WHEN ARE SINGULAR INTEGRAL OPERATORS BOUNDED?

Alan McIntosh

The aim of this talk is to survey some results concerning the L_{2}-boundedness of singular integral operators, and in particular to present the $T(b)$ theorem.

Let us consider one-dimensional singular integral operators T of the following type:

$$
(T u)(x)=p \cdot v \cdot \int_{-\infty}^{\infty} k(x, y) u(y) d y
$$

where, for $x, y \in \mathbb{R}$ with $x \neq y$,
(1)

$$
\left\{\begin{array}{l}
|K(x, y)| \leq c_{0}|x-y|^{-1} \\
\left|\frac{\partial K}{\partial x}(x, y)\right| \leq c_{1}|x-y|^{-2} \\
\left|\frac{\partial K}{\partial y}(x, y)\right| \leq c_{2}|x-y|^{-2}
\end{array}\right.
$$

Such T are called Calderón-Zygmund operators if $\|T \varphi\|_{2} \leq c\|\varphi\|_{2}$ for all $\varphi \in C_{0}^{\infty}(\mathbb{R})$. We note first that an L_{2}-estimate of this type is sufficient to prove a variety of bounds.

THEOREM 1 (Calderón, Zygmund, Cotlar, Stein) Suppose T is a Calderón-Zygmund operator. If $\mathrm{u} \in \mathrm{L}_{\mathrm{p}}, 1<\mathrm{p}<\infty$, then $\operatorname{Tu}(\mathrm{x})$ is defined for almost all x , and $\|$ Tull ${ }_{\mathrm{p}} \leq \mathrm{c}_{\mathrm{p}}\left\|_{\mathrm{p}}\right\|_{\mathrm{p}}, 1<\mathrm{p}<\infty$. If
$u \in L_{\infty}$, then $\|T u\|_{*} \leq c_{*}\|u\|_{\infty}$, where $\|\cdot\|_{*}$ denotes the BMO norm and Tu is only defined modulo the constant functions.

In addition one has maximal-function estimates.

It has been a long-term program, initiated by Calderón, to determine whether certain classes of naturally occurring singular integral operators are Calderón-Zygmund operators. The best known case is when $k(x, y)=k(x-y)$ with $\hat{k} \in L_{\infty}(\mathbb{R})$, where \hat{k} denotes the Fourier transform of k. In this case, $T=\hat{k}(D)$ where $D=-i \frac{d}{d x}$ and $\|T u\|_{2} \leq\|\hat{k}\|_{\infty}\|u\|_{2}$. In particular, if $K(x, y)=i \pi^{-1}(x-y)^{-1}$, then $T=$ $\operatorname{sgn}(D)$, which is the Hilbert transform on \mathbb{R}, appropriately scaled.

Another well-known class of kernels K_{j} give rise to the commutator integrals T_{j}. These are defined by

$$
k_{j}(x, y)=\frac{i}{\pi} \frac{(g(x)-g(y))^{j}}{(x-y)^{j+1}}
$$

where g is a Lipschitz function. It was shown by Calderon that T_{1} is bounded, and then by Coifman and Meyer that T_{j} is bounded for $j>1$. Subsequently the bound

$$
\left\|T_{j} u\right\|_{2} \leq c(1+j)^{4}\left\|g g_{\infty}\right\|_{\infty}^{j}\|u\|_{2}
$$

was obtained by Coifman, McIntosh and Meyer [1].

