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A PIECEHISE LI'M::AR THEORY OF 

MINUIAL SURFACES IN 3-MANIFOLDS . 

Tvi l Ziam Jaco( 1 )and J. H~ Rubinstein ( 2) 

In an impressive series of papers, Meeks and Yau [MYi. 1 ~ i ~ 5], 

Meeks, Simon and Yau [MSY], Freedman, Hass and Scott [FHS], Scott [S], and 

Meeks and Scott [MS] introduced and used least area surfaces in the 

investigation of topological problems about 3-manifolds. This has lead to the 

solution of many outstanding questions in the topology of 3-manifolds. An 

example is the positive solution of the Smith conjecture (see [SC]), in which 

the results of Meeks and Yau [MY5] played an important role. 

In [JRl] • we used least 1iTeight normal surfaces to obtain the 

equivariaut decomposition theorems of 3-manifolds in [MYi, l ~ i ~ 5] and 

[MSY]. These least weight normal surfaces share many of the same useful 

properties as least area surfaces. However since the Meeks-Yau exchange and 

roundoff trick cannot be directly applied to normal surfaces, we were unable 

to recapture the more difficult applications and properties of least area 

surfaces in [S], [MS] and [FRS], by using least weight normal surfaces. 

Here we develop the idea of least weight normal surfaces to obtain 

piece-wise linear (PL) minimal surfac.es in 3-manifolds. This theory has 

several advantages over the classical area of analytic minimal surfaces, 

especially with regard to the study of the topology of 3-manifolds. Firstly, 

to establish existence of PL minimal surfaces, there is no necessity to appeal 

to deep results from partial differential equations and geometric measure 

theory, as in the analytic case. (See Hass·-Scott [HS] for a new uniform 

treatment of existence theory for least area surfaces, using only Morrey's 

solution of Plateau's problem in Riemannian 3-manifolds). For PL minimal 

surfaces, it suffices to use the short classical PL technique of Kneser [K], 

plus a little elementary. analysis. 
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Next, PL minimal surfaces are explicitly computable. by the method of 

Haken [H] for normal surfaces. By contrast, precise descriptions of analytic 

minimal surfaces are usually rather difficult to obtain. Finally there is a 

local uniqueness property for PL minimal surfaces (see Theorem 2). There is 

no analogous result in the analytic case. This local uniqueness leads to a 

local version for PL minimal surfaces of the properties of least area surfaces 

established in [FHS]. In particular. PL minimal surfaces have the smallest 

number. of self-intersections and intersections in normal homotopy classes. 

PL minimal surfaces are defined by choosing a nice Riemannian metric 

on the 2-skeleton -:f. 2) of a given triangulation~ of some 3-manifold M. The 

idea of putting such a metric on :(. 2) arose from the analysis in [JRll of the 

intersections of least weight normal surfaces as spanning arcs crossing in 

2-simplices of the 2-skeleton. For details of the results in this paper, see 

[JR2]. 

Normal and PL minimal surfaces. 

A surface f in a 3-manifold M will always refer to a proper immersion 

f: (F • <IF) + (M • <lM) • where o denotes boundary and possibly llF and oM are 

empty. There are seven properly embedded disks in a 3-simplex called disk 

types. These consist of four triangular disks, which separate a vertex from 

its opposite face and three disks with quadrilateral boundaries, which 

separate a pair of opposite edges of the 3-simplex. A normal surface f in M 

intersects each 3-simplex of ~in a finite set of such disk types. 

Let ':J'(i) deno,te the i-skeleton of~. The weight of f is the number of points 

in f-i(~l)). 
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Remark. A normal surface can be thought of as a minimal surface if all the 

area is concentrated near~l), by choosing a suitable Riemannian metric on M. 

A normal homotopy is just a homotopy through normal surfaces. Then

any normal surface f determines a normal homotopy class which is denoted of( f). 

