WHEN ARE SINGULAR INTEGRAL OPERATORS BOUNDED?

Alan McIntosh

The aim of this talk is to survey some results concerning the L_2 -boundedness of singular integral operators, and in particular to present the T(b) theorem.

Let us consider one-dimensional singular integral operators T of the following type:

$$(Tu)(x) = p.v. \int_{-\infty}^{\infty} K(x,y)u(y)dy$$

where, for $x, y \in \mathbb{R}$ with $x \neq y$,

(1)
$$\begin{cases} |K(x,y)| \leq c_0 |x-y|^{-1} \\ \left| \frac{\partial K}{\partial x}(x,y) \right| \leq c_1 |x-y|^{-2} \\ \left| \frac{\partial K}{\partial y}(x,y) \right| \leq c_2 |x-y|^{-2} \end{cases}$$

Such T are called Calderón-Zygmund operators if $\|T\Psi\|_2 \le c \|\Psi\|_2$ for all $\Psi \in C_0^{\infty}(\mathbb{R})$. We note first that an L_2 -estimate of this type is sufficient to prove a variety of bounds.

THEOREM 1 (Calderón, Zygmund, Cotlar, Stein) Suppose T is a Calderón-Zygmund operator. If $u \in L_p$, 1 , then <math>Tu(x) is defined for almost all x, and $\|Tu\|_p \le c_p \|u\|_p$, 1 . If

 $u \in L_{\infty}$, then $\||Tu\||_{*} \leq c_{*}\||u\|_{\infty}$, where $\|\cdot\|_{*}$ denotes the BMO norm and Tu is only defined modulo the constant functions.

In addition one has maximal-function estimates.

It has been a long-term program, initiated by Calderón, to determine whether certain classes of naturally occurring singular integral operators are Calderón-Zygmund operators. The best known case is when K(x,y) = k(x-y) with $\hat{k} \in L_{\alpha}(\mathbb{R})$, where \hat{k} denotes the Fourier transform of k. In this case, $T = \hat{k}(D)$ where $D = -i\frac{d}{dx}$ and $\|Tu\|_{2} \leq \|\hat{k}\|_{\alpha}\|u\|_{2}$. In particular, if $K(x,y) = i\pi^{-1}(x-y)^{-1}$, then T =sgn(D), which is the Hilbert transform on \mathbb{R} , appropriately scaled.

Another well-known class of kernels ${\rm K}_j$ give rise to the commutator integrals ${\rm T}_i$. These are defined by

$$K_{j}(x,y) = \frac{i}{\pi} \frac{(g(x)-g(y))^{J}}{(x-y)^{J+1}}$$

where g is a Lipschitz function. It was shown by Calderón that T_1 is bounded, and then by Coifman and Meyer that T_j is bounded for j > 1. Subsequently the bound

$$\|\mathbf{T}_{j}\mathbf{u}\|_{2} \leq c(1+j)^{4}\|\mathbf{g}^{\prime}\|_{\infty}^{j}\|\mathbf{u}\|_{2}$$

was obtained by Coifman, McIntosh and Meyer [1].

It follows from these estimates for ${\rm T}_j$ that ${\rm T}_h$ is bounded, where ${\rm T}_h$ has kernel

$$K_{h}(x,y) = \frac{i}{\pi}(h(x)-h(y))^{-1}$$
,

with h a Lipschitz function such that $\Re e h'(x) \ge \lambda > 0$ almost everywhere. For we can write $h(x) = \rho(x-g(x))$ with $\rho > 0$ and $\||g'||_{\infty} < 1$, and then

$$K_{h}(x,y) = \rho^{-1} \sum_{j=0}^{\infty} K_{j}(x,y)$$
.

So

$$\|T_h u\|_2 \le \rho^{-1} \sum_{j=0}^{\infty} \|T_j u\|_2 \le c_h \|u\|_2$$
.

The operator $T_{\rm h}$ arises as follows. (The Cauchy integral on the Lipschitz curve γ parametrized by z = h(x) is

$$C_{\gamma}U(z) = \frac{i}{\pi} p.v. \int_{\gamma} (z-\zeta)^{-1} U(\zeta) d\zeta$$
.

On writing U(z(x)) = u(x), we get

$$C_{\gamma}u(x) = \frac{i}{\pi} p.v. \int_{-\infty}^{\infty} K_{h}(x,y)u(y)h'(y)dy$$

i.e.

$$C_{\gamma} = T_h B$$

where B denotes multiplication by b = h'. So C_{γ} is L_2 -bounded (though not itself a Calderón-Zygmund operator).