It follows from these estimates for T_{j} that T_{h} is bounded, where T_{h} has kernel

$$
K_{h}(x, y)=\frac{i}{\pi}(h(x)-h(y))^{-1},
$$

with h a Lipschitz function such that $\operatorname{Re} h^{\prime}(x) \geq \lambda>0$ almost everywhere. For we can write $h(x)=\rho(x-g(x))$ with $\rho>0$ and $\left\|g^{\prime}\right\|_{\infty}<1$, and then

$$
K_{h}(x, y)=\rho^{-1} \sum_{j=0}^{\infty} K_{j}(x, y)
$$

So

$$
\left\|T_{h} u\right\|_{2} \leq \rho^{-1} \sum_{j=0}^{\infty}\left\|T_{j} u\right\|_{2} \leq c_{h}\|u\|_{2}
$$

The operator T_{h} arises as follows. The Cauchy integral on the Lipschitz curve γ parametrized by $z=h(x)$ is

$$
C_{\gamma} U(z)=\frac{i}{\pi} p \cdot v \cdot \int_{\gamma}(z-\zeta)^{-1} U(\varsigma) d \zeta
$$

On writing $U(z(x))=u(x)$, we get

$$
C_{\gamma} u(x)=\frac{i}{\pi} p \cdot v \cdot \int_{-\infty}^{\infty} K_{h}(x, y) u(y) h^{\prime}(y) d y
$$

i.e.

$$
C_{\gamma}=T_{h}{ }^{B}
$$

where B denotes multiplication by $b=h$. So C_{γ} is L_{2}-bounded (though not itself a Calderón-Zygmund operator).

The original (unpublished) proof of the L_{2}-boundedness of C_{γ} was quite different from that indicated above. It was shown that

$$
\left\||D|^{s} C_{\gamma} u\right\|_{2} \leq C_{s}\left\||D|^{s} u\right\|_{2}
$$

when $0<s<1$, and hence that

$$
\left.\left\|\left\|\left.D\right|^{s} T_{h} u\right\|_{2} \leq c_{s}\right\| D\right|^{s}{ }_{B}^{-1} u \|_{2}
$$

Also, taking the dual of the above estimate with b replaced by \bar{b}, we have

$$
\left\||D|^{-s_{B T}} \mathrm{~h}_{2} \leq \mathrm{c}_{\mathrm{s}}\right\||\mathrm{D}|^{-s_{u}} \|_{2} .
$$

It was then shown that T_{h} is L_{2}-bounded by interpolating these inequalities. This interpolation was achieved via a theorem of Kato which states that the domains of fractional powers of maximal accretive operators interpolate [4], and by proving a variant of the Kato square root problem, namely that

$$
\left\|\left(|D|^{s} B^{-1}|D|^{s}\right)^{\frac{1}{2}} u\right\|_{2} \leq c\left\||D|^{s} u\right\|_{2} .
$$

Once the square root problem was solved, however, it was realized that the estimates used in its proof gave directly the boundedness of T_{j} and hence of T_{h} and C_{γ}.

Let us make some remarks about C_{γ}. Let $D_{\gamma}=\left.\frac{1}{i} \frac{d}{d z}\right|_{\gamma}=B^{-1} D$. Then D_{γ} has spectrum in the double sector

$$
S_{\omega}=\{z \in \mathbb{C}| | \arg z \mid \leq \omega \quad \text { or } \quad|\arg (-z)| \leq \omega\}
$$

where ω is large enough that $S_{\omega} \supset\left\{\varsigma_{1}-\zeta_{2} \mid \zeta_{1}, \zeta_{2} \in \gamma\right\}$. If the signum function is defined on S_{ω} by

$$
\operatorname{sgn} z=\left\{\begin{array}{rr}
1 & , \\
0 & , \\
z e z>0 \\
-1 & , \\
\operatorname{Re} z<0
\end{array}\right.
$$

then $\quad C_{\gamma}=\operatorname{sgn}\left(D_{\gamma}\right)$.

