p 1J 

and any countable set at positive integers l"v.J 
l 

satisfying 

cond it ian.s 4, 5 belo\'1 there exists a bounded linear apel~ator 

F : K ~ Em such that A + BF is discrete, spectral and scalar, 

tiAIH 

type 

1. 

2. 

RESULTS. 

and aUU 

in£ IX i 
i;.fk 

sup Z: 
k i¢k 

Let 

o ... 
l 

- Xkl 

1 

A : K 

i 

6 

( "" 

Let E. = Ker<X.-A> 
l l 

A* : K ~ K has spectrum 

corresponding eigenspaces 

~ K be discrete, 

1J. 
l 

spectral and o£ sclar 

1, 2, ... } \'lith the £ollo\'1ing properties 

0 

, dim E. 
l 

a<A*> 

= 1J. 
l < "" • The adjoint 

i = 1 , 2, •.• } and 

= 1}. 
l ""· 

Let B : Em ~ K , Ker B = {0} • A crucial property o£ the 

linear system <A,B> is that it be controllable. We reca 11 the 
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following result [6]. 

Uli,B) is cantrallable if and only i£ 

an isomorphism on the subspace F. 
1 

for each i = 1,2,. 

is 

From the above result it is necessary for controllability of <A,ED 

that u ::; n1 
l 

then dim * !3 F 

of :iii , dim 

for· 

i 

i 

r 
i 

v. 
1 

1 
' 

1J 
i 

- r . i 

2, If 

for' some 

such 

(A,Bi is not controllable, 

i Let F.' c F 
i i 

be a S!.d:;o;pace 

that * B f = 0 

* fl. f 

for 

};. . f 
1 

f E F.~ 
! 

That is, h. o ... ) 
l 1 

is an eigenvalue of lA + BF)* lA + BF) with 

cor-responding eigenspace of dirnension "'· 1 
- ri > 0. 

3. is controllable. 

~,Je choose an orthonor~Y~l bas. is for each BitrF. 
l 

lJe assume that 

Each .. ,i 
J 

has a unique inverse i1T1age 

That is, 

itl' 'f• i i 
j 

«;! 
j 

The collection of eigenvectors of 

i 
{'f": 

" 
is a Riesz basis for K [7] 

and {~~} 
J 

is the unique dual biorthogonal basis for X consisting 

of eigenvectors of 

- i 

'"'j' l 

11 .• 'I"'ha t is~ 



for 

a:m • 

u. 
CIQ 1 

X E X • X z:; z:; 
i=l j=1 

cllxll 2 ~ 

We complete the set 

{ "'I ~ ; j = 1 , ••• , m} , 
J 

z:; 
i 
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'I'~ ~~ { x, 
J J 

z:: I< i >12 Cllxll 2 x,'l'j ~ . 
j 

{"'/~} to an orthonormal basis for 
J 

"ii } 
1 j J 1 1, .•. ,m 

We choose a sequence of complex numbers {pi} and a sequence 

of positive integers {ui} satisfying 

4. 

s. (i) u. ~ m 
1 

( i i) For some integer k } 0 
' 

u. u. for i } k 
1 1 

k k 
(iii) z:; u. z:; u. 

i=1 
1 i=l 1 

We initially assume that pk E p<A> and define a sequence o£ 

vectors by 
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for l 1 ' ...• 

Consider, ,k "0 I ,* 'J'-"'i. B~ 1' "''liki n r J 

'f' ~ It * i { i' {1fl,B 'f'j ~ 1 "'I . I 
J A J 

I' 
pk-1'i pk-.Ai ~~k-)\i 

for 1 l., ••• ,uk' j 

Then, 



for 1 = 1, •.. ,uk 

for 1 = 1, ••. ,uk 
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We now remove our assumption pk E p<A> . 

by the above formula, obtaining 

k 
'I 1 J 

i 
'I. 

J 

If 

It is our intention to show that the sequence 
~k 

{e 1 } defined 

abo•1e is a Riesz basis for X • To this end we recall the following 

definitions; 

Two sequences {xi} 1 {yi} 

close if 

in X are said to be quadratically 

The sequence {K.} 
1 

is ~-linearly independent if E 
i=l 

C.K. 
1 1 

0 

implies c. 
1 

THEOREI'I 3. 

0, i 1 J 2, .•. 

(Bari [7]). Any ~-linearly independent sequence which 

is quadratically close to a Riesz basis of X , is also a Riesz 

basis of X . 

We show that is quadratically close to the Riesz basis 

Because of 5(ii} 1 1 } uk occurs at most finitely often. 

Therefore for k > K , 
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l!:k ~'·k!!2 
flk _,,k 

II E E 
-},. -l l 

i;ik ' <J 1 

:f c' l 

k i 
"'{1' "'{ 

j 

1 + ). __ -A.. 
R .!. 

' k .i '• 
d' l' "'{ j I 

),k -A. i 

1 

!. ' 12 hk - .. 1> i 

sup E 

¢~112 
J 

¢iil2 
J 

k i ( ,, ,, } 
"l''j 

(from 1 , l!; 

( flf•m;-; 1111 ~ II 
J 

1 

k}!{ i.;>fk 
-}l.. 

1 

2 

Quadratic closeness to a basis already implies that 

is y-linearly independent for N sufficiently large 

and it is easy to prove that is linearly independent 

fo:c- any N " 
; -~k, 
·ce, s can J:;,:::; made into a basis by replacing at most ... 

f ini te.l.y many <.>ectors. :Oefining by 

jl (;:;k-)'.k)"'{~ 

l ~ 1 } U>k 
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f 01" l "' ! i ' ' • l , it easily follm'ls that 

•r~ elgenveatars or A+BF corr~sponding to 

.i.s 

and hanaa ia Riesz basis far X 1 by the 

"" 
l)k 

-k ~k ,.. E E X }! "' ·"' II,£ .l. .1 ll 

:1!."' l b•1 

v. 
00 l 

;~<. FH E z; { 

It" 1 bd 
l1 ' c l 1 

1• the uniqu• dual basis a£ K , biarthogonal to 

1} It anl:v r!H!'lains to shc:n\1 that F is bounded, fH·BF has no other' 

eigen~'alues than { } and each eigenspace o£ A+BF has di.mension 

result, 

i i i 
{ 't/ . } ' {¢>j)' {';!'~} •:-Jan be made explicit, hence also 1} ' J J 

(b) F ii:i not 1.mique, Is there • .smalle"'t F and hen" .is H 
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characterized.? 

<c> It \rould be useful to remove the condition that A, A+BF 

is s·calar. The Riesz bases would then consist of 

qeneral i zed eigent>"ectors. This would allow eigenvalues of 

(generalized> multiplicity greater than m . 
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