The original (unpublished) proof of the $\rm L_2^{-boundedness}$ of $\rm C_\gamma$ was quite different from that indicated above. It was shown that

$$\||D|^{s} C_{\gamma} u\|_{2} \leq C_{s} \||D|^{s} u\|_{2}$$

when 0 < s < 1, and hence that

$$\|\|D\|^{s}T_{h}u\|_{2} \leq c_{s}\|\|D\|^{s}B^{-1}u\|_{2}$$
.

Also, taking the dual of the above estimate with b replaced by \overline{b} , we have

$$\|\|D\|^{-s} BT_{h} u\|_{2} \le c_{s} \|\|D\|^{-s} u\|_{2}$$
.

It was then shown that T_h is L_2 -bounded by interpolating these inequalities. This interpolation was achieved via a theorem of Kato which states that the domains of fractional powers of maximal accretive operators interpolate [4], and by proving a variant of the Kato square root problem, namely that

$$\|(|D|^{s}B^{-1}|D|^{s})^{\frac{1}{2}}u\|_{2} \le c\||D|^{s}u\|_{2}$$

Once the square root problem was solved, however, it was realized that the estimates used in its proof gave directly the boundedness of T_j and hence of T_h and C_{γ}.

Let us make some remarks about C_{γ} . Let $D_{\gamma} = \frac{1}{i} \left. \frac{d}{dz} \right|_{\gamma} = B^{-1}D$. Then D_{γ} has spectrum in the double sector

$$S_{\omega} = \left\{ z \in \mathbb{C} \mid |arg z| \le \omega \text{ or } |arg(-z)| \le \omega \right\}$$

where ω is large enough that $S_{\omega} \supset \{\varsigma_1 - \varsigma_2 \mid \varsigma_1, \varsigma_2 \in \gamma\}$. If the signum function is defined on S_{ω} by

$$sgn z = \begin{cases} 1 & , & \Re ez > 0 \\ 0 & , & z = 0 \\ -1 & , & \Re ez < 0 , \end{cases}$$

then $C_{\gamma} = sgn(D_{\gamma})$.

We remark that, for analytic functions φ on $S^{\circ}_{\omega+\epsilon}$ (the interior of $S_{\omega+\epsilon}$) which decay suitably at ∞ , $\varphi(D_{\gamma})$ can be defined using resolvent integrals. On the other hand, if φ has inverse Fourier transform $\check{\varphi}$ which extends analytically to $S^{\circ}_{\omega+\epsilon}$ and decays suitably at ∞ , then

$$\Psi(D_{\gamma})U(z) = \int_{\gamma} \check{\varphi}(z-\zeta)U(\zeta)d\zeta$$
.

Let us go on. Subsequently to the operators T_j and T_h having been shown to be L_2 -bounded, David and Journé proved an intriguing theorem. We see from theorem 1 that if T is a Calderón-Zygmund operator then $T(1) \in BMO$ and $T^*(1) \in BMO$. It is also clear that T satisfies the following weak boundedness property:

(2) there exists $m \ge 0$ and $c \ge 0$ such that $|\langle Tu_1, u_2 \rangle| \le cd$

for all u_1 , $u_2 \in C_0^{\infty}(\mathbb{R})$ such that u_1 , $u_2 \in C_0^{\infty}(\mathbb{R})$ where u_1 and u_2 have support in an interval of length d and satisfy $|u_j^{(r)}| \leq d^{-r}$ for all $r \leq m$.

THEOREM 2.[2] Suppose K satisfies (1). Then T is a Calderón-Zygmund operator if and only if $T(1) \in BMO$, $T^*(1) \in BMO$ and T satisfies (2).

As noted above, the "only if" part of this result is straightforward. But the "if" part is quite striking. We note that if K(x,y) = -K(y,x) and (1) is satisfied, then (2) holds automatically. So in this case the L₂-boundedness is equivalent to $T(1) \in BMO$.

Theorem 2 can be used inductively to show that the commutator operators T_j are bounded, but the bounds are not strong enough to imply that T_h and C_γ are bounded except when h has a small Lipschitz constant.

Another interesting recent result is that of Lemarié. He proved a more general version of the following:

THEOREM 3.[5] Suppose that (1) is satisfied and that $T(b) = 0 \ (\in BMO)$ for some function $b \in L_{\infty}(\mathbb{R})$ Define W by W(u) = T(bu), and suppose that (2) holds with T replaced by W. Then, for each $s \in (0,1)$, there exists c_s such that

 $\||D|^{s}Wu\|_{2} \leq c_{s}\||D|^{s}u\|_{2} .$

As a corollary of this, Meyer and the author proved the following variant of David and Journé's theorem [6].