We remark that, for analytic functions φ on $S_{\omega+\epsilon}^{0}$ (the interior of $S_{\omega+\epsilon}$) which decay suitably at $\infty, \varphi\left(D_{\gamma}\right)$ can be defined using resolvent integrals. On the other hand, if φ has inverse Fourier transform $\check{\varphi}$ which extends analytically to $S_{\omega+\epsilon}^{0}$ and decays suitably at ∞, then

$$
\varphi\left(D_{\gamma}\right) U(z)=\int_{\gamma} \check{\varphi}(z-\varsigma) U(\varsigma) d \varsigma .
$$

Let us go on. Subsequently to the operators T_{j} and T_{h} having been shown to be L_{2}-bounded, David and Journé proved an intriguing theorem. We see from theorem 1 that if T is a Calderón-Zygmund operator then $T(1) \in B M O$ and $T^{*}(1) \in B M O$. It is also clear that T satisfies the following weak boundedness property:
(2) there exists $m \geq 0$ and $c \geq 0$ such that

$$
\left|<T u_{1}, u_{2}>\right| \leq c d
$$

for all $u_{1}, u_{2} \in C_{0}^{\infty}(\mathbb{R})$ such that $u_{1}, u_{2} \in C_{0}^{\infty}(\mathbb{R})$ where u_{1} and u_{2} have support in an interval of length d and satisfy $\left|u_{j}^{(r)}\right| \leq d^{-r}$ for all $r \leq m$.

THEOREM 2.[2] Suppose K satisfies (1). Then T is a Calderón-Zygmund operator if and only if $\mathrm{T}(1) \in \mathrm{BMO}, \mathrm{T}^{*}(1) \in \mathrm{BMO}$ and T satisfies (2).

As noted above, the "only if" part of this result is straightforward. But the "if" part is quite striking. We note that if $\mathrm{K}(\mathrm{x}, \mathrm{y})=-\mathrm{K}(\mathrm{y}, \mathrm{x})$ and (1) is satisfied, then (2) holds automatically. So in this case the L_{2}-boundedness is equivalent to $T(1) \in B M O$.

Theorem 2 can be used inductively to show that the commutator operators T_{j} are bounded, but the bounds are not strong enough to imply that T_{h} and C_{γ} are bounded except when h has a small Lipschitz constant.

Another interesting recent result is that of Lemarié. He proved a more general version of the following:

THEOREM 3.[5] Suppose that (1) is satisfied and that $T(b)=0(\epsilon$ BMO) for some function $\mathrm{b} \in \mathrm{L}_{\infty}(\mathbb{R})$ Define W by $\mathrm{W}(\mathrm{u})=\mathrm{T}(\mathrm{bu})$, and suppose that (2) holds with T replaced by W. Then, for each $s \in(0,1)$, there exists c_{s} such that

$$
\left\||D|^{s_{W u}}\right\|_{2} \leq c_{s}\left\||D|^{s}\right\|_{2} .
$$

As a corollary of this, Meyer and the author proved the following variant of David and Journés theorem [6].

THEOREM 4. Suppose that $\mathrm{b}_{1}, \mathrm{~b}_{2} \in \mathrm{~L}_{\infty}(\mathbb{R})$ with Re $\mathrm{b}_{\mathrm{j}}(\mathrm{x}) \geq \mathbb{R}>0$, that $T\left(b_{1}\right)=0$ and $T^{*}\left(\overline{b_{2}}\right)=0$, that (1) holds, and that (2) holds with T replaced by both TB_{1} and $\mathrm{B}_{2} \mathrm{~T}$ (where B_{j} is multiplication by b_{j}). Then T is a Calderón-Zygmund operator.

This was proved by appealing to the square root problem in the same way as was originally done for the Cauchy integral.

Theorem 4 is a general theorem which includes the boundedness of the Cauchy integral as a special case, since $T_{h}\left(h^{\prime}\right)=C_{\gamma}(1)=0$ (\in BMO) and C_{γ} satisfies (2). A more general result again, which includes both theorem 4 and theorem 2 as special cases, was subsequently proved by David, Journé and Semmes [3].

THEOREM 5. If the hypotheses of theorem 4 are weakened by replacing $T\left(\mathrm{~b}_{1}\right)=0$ and $\mathrm{T} *\left(\overline{\mathrm{~b}_{2}}\right)=0$ by $\mathrm{T}\left(\mathrm{b}_{1}\right) \in \mathrm{BMO}$ and $\mathrm{T} *\left(\overline{\mathrm{~b}_{2}}\right) \in$ BMO, then the conclusion remains valid.

