GROUP ACTIONS ON CUNTZ ALGEBRAS

A.L. Carey and D.E. Evans

1. INTRODUCTION

The Cuntz algebra $0_{n}(1<n<\infty)$ is the C* -algebra generated by the range of a linear map s from C^{n} to the bounded linear operators on an infinite dimensional Hilbert space which satisfies

$$
\begin{gather*}
s(h, 1) * s\left(h_{2}\right)=\left\langle h_{1}, h_{2}>1, \quad h_{j} \in C^{n}, j=1,2\right. \tag{1.1}\\
\sum_{j=1, n} s\left(e_{j}\right) s\left(e_{j}\right) *=1,
\end{gather*}
$$

where \langle,$\rangle is an inner product on C^{n},\left\{e_{j}\right\}_{j=1, n}$ an orthornormal basis with respect to this inner product and 1 the identity operator. One may think of 0_{n} as a 'non-commutative version' of the unit sphere in C^{n}. This analogy is reinforced by the fact that the noncompact lie group $U(n, 1)$ acts automorphically on O_{n} by generalised Mobius transformations. This $U(n, 1)$ action was introduced by Voiculescu [6], however, understanding his proof of its existence requires some stamina on the part of the reader. We show here that the action may be defined using just elementary algebra and the result of Cuntz [3] that ρ_{n} is uniquely determined by the relations (1.1) and (1.2) satisfied by s.

2. THE U $(n, 1)$ ACIION

Define a row vector $s=\left(s\left(e_{1}\right), \ldots, s\left(e_{n}\right)\right)$. Then with s^{*} denoting the column vector with entries $s\left(e_{j}\right) *(j=1, \ldots, n)$, one has from (1.1) and (1.2) the relations

```
ss*=1, s*s = diag(1,\ldots,1)
```

If A, B are $n x n$ matrices over C and $S A s^{*}$ denotes the obvious matrix product then

```
sAs*sBs* = sABs*, sAs*s(h)=s(Ah),h
```

and also

$$
\begin{equation*}
s(h)=s \cdot h^{t} \tag{2.3}
\end{equation*}
$$

Now note that if $U(n, 1)$ denotes the group of $(n+1) x(n+1)$ matrices A such that

$$
\begin{equation*}
\text { AJA* }=\mathrm{J}, \quad \mathrm{~J}=\operatorname{diag}(-1,1, \ldots, 1) \tag{2.4}
\end{equation*}
$$

then each such A may be written

$$
A=\left(\begin{array}{cc}
a_{0} & \left\langle h_{1},\right\rangle \tag{2.5}\\
n_{2} & A_{1}
\end{array}\right)
$$

with $a_{0} \in C, h_{1}, h_{2} \in C^{n}$ and A_{1} an $n \times n$ matrix. Now (2.4) implies for example:

$$
\begin{equation*}
\left|a_{0}\right|^{2}-\left\|h_{1}\right\|^{2}=1, a_{0} h_{2}^{*}=h_{1} A_{1}^{*}-h_{2} h_{2}=1_{n} . \tag{2.6}
\end{equation*}
$$

Now define

$$
\begin{equation*}
u_{A}=\left(a_{0}-s\left(h_{2}\right)\right)^{-1}\left(-s\left(h_{1}\right) *+s A_{1} s^{*}\right) \tag{2.7}
\end{equation*}
$$

LEMMA 2.1. u_{A} is a well defined unitary in 0_{n}

Proof. Using $A * J A=J$ and the ensuing relations, corresponding to (2.6), one checks that $\left(a_{0}-s\left(h_{2}\right)\right)^{-1}$ exists in 0_{n}. Then these relations also give, after some elementary algebraic manipulations, $u_{A}{ }^{*} u_{A}=1=u_{A} u_{A}{ }^{*}$.