THEOREM 4. Suppose that $b_1, b_2 \in L_{\infty}(\mathbb{R})$ with $\Re e \ b_j(x) \ge \kappa > 0$, that $T(b_1) = 0$ and $T^*(\overline{b_2}) = 0$, that (1) holds, and that (2) holds with T replaced by both TB_1 and B_2T (where B_j is multiplication by b_j). Then T is a Calderón-Zygmund operator.

This was proved by appealing to the square root problem in the same way as was originally done for the Cauchy integral.

Theorem 4 is a general theorem which includes the boundedness of the Cauchy integral as a special case, since $T_h(h^+) = C_{\gamma}(1) = 0 ~(\in BMO)$ and C_{γ} satisfies (2). A more general result again, which includes both theorem 4 and theorem 2 as special cases, was subsequently proved by David, Journé and Semmes [3].

THEOREM 5. If the hypotheses of theorem 4 are weakened by replacing $T(b_1) = 0$ and $T^*(\overline{b_2}) = 0$ by $T(b_1) \in BMO$ and $T^*(\overline{b_2}) \in BMO$, then the conclusion remains valid.

Theorem 5 can be reduced to theorem 4 if, given $\beta_1, \beta_2 \in BMO$, we can find Calderón-Zygmund operators L and M such that $L(b_1) = \beta_1$, $L^*(\overline{b_2}) = 0$, $M(b_1) = 0$ and $M^*(\overline{b_2}) = \beta_2$. To do this, let γ and δ be the curves parametrized by $z = h_1(x)$ and $z = h_2(x)$, where $h_i^{\ i} = b_i$. Then define L by

$$Lu = 2 \int_0^\infty \Psi(tD_{\delta}) \{\Psi(tD_{\delta})\beta_1\} \Psi(tD_{\gamma}) b_1^{-1} u \frac{dt}{t}$$

and define M* similarly. In this formula, Ψ and Ψ denote the following functions:

$$\Psi(\lambda) = (1+\lambda^2)^{-1}$$
 and $\Psi(\lambda) = \lambda (1+\lambda^2)^{-1}$.

So, if $\zeta \in S_{i_0}$, where S_{i_0} was defined previously, then

$$\check{\Psi}_{t}(\varsigma) = \begin{cases} \frac{1}{2t} e^{-\varsigma/t} , \Re e \varsigma > 0 \\ \\ \frac{1}{2t} e^{\varsigma/t} , \Re e \varsigma < 0 \end{cases}$$

and

$$\Psi(tD_{\gamma})U(z) = \int_{\gamma} \check{\Psi}_{t}(z-\zeta)U(\zeta)d\zeta$$
,

or

$$\Psi(tD_{\gamma})u(x) = \int_{-\infty}^{\infty} \check{\Psi}_{t}(h_{1}(x)-h_{1}(y))b_{1}(y)u(y)dy$$

The operator $\Psi(tD_{\delta})$ is defined similarly. Square function estimates for $\Psi(tD_{\delta})$ can be obtained from the expansion for $\Psi(tD_{\delta}) = \Psi(tB_2^{-1}D) = \Psi(t\rho^{-1}(I-F)^{-1}D)$ in powers of F using the techniques of [1], where ρ is chosen so that ||F|| < 1. Proceeding in this way it can be shown that L is a Calderón-Zygmund operator. In doing this, we are generalizing the proof of the T(1) theorem given in [2] rather than following [3].

We conclude with the remark that theorems 1-5 remain valid in higher dimensions if the appropriate dependence on the dimension is included in (1) and (2). However many of the intervening comments are specifically one-dimensional.

REFERENCES

- [1] R. Coifman, A. McIntosh et Y. Meyer, L'Intégrale de Cauchy définit un opérateur borné sur L^2 pour les courbes Lipschitziennes, Ann. of Math., 116(1982) 361-388.
- [2] G. David et J-L. Journé, A boundedness criterion for Calderón-Zygmund operators, Ann. of Math., 120(1984) 371-397.
- [3] G. David, J-L. Journé et S. Semmes, Opérateurs de Calderón-Zygmund et functions para-accrétives, Revista Ibero Americana, to appear.
- [4] T. Kato, A generalization of the Heinz inequality, Proc. Japan Acad., 37(1961) 305-308.
- [5] P-G. Lemarié, Continuité sur les espaces de Besov des opérateurs définis par des intégrales singulières, Ann. de l'Institut Fourier, to appear.
- [6] A. McIntosh et Y. Meyer, Algèbres d'opérateurs définis par des intégrales singulières, Comptes Rendus Acad. Sci. Paris, to appear.

School of Mathematics and Physics Macquarie University North Ryde NSW 2113 Australia