To introduce the concept of PL minimal surfaces, we now construct a 

Riemannian metric on:r(2), by identifying each 2-simplex with an ideal 

hyperbolic 2-simplex in the hyperbolic plane. The 2-simplices can then have 

common edges identified by isometries. If a group G of simplicial 

homeomorphisms is given, such that the fixed set of any member of G is a 

subcomplex, then we can choose the metric on ~2) so that G acts 

isometrically. 

Given a normal surface f: F + M, we define its length t to be the 

total length of all the arcs in which f(F) meets the 2-simplices of -:f. 2>.. We 

will call these the arcs of f. The PL area of f is defined to be the 

pair (w, t), lexicographically ordered. Finally f is PL minimal if its 

length t is stationary for small variations of f. Let f : F + M be a smooth 
s 

family of (normal) surfaces, where s e (-6, o) and f 0 = f. Then f is PL 

minimal if the derivative of the function t(f ) is always zero. 
s 

A normal surface f: F + M is called PL least area if f has smallest PL 

area amongst all normal surfaceshomotopic to f. This will be most useful in 

the following cases: 

f is called ~~-injective if both the maps f*: ~1 (F) + ~ 1 (M) _and 

ffl,: ~~(F, 3F) + ~ 1 (M, ClM) are one-to-one, with ~ 1 (F) :F {1}. IfF is a disk or 

2-sphere then f is essential if either f: (D, 3D) + (M, 3M) is non-zero 
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2 2 in 1T2(M, <IM) or f: S + M is non-trivial in 1r2(M) or f: S + M is an embedding 

with f(S 2) bounding a fake 3-ball, but not a 3-ball in M. 

We call a 3-manifold M P2-irreducihle if any embedded 2-sphere bounds 

a 3-ball and there are no embedded two-sided projective planes in M. A 

surface is called two-sided if it has a trivial normal bundle in M. 

The energy E of a normal surface f is defined as the sum of the 

squares of the lengths of the arcs of f. Energy has the nice property that it 

is a convex function on J/(f) and this implies the uniqueness of PL minimal 

surfaces in normal homotopy classes. We would like to thank Bill Thurston for 

bringing energy to our attention. 

Finally we describe the mean curvature field H of a normal surface 

f. Let a be an arc of f and let 1'1 be a component of f-1(a). If y e intB and 

x = f(y) then we define H(y) = VTT(x), where V is hyperbolic covariant 

d.ifferentiation and T is the tangent vector field a'. \~e assume without loss 

of generality that IT! = l. 
-1 

f withy E f (a.), 1 'i 'k. 
]_ 

We can suppose that f(y) = x 
k 

for 1 ' i ' k, and can define H(y) L <T1 , V) V, where Ti 

a unit vector tangent to the edge in at x. 

Properties of PL minimal surfaces 

a1 (0), 

C4~(0) and V is 
]_ 

A linking 2-sphere is the normal surface which is the boundary of a 

small regular neighbourhood ~f a vertex in '5"(0). 

Theorem 1. For any normal surface f wliich is not a linking·2.-sphere. there is 

a PL minimal surface inJ/'(f). 
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Next we consider first and second variation of length and energy for 

normal surfaces. Let f : F + l1 be a small variation of normai surfaces, 
s 

Where S E (-o, 0) and fQ = f. 

s of f 8 by ai. 1 < i ( m, with 

Let t(s) = !(f ). We will denote the arcs 
s 

denoted by a1 • By transversality. since o is 

small, m is independent of s. Let T1 = ai and assume jT11 = 1. Also let 

be the variation vector field and let 11 denote t(a1 ). Then the first 

variation formula is: 

m !1, m 

1'(0) = I <vi, T >I i- I 
i=l i 0 i=l 

s 11..,. T.)dt. 
-'-· ]. 

]. 

This shows immediately that f is PL minimal if and only if the mean curvature 

His zero. Also if E(s) = E(fs)• then E'(O) = !t'(O)~ 

To obtain a nice exoression for second variation. we can assume 

that Vi at an edge e of ~l) is a unit tangent vector field to e. 