LEMMA 2.2. (Takesaki) There is a bijection between unitaries u in 0_{n} and unital endormorphisms α of 0_{n} given by

$$
u=\sum_{j} \alpha\left(s\left(e_{j}\right)\right) s\left(e_{j}\right) * \text { and } \alpha\left(s\left(e_{i}\right)\right)=u s\left(e_{i}\right)
$$

Moreover α is an automorphism if and only if there exists a unitary u^{\prime} in 0_{n} with $\alpha\left(u^{\prime}\right)=u^{*}$.

Proof. See [4]. (The proof uses only elementary algebra and uniqueness of the Cuntz algebra).

From the preceding lemmas and (2.7) we now have a map $A \rightarrow \alpha_{A}$ from $U(n, 1)$ into the initial endormorphisms of 0_{n}. But now it is an easy matter to verify the relation

$$
\begin{equation*}
\alpha_{A}\left(u_{B}\right) u_{A}=u_{A B} \tag{2.8}
\end{equation*}
$$

so that with $B=A^{-1}$ one has $u_{A}{ }^{\prime}=u_{A}{ }^{-1}$ satisfying $\alpha_{A}\left(u_{A}{ }^{\prime}\right)=u_{A}{ }^{*}$ and hence $A \rightarrow \alpha_{A}$ is a homomorphism into Aut 0_{n}. So we have proved: THEOREM 2.3. (Voiculescu) The map $A \rightarrow \alpha_{A}$ with

$$
\alpha_{A}(s(h))=\left(a_{0}-s\left(h_{2}\right)\right)^{-1}\left(-\left\langle h_{1}, h\right\rangle+s\left(A_{1} h\right)\right)
$$

is a homomorphism of $U(n, 1)$ into Aut 0_{n}.

Remark.2.4. For $n=1$ define 0_{n} to be $C(T)$ then the corresponding action of $U(1,1)$ is of course well known. Let

$$
A=e^{i \theta}\left(\begin{array}{ll}
\alpha & \bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right), \quad 0 \leq \theta \leq 2, \alpha, \beta \in C \text { with }|\alpha|^{2}-|\beta|^{2}=1
$$

then we have

$$
A \cdot z=(\alpha-\beta z)^{-1}(-\beta+\alpha z), z \in T
$$

Similarly there exists an action of $U(n, 1)$ on the unit ball in C^{n} by such fractional linear transformations for which the 0_{n} action may be regarded as a non-commutative analogue.

$$
F_{n}=\oplus_{k=0}^{\infty}\left(\otimes^{k} c^{n}\right) \text { where } \otimes^{0} c^{n}=c
$$

Define for $h \in C^{n}$, $O(h): F_{n} \rightarrow F_{n}$ by

$$
o(n): h_{1} \otimes \ldots \otimes h_{m} \rightarrow h \otimes n_{1} \otimes \ldots \otimes n_{m}
$$

Then the map $h \rightarrow O(h)$ satisfies

$$
\begin{equation*}
o\left(h_{1}\right) * o\left(h_{2}\right)=\left\langle h_{1}, h_{2}\right\rangle .1 \quad h_{1}, h_{2} \in c^{n} \tag{3.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j} o\left(e_{j}\right) \circ\left(e_{j}\right) *=1-P_{\Omega} \tag{3.2}
\end{equation*}
$$

where P_{Ω} is the projection onto $C \subseteq F_{n}$ and 1 is the identity operator. The C^{*}-algebra T_{n} is generated by the range of O and is generated by the range of \circ and is uniquely determined by the relations (3.1) and (3.2) [5]. Moreover we have the exact sequence

$$
0 \rightarrow K \rightarrow T \rightarrow 0_{n} \rightarrow 0
$$

where K denotes the ideal of compact operators on F_{n}. The following is an analogue of lemma 2.2.

