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WHEN ARE SINGULAR INTEGRAL OPERATORS BOUNDED? 

Alan Mcintosh 

The aim of this talk is to survey some results concerning the 

L2-boundedness of singular integral operators, and in particular to 

present the T(b) theorem. 

Let us consider one-dimensional singular integral operators T of 

the following type: 

.. 
(Tu) (x) p.v. J K(x,y)u(y)dy 

-ac 

where, for x,y e R with x ~ y , 

IK(x,y) I ~ c0 1x-yl 
-1 

(1) J!~(x,y) I ~ c1 1x-yl -2 

l!~(x,y) I ~ c2 1x-yl -2 

Such T are called Calderon-Zygmund operators if IITIPII 2 ~ cii1PII 2 .. 
for all If' e c0(R) . We note first that an L2-estimate of this type is 

sufficient to prove a variety of bounds. 

THEOREM 1 (Calderon, Zygmund, Cotlar, Stein) Suppose T is a 

Calder6n-Zygmund operator. If u e L , 1 < p < ac 
p then Tu(x) 

defined for almost all x , and IITull ~ c !lull , 1 < p < ac • p p p If 

is 
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then IITull* ::S c*llull 00 , where 11·11* denotes the BMO norm 

and Tu is only defined modulo the constant functions. 

In addition one has maximal-function estimates. 

It has been a long-term program, initiated by Calder6n, to 

determine whether certain classes of naturally occurring singular 

integral operators are Calder6n-Zygmund operators. The best known case 

is when K(x,y) = k(x-y) with k e L"'(lR), 

Fourier transform of k , In this case, T 

A 

where k denotes the 

k(D) where D = ,d 
- 1dx and 

In particular, if 
-1 -1 

K(x,y) = in (x-y) , then T = 

sgn(D) , which is the Hilbert transform on lR appropriately scaled. 

Another well-known class of kernels Kj 

These are defined by 

give rise to the 

commutator integrals T. 
J 

( g ( X ) -g ( y ) ) j 

( ) j+l x-y 

where g is a Lipschitz function. It was shown by Calderon that T1 

is bounded, and then by Coifman and Meyer that T. 
J 

is bounded for 

j > 1 . Subsequently the bound 

was obtained by Coifman, Mcintosh and Meyer [1]. 

It follows from these estimates for Tj that Th is bounded, 

where Th has kernel 
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i -1 -(h(x)-h(y)) 
1! 

with h a Lipschitz function such that ~e h'(x) ~A> 0 almost 

everywhere. For we can write h(x) = p(x-g(x)) with p > 0 and 

llg'll 00 < 1 , and then 

So 

-1 
p 

"" 

K .(x,y) . 
J 

2 IITju11 2 :<; chllull 2 . 
j=O 

The operator Th arises as follows. 1The Cauchy integral on the 

Lipschitz curve ~ parametrized by z = h(x) is 

On writing U(z(x)) 

i.e. 

n p.v. J (z-~)- 1 U(s)d~ . 
"( 

u(x) , we get 

"" 
i I n p.v. Kh(x,y)u(y)h'(y)dy 

-00 

where B denotes multiplication by b = h' . So C'l' is L2 -bounded 

(though not itself a Calder6n-Zygmund operator). 
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The original (unpublished) proof of the L2-boundedness of 

quite different from that indicated above. It was shown that 

when 0 < s < 1 , and hence that 

C was 
"t 

Also, taking the dual of the above estimate with b replaced by b , 

we have 

It was then shown that Th is L2-bounded by interpolating these 

inequalities. This interpolation was achieved via a theorem of Kato 

which states that the domains of fractional powers of maximal accretive 

operators interpolate [4], and by proving a variant of the Kato square 

·root problem, namely that 

1 

II( IDisB- 1 1Dis) 2ull 2 ::> s 
ciiiDI u11 2 

Once the square root problem was solved, however, it was realized 

that the estimates used in its proof gave directly the boundedness of 

and hence of c 
'I' 

Let us make some remarks about C 
'V 

Then D has spectrum in the double sector 
"t 

l ..£.1 i dz 'I' 
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S~ {ze[ I larg zl S w or targ(-z)l S w} 

.c2 e r} . If the 

signum function is defined on Sw by 

1 ~e-z > 0 

sgn z 0 z = 0 

-1 :Jlle-z < o , 

then sgn(D ) . 
7 

" We remark that, for analytic functions • on S (the interior 
w+e. 