Hence VV Vi= 0 along:r(l). Also the Gaussian curvature of the hyperbolic 
i 

metric is -1. Consequently second variation of length and energy are: 

m 
R." ( O) I 

i=l 

and 

Since E is convex, it has a unique minimum inNtf). This establishes: 
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Theo~. There is precisely one PL minimal surface in .N(f) • for any normal 

surface f which is not a linking 2-sphere. 

The local behaviour at a point x of "common tangency" of two PL 

minimal surfaces f 1 and f 2 can be analysed, as in the analytic case (cf. e.g. 

[B]). If xis in~(l) • we obtain a generalised saddle picture. If xis 

in~2) but not in~(l) • tangency should be interpreted more widely since we 

are working in a PL setting. In this case we obtain that the arcs of 

f 1 and through x coincide. 
(3) (2) 

The behaviour of f 1 and f 2 in':( - !f is 

not of interest. (PL minimal surfaces are really defined. only by their po:l.nts 

in~( 2)). Also barriers for PL minimal surfaces, such as convex boundaries, 

can be constructed as in e.g. [MY3]. 

The exchange and roundoff trick (cfo [MYl] and lemma 1.2 of [FHS]) 

works in the PL case. We have for example: 

Lemma. Suppose £1 , f 2 are embedded PL least area surfaces in their homotopy 

classes and f 1 meets f 2 transversely, t'i'ith f 1(F 1) n f 2 (F2 ) transverse to ';f. 

Then there are no product regions R x 1] c M, where R x {0} c f 1 (F1) and 

R X {1} u 3R X [0, 1] c 

Often, the exchange and roundoff trick must be applied 

where f 1 and f 2 may not be transverse, or their intersection may cross :f' non 

transversely. To avoid this we can use the Meeks~Yau trick (cf. [MYl] and 

lemma 1.3 of [FHS]). The idea is to perturb £1 to f!• increasing length 

by e. so that and f 2 have the desired transversality properties. If there 

are product regions. then at least 2e: in length is saved by exchange and 

roundoff. a contradiction. 
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Applications of PL minimal surfaces 

The basic existence result for PL least area surfaces is: 

Theorem 3 (cf. Theorems 3.1 and 7.2 of [FHS]). Let M be a 3-manifold which 

covers a compact 3-manifold. 

(1) Suppose M is P2-irreducible and let f: F + M be a ~ 1 -injective surface. 

Then there exists a PL least area surface in the homotopy class of f. 

exists an essential Pl. minimal disk (or non-contractible 2-aphere) which 

has smallest PL area amongst all such disks (or 2-spheres respectively)~ 

Then we can obtain the results of [MYi, 1 '1: i ( 5], [FHS], [S] and [MS] 

using PL least area surfaces. Finally to obtain the main application of 

[MSY] • i.e. that any covering of a P2 -i n:educi ble 3-manifold is 

2 . 
P -irreducible, we need to show that PL least area essential 2-spheres can be 

found if ~2(M) = {1} but M contains fake balls. This follows from: 

Theorem 4. Let M be a compact 3-manifold. Suppose f and f' are normal 

surfaces and g, g' are the PL minimal surfaces in .,l('(f), ll(f') respectively. 

Then the number of self-intersections of g is smallest for surfaces indt{f) 

and the number of intersections of g and g' is the least for pairs of surfaces 

in .,f(f) and .N'(f'). 

Remarks. 1. For a precise description of hmil to count intersections and 

self-intersections, the reader is referred to [JR2] and [FHS]. 

2. Note that it is not necessary to include any homotopy 

assumptions about f and f'. In [FHS], the hypotheses are that the surfaces 
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are n1-injective and two-sided for the analogous theorems. 

Corollary 1. Suppose f is an embedding. Then g is either an embedding or a 

double cover of an embedded surface. In the latter case, the image of f 

bounds a twisted !-bundle over a non-orientable surface isotopic to the image 

of g. 

Corollary 2. Assume f and'f' have disjoint images. Then g and g' have images 

which are either disjoint or the same. In the latter case, g and g' are 

covets of embeddings. 
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