LEMMA 3.1. There is a bijection between partial isometries v in T_{n} satisfying

$$
v^{*} v=1-P_{\Omega}, \quad v v^{*}<1
$$

and unital endormorphisms β of T_{n} given by

$$
v=\sum_{j} B\left(o\left(e_{j}\right) o\left(e_{j}\right)^{*}\right), \quad B(o(h))=v o(h)
$$

Moreover β is an automorphism if and only if there exists a partial isometry $v^{\prime} \in T_{n}$ such that

This action has some interesting properties, for example:

THEOREM 2.5. The $U(n, 1)$ action on 0_{n} is ergodic.
(By ergodic we mean that the only fixed points for the action are multiples of the identity operator). The preceding theorem follows from the stronger result:

THEOREM 2.6. For each $A \in U(n, 1)$ of the form

$$
A=\exp \left(\begin{array}{cc}
0 & h \\
h^{*} & 0
\end{array}\right), \quad h \in C^{n}
$$

there exists a state ψ_{A} on 0_{n} such that for all $\mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{O}_{\mathrm{n}}$
(2.9)

$$
\lim _{n \rightarrow \infty} \psi_{A}\left(y \alpha_{A}^{n}(x) z\right)=\psi_{A}(x) \psi_{A}(y z)
$$

(this is known as a 3-point cluster property [l]).

To see that theorem 2.5 follows from theorem 2.6 one needs the fact that 0_{n} is a simple C*-algebra so that the G.N.S. cyclic representation π_{A}, corresponding to ψ_{A} is faithful. If. Ω_{A} is the G.N.S. cyclic vector then (2.8) says that if x is fixed by the α_{A}-action:

$$
\begin{aligned}
\left\langle\pi_{A}\left(y^{*}\right) \Omega_{A}, \quad \pi_{A}(x) \pi_{A}(z) \Omega_{A}>\right. & =\left\langle\pi_{A}\left(y^{*}\right) \Omega_{A}, \pi_{A}\left(\dot{\alpha}_{A}^{n}(x) z\right) \Omega_{A}>\right. \\
& =\psi_{A}(x)<\pi_{A}\left(y^{*}\right) \Omega_{A}, \pi_{A}(z) \Omega_{A}>
\end{aligned}
$$

from which $\pi_{A}(x)=\psi_{A}(x) .1$ and hence that $x=\psi_{A}(x)$ using faithfulness. More details of this and other properties of the action may be found in [2].

3. A PROBLEM

There is an extension of 0_{n} by the compacts defined as follows. Let F_{n} denote the Hilbert space direct sum of the tensor powers of C^{n} :

$$
v^{\prime *} v^{\prime}=1-P_{\Omega}, v^{\prime} v^{\prime *}<1 \text { and } \beta\left(v^{\prime}\right)=v^{*}
$$

The proof of this lemma is much the same as that for lemma 2.2. Now E_{n} is often called the full Fock space so that our next result should be contrasted with the corresponding results for the $C A R$ and $C C R$ algebras acting on their respective Fock spaces.

LEMMA 3.2. If B is an automorphism of T_{n} then there is a unitary U on F_{n} such that $\mathrm{UO}(\mathrm{h}) \mathrm{U}^{*}=\beta(\mathrm{o}(\mathrm{h}))$ if and only if one of the following equivalent conditions holds:
(i) there is a unitary u in T_{n} such that $u\left(1-P_{\Omega}\right)=v$
(ii) the projections $B\left(P_{\Omega}\right)$ and P_{Ω} are equivalent in T_{n}.

Using these facts $U(n, 1)$ action on T_{n} may be defined. Firstly note that T_{n} is isomorphic to the subalgebra of 0_{n+1} generated by $s\left(e_{1}\right), \ldots, s\left(e_{n}\right)$ with $P_{\Omega}=s\left(e_{n+1}\right) s\left(e_{n+1}\right) *=p[5]$. Then we apply:

LEMMA 3.3. If B is a unital endomorphism of T_{n} corresponding to $v \in T_{n}$ as in lemma 3.1 then the following are equivalent:
(i) $\quad \beta$ extends to an endormorphism of 0_{n+1},
(ii) there is a unitary u in 0_{n+1} such that $u(1-p)=v$,
(iii) the projections $\beta(p)$ and p are equivalent in 0_{n+1}.