of S~+e ) which decay suitably at oo •(D ) can be defined using 
r 

resolvent integrals. On the other hand, if • has inverse Fourier 

v 

transform • which extends analytically to and decays suitably 

at "" then 

J v 

lll(z-C)U(~)d~ 

11 

Let us go on. Subsequently to the operators T. 
J 

and having 

been shown to be L2 -bmmded, David and Journe proved an intriguing 

theorem. We see from theorem 1 that if T is a Calder6n-Zygmund 

operator then T(l) e BMO and T*(1) e BMO. It is also clear that T 

satisfies the following weak boundedness property: 

(2) there exists m ~ 0 and c ~ 0 such that 
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for all ul u2 e "" c0 (1R) such that ul u2 e "" c0 (1R) where ul and u2 

have support in an interval of length d and satisfy I u ~ r l I !> d-r for 
J 

all r :S m 

THEOREM 2.[2] Suppose K satisfies (1). Then T is a 

Calder6n-Zygmund operator if and only if T(l) e BMO , T*(l) e BMO and 

T satisfies (2). 

As noted above, the "only if" part of this result is 

straightforward. But the "if" part is quite striking. We note that if 

K(x,y) = -K(y,x) and (1) is satisfied, then (2) holds automatically. 

So in this case the L2-boundedness is equivalent to T(l) e BMO. 

Theorem 2 can be used inductively to show that the commutator 

T. 
J 

are bounded, but the bounds are not strong enough to operators 

imply that T 
h 

and C~ are bounded except when h has a small 

Lipschitz constant. 

Another interesting recent result is that of Lemarie. He proved a 

more general version of the following: 

THEOREM 3.[5] Suppose that (1) is satisfied and that T(b) 0 (e BMO) 

for some function b e L00 (IR) Define W by W(u) = T(bu) , and 

suppose that (2) holds with T replaced by W . Then, for each 

s e (0,1) , there exists c such that 
s 
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As a corollary of this, Meyer and the author proved the following 

variant of David and Jouro6's theorem [8]. 

THEOREM 4. Suppose that b1 ,b2 e L00 (IR) with ~e. b. (x) 2: [{ > 0 
' that 

J 

T(b1 ) = 0 and T*(b) 0 that (1) holds, and that (2) holds with T 
2 

replaced by both TB1 arc B2T (where B. is lfNlltlplication by bj). 
J 

Then T is a Calder6n-Zygmund operator. 

This was proved by appealing to the square root problem in the same 

way as was originally done for the Cauchy integral. 

Theorem 4 is a general theorem which includes the boundedness of 

the Cauchy integral as a special case, since Th(h') = C~(l) = o (e BMO) 

and C satisfies (2). A more general result again, which includes 
~ 

both theorem 4 and theorem 2 as special cases, was subsequently proved 

by David, Journe and Semmes [3]. 

THEOREM 5. If the hypotheses of theorem 4 are weakened by replacing 

T(b 1 ) ; 0 and T*(b-;) = 0 by T(b1 ) E BMO and T*(b2 ) E BMO , then 

the conclusion remains valid. 

Theorem 5 can be reduced to theorem 4 if, given p1 ,p2 e BMO , we 

can find Calderon-Zygmund opereators L and M such that L( ) = p1 

L*(b2 ) 0 
' l\'l(bl) ; 0 and M*(b2 ) = /32 To do this, let "If and ll 

be the curves parametrized by z = h,(x) and z = h2(x) 
.!. 

where 

h. " b. Then define 1 by 
J J 

Lu 
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and define M* similarly. In this formula, ~ and ~ denote the 

following functions: 

~(A) 
2 -1 A(1+A ) . 

where sw was defined previously, then 

and 

or 

{ 

21t e -~/t , ~ ~ > 0 

1 ~/t 
2t e , ~e ~ < 0 , 

~(tD )U(z) 
T 

J ~t(z-~)U(~)d~ , 
T 

The operator ~(tD~) is defined similarly. Square function estimates 

for ~(tD 6 ) can be obtained from the expansion for 

~(tD 6 ) = ~(tB2- 1D) = ~(tp-1 (I-F)- 1 D) in powers of F using the 

techniques of [1], where p is chosen so that IIFII < 1 Proceeding in 

this way it can be shown that L is a Calder6n-Zygmund operator. In 

doing this, we are generalizing the proof of the T(l) theorem given in 

[2} rather than following [3]. 

We conclude with the remark that theorems 1-5 remain valid in 

higher dimensions if the appropriate dependence on the dimension is 
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included in (1) and (2). However many of the intervening comments are 

specifically one-dimensional. 
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