Theorem 5 can be reduced to theorem 4 if, given $\beta_{1}, \beta_{2} \in \operatorname{BMO}$, we can find Calderón-Zygmund opereators L and M such that $L\left(b_{1}\right)=\beta_{1}$, $L^{*}\left(\overline{b_{2}}\right)=0, M\left(b_{1}\right)=0$ and $M^{*}\left(\overline{b_{2}}\right)=\beta_{2}$. To do this, let γ and δ be the curves parametrized by $z=h_{1}(x)$ and $z=h_{2}(x)$, where $h_{j}{ }^{\prime}=b_{j}$. Then define L by

$$
L u=2 \int_{0}^{\infty} \psi\left(t D_{\delta}\right)\left\{\psi\left(t D_{\delta}\right) \beta_{1}\right\} \varphi\left(t D_{\gamma}\right) b_{1}^{-1} u \frac{d t}{t}
$$

and define M^{*} similarly. In this formula, φ and ψ denote the following functions:

$$
\varphi(\lambda)=\left(1+\lambda^{2}\right)^{-1} \text { and } \psi(\lambda)=\lambda\left(1+\lambda^{2}\right)^{-1} .
$$

So, if $S \in S_{\omega}$, where S_{ω} was defined previously, then

$$
\check{\varphi}_{t}(\zeta)= \begin{cases}\frac{1}{2 t} e^{-\zeta / t}, & \operatorname{Re} s>0 \\ \frac{1}{2 t} e^{s / t} & , \operatorname{Re} s<0\end{cases}
$$

and

$$
\varphi\left(t D_{\gamma}\right) U(z)=\int_{\gamma} \check{\varphi}_{t}(z-\varsigma) U(\varsigma) d \varsigma,
$$

or

$$
\varphi\left(t D_{\gamma}\right) u(x)=\int_{-\infty}^{\infty} \check{\varphi}_{t}\left(h_{1}(x)-h_{1}(y)\right) b_{1}(y) u(y) d y .
$$

The operator $\psi\left(t D_{\delta}\right)$ is defined similarly. Square function estimates for $\psi\left(t D_{\delta}\right)$ can be obtained from the expansion for $\psi\left(\mathrm{tD}_{\delta}\right)=\psi\left(\mathrm{tB}_{2}^{-1} \mathrm{D}\right)=\psi\left(\mathrm{to}^{-1}(\mathrm{I}-\mathrm{F})^{-1} \mathrm{D}\right)$ in powers of F using the techniques of [1], where ρ is chosen so that $\|F\|<1$. Proceeding in this way it can be shown that L is a Calderón-Zygmund operator. In doing this, we are generalizing the proof of the $T(1)$ theorem given in [2] rather than following [3].

We conclude with the remark that theorems $1-5$ remain valid in higher dimensions if the appropriate dependence on the dimension is
included in (1) and (2). However many of the intervening comments are specifically one-dimensional.

REPERENCES

[1] R. Coifman, A. McIntosh et Y. Meyer, L'Intégrale de Cauchy définit un opérateur borné sur L^{2} pour les courbes Lipschitziennes, Ann. of Math., 116(1982) 361-388.
[2] G. David et J-L. Journé, A boundedness criterion for Calderón-Zygmund operators, Ann. of Math., 120(1984) 371-397.
[3] G. David, J-L. Journé et S. Semmes, Opérateurs de CalderónZygmund et functions para-accrétives, Revista Ibero Americana, to appear.
[4] T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37(1961) 305-308.
[5] P-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. de l'Institut Fourier, to appear.
[6] A. McIntosh et Y. Meyer, Algèbres d'opérateurs définis par des intégrales singulières, Comptes Rendus Acad. Sci. Paris, to appear.

School of Mathematics and Physics
Macquarie University
North Ryde NSW 2113
Australia