Now for $A \in U(n, 1)$ the existence of an automorphism β_{A} follows from lemma 3.3 applied to the partial isometry V_{A} :

$$
v_{A}=\left(a_{0}-o\left(h_{2}\right)\right)^{-1}\left(-o\left(h_{1}\right) *+o A_{1} o *\right)
$$

(here we use the same notation for 0 as we used for s) and the unitary ${ }^{u} A$

$$
0_{n+1} \ni u_{A}=\left(a_{0}-s\left(h_{2}\right)\right)^{-1}\left(-s\left(h_{1}\right)+s A_{1} s^{*}+s\left(e_{n+1}\right) s\left(e_{n+1}\right) *\right)
$$

which are clearly related by $v_{A}=u_{A}(1-p)$. Note that here we regard A as an element of $U(n+1,1)$:

$$
A \equiv\left(\begin{array}{cccc}
a_{0} & <h_{1},> & 0 \\
h_{2} & A_{1} & & 0 \\
0 & 0 & & 1
\end{array}\right)
$$

If follows immediately from lemma 3.2 that there is a representation $A \rightarrow U_{A}$ of $U(n, 1)$ by

$$
\begin{aligned}
U_{A} g_{1} \otimes \ldots \otimes g_{m} & \equiv U_{A} \circ\left(g_{1}\right) \ldots o\left(g_{m}\right) \Omega \\
& =\beta_{A}\left(o\left(g_{1}\right) \ldots o\left(g_{m}\right)\right)\left(a_{0}-o\left(h_{2}\right)\right)^{-1} \Omega
\end{aligned}
$$

where $g_{j}(j=1, \ldots m)$ lie in C^{n}, the notation for A is as in section 2 and

$$
\beta_{A}\left(o\left(g_{j}\right)\right)=\left(a_{0}-o\left(h_{2}\right)\right)^{-1}\left(-\left\langle h_{1}, g_{j}>+o\left(A_{1} g_{j}\right)\right)\right.
$$

(Here Ω is the element $1 \oplus 0 \oplus 0$ i(0 in F_{n}).

PROBLEM. (Voiculescu) What are the irreducibles and their multiciplicities in this representation?

It is known that this representation does decompose into a direct sum of irreducibles each occurring with finite multiplicity [6]. Moreover this problem can be formulated in a purely algebraic way since the action of the Lie algebra of $U(n, 1)$, by derivations on the tensor algebra over C^{n}, is easily computed from the preceeding formulae. The problem then becomes one of finding certain lowest weight vectors for the Lie algebra action.

4. THE ANALOGY WITH THE HOMOGENEOUS SPACE SU($\mathrm{n}, 1$)/U(n)

The preceeding is perhaps easier to understand by analogy with the well known $U(n, 1)$ action on the bounded symmetric domain

$$
D=\left\{z \in C^{n}: z^{*} z=1\right\}=\operatorname{SU}(n, 1) / U(n)
$$

To see how this analogy carries through we will show that there is a Hilbert space of analytic functions on D which carries a representation of $U(n, 1)$ equivalent to the cyclic representation of $U(n, 1)$ on F_{n} generated from Ω. Introduce the functions

$$
\begin{equation*}
e_{w}: z \rightarrow(1-\overline{\mathrm{w}} \cdot z)^{-1}, \quad w, z \in D \tag{4.1}
\end{equation*}
$$

These are holomorphic and linearly independent on D and a pre-Hilbert space structure is obtained on their linear span by writing

$$
\left\langle e_{W}^{\prime}, e_{W}^{\prime}\right\rangle=\left(1-\bar{w}^{\prime} \cdot W\right)^{-1}
$$

For $A \in U(n, 1)$ define an action on D by

$$
\begin{array}{r}
z \rightarrow\left(a_{0}-h_{2} \cdot z\right)^{-1}\left(-\bar{h}_{1}+A_{1} z\right)=A \cdot z \\
A=\left(\begin{array}{cc}
a_{0}<h_{1}, \cdot> \\
h_{1} & A_{1}
\end{array}\right)
\end{array}
$$

Now the functions e_{W} satisfy the identity

$$
\left(a_{0}-h_{2} z\right)^{-1} e_{W}(A z)=\left(a_{0}+\bar{w} \cdot \bar{h}_{1}\right)^{-1} e_{A^{-1} W}(z)
$$

from which it follows that one has a unitary representation $A \rightarrow W_{A}$ of $U(n, 1)$ on the completion H_{D} of the linear span of e_{W} via

$$
W_{A}: e_{W} \rightarrow\left(a_{0}+\bar{w}^{\prime} \cdot \bar{h}_{1}\right)-1 e_{A-1} .
$$

Then e_{0} is clearly a cyclic vector for the representation W. (In fact one deduces easily that W is an irreducible representation). Moreover there is an isometric map $n: H_{D} \rightarrow F_{\eta}$ such that

$$
\eta: W_{A} e_{0} \rightarrow\left(a_{0}-o\left(h_{2}\right)\right)^{-1} \Omega
$$

as

$$
\begin{aligned}
\left\langle\left(a_{0}\right.\right. & \left.\left.-o\left(h_{2}\right)\right)^{-1} \Omega,\left(b_{0}-o\left(k_{2}\right)\right)^{-1} \Omega\right\rangle \\
& =\left(\bar{a}_{0} b_{0}-\left\langle h_{2}, k_{2}>\right)^{-1}\right. \\
& =\left\langle e_{\bar{a}_{0}}^{-1}{\overline{h_{2}^{2}}}, e_{\bar{b}_{0}}^{-1} \bar{k}_{2}\right\rangle \\
& =\left\langle W_{A} e_{0}, W_{B} e_{0}\right\rangle
\end{aligned}
$$

for

$$
A=\left(\begin{array}{lllll}
a_{0} & <h_{1} & , & \gg \\
h_{2} & & & & A_{1}
\end{array}\right), B=\left(\begin{array}{lll}
b_{0} & <k_{1}, & , .> \\
k_{2} & & B_{1}
\end{array}\right)
$$

So the cyclic subrepresentation of $U(n, 1)$ on F_{η} generated from Ω is equivalent via η to a representation on holomorphic functions on D. Notice that the function $(z, w) \rightarrow e_{W}(z)$ is related to the Bergman kernel of the domain D.

For the case $n=1$ from remark 2.4 it is not hard to see that the corresponding representation on F_{1} is the usual one of $U(1,1)$ on the Hardy space. Ergodicity may be verified by elementary arguments in this case.

REFERENCES

[1] O. Bratteli and D.W. Robinson, Operator algebras and quantum statistical mechanics II, Springer, New York, 1979.
[2] A.E. Carey and D.E. Evans, On an automorphic action of $U(n, 1)$ on O_{n}, preprint.
[3] J. Cuntz, Simple $C^{*-a l g e b r a s ~ g e n e r a t e d ~ b y ~ i s o m e t r i e s, ~ C o m m u n . ~ M a t h . ~}$ Phys. 57, 1977, 173-185.
[4] J. Cuntz, Automorphisms of certain simple C^{*}-algebras, in L. Streit, ed., Quantum Fields-Algebras, Processes, Springer, Wien-New York, 1980, 187-196.
[5] J. Cuntz, K-theory for certain simple C*-algebras, Ann. of Math. 113, 1981, 181-197.
[6] D. Voiculescu, Symmetries of some reduced free product $C^{*-a l g e b r a s, ~}$ Preprint, INCREST, 1983.

Department of Mathematics
Australian National University
GPO Box 4
Canberra. ACT 2601
AUSTRALIA

Mathematics Institute University of Warwick Coventry CV 4 7AL
ENGLAND U.K.

