
32 

ABOUT SOME ILL-POSED PROBLEMS 

E. Di Benedetto 

1. INTRODUCTION 

The purpose of this note is to give an informal account of recent 

results, obtained jointly with A. Friedman [1,2] about some non-linear 

ill-posed problems arising in fluid dynamics. 

Before describing them, we wish to make some remarks about ill-

posed problems, as an attempt to single out the mathematical issues we 

are interested in. 

There is not a "canonical" definition of ill-posed problems; they 

are a set of facts, diverse in scope and motivation, and are difficult 

to unify in a group of issues and methods. Efforts towards an organic 

theory have been made only in recent years. we mention in particular 

the books of Tikhonov-Arsenin [17] and Lavrentiev [9]; the monograph 

of L. Payne [10], and a beautiful review article of G. Talenti [16]. 

The following way of looking at ill-posed problems is partial and 

incomplete; however it is adequate for the purpose of this note. 

A boundary value problem associated with a partial diffe-rential 

equation is ill-posed if 

(a) a solution can be found (if at all!) only for a very narrow 

class of data, or 

(b) if a solution exists, it exhibits instabilities with respect. 

to small variations of the data. 
' 

The meaning of "narrow class of data", "instabilities", "small 

variation", has to be made precise in each single problem, through the 

specification of appropriate spaces and topologies. 



33 

If a problem comes from physics, then it is reasonable to 

"measure" the data (or their variation) in a topology sufficiently 

coarse to reflect experimental approximations. Thus the well or ill-

posedness of a problem depends on the topology chosen. 

The following two examples, by now classical, typify the situation. 

Example 1 

satisfying 

Let Q _ {o < x < 1} x {o < y < b} • Find u E c2 (Q) 

'{ tm = 0 

u(x,O) <f>(x) 

in Q 

u (x,O) 
y 

lji(x) , 0 < X < 1 

This problem has been posed by Hadamard [4]. The discussion to follow 

is taken from Talenti [16]. A solution of (P) exists if and only if 

the function 

1 fl (0,1) ') x + <P (x) - :;r tjl(t) lnJx- tJ dt 
0 

is analytic. Indeed if u solves (P) write u = v +w where 

1 f1 2 2 v(x,y) = 2TI 0 lji(t) ln[(x -t) + y] dt • 

Since /::,.v = 0 in {y > o} and v (x,O) = tjl(x) I X E (0,1) , we 
y 

must have /::,.w = 0 in Q and w (x,O) 0 . Therefore, by the y 

reflection principle (x,y) -+ w(x, JyJ) is harmonic in 

{o < x < 1} x {-b < y < b} and x-+ w(x,O) is analytic. 

Thus a solution exists if and only if the data are in a quite 

narrow class. If we insist on solutions 2 -u E C (Q) , then the natural 

assumption on the data is 
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The previous remarks show that those data ¢•W for which a solution 

exists are very few relatively to C 

Also solutions of (Pl exhibit instability" In (PJ set W(x) = 0 , 

<jJ(x) = ¢ (x) = exp(-ln) cos(nx) , x E (0,1) , n EN 
n 

Then (P) has a 

solution u(x,y) = exp(-/n) cos(nx)•cosh(ny) , such that u(O,l) can 

be made arbitrarily large, in spite of the fact that 

as n + oo , Vk E N • 

This example lends itself to a number of general considerations about 

ill-posed problems, especially about choices of topologies. We refer 

to [ ] for a complete and clear discussion. 

Example 2 (The backward heat equation.) 

Let Q be a bounded open set in RN , N ~ 1 with smooth boundary 

6Q • Let 0 < T < oo , set QT = Q x ( 0, T) and consider the problem of 

finding 

such that 

(Hl 

Part of the problem is to give conditions on u0 to insure the 

existence of a solution. If (f{) were a physical problem, it would seem 

natural to assume 1 u E H0 (Q) , to account for experimental errors" It 

turns out that very few elements of H~(~) (in fact very few elements 

of the space of analytic functions in Q ), yield the existence of a 

solution. It is in this sense that (H) is improperly-posed" 

The following result is due to Showalter [14]o 
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Problem (H) has a (unique) solution if and only if u 0 E D [ (-Li) nl , 

Here is the Riesz-map and D(T) deno·tes 

the domain of the operator T • 

In fact Showalter's result. is more general in that -!J. could be 

replaced by any linear unbounded operator A in a complex Hilbert 

space H , provided D(A) is dense in H and A2 is accretive. 

The proof employs the method of quasi-reversibility (see Lattes-

Lions [8]). First changing t + -t (H) reduces to the final value 

problem 

(1.1) ut -/J.u 

u(x,T) 

0 in [IT 

X E [2 • 

Then such a problem is approximated by the pseudo-parabolic 

approximations 

(1.2) 

where (-!J.) a = -!J. o (I -01,/J.) 
-1 

L2(rl) Since (-/J.) 
a 

: r}cm 

maximal monotone), (1.2) has 

represented by s (-t) 
a 

u 0 (x) 

(-!J.) 8 
a a 

0 in 

is the Yoshida approximation of -!J. 

-> L2([2) is Lipschitz-continuous (and 

a unique solution 8 which can be 
a 

' t ~ T ' where sa (.) is the group 

in 

generated by (-!J.) a in L 2 cm The value S (-T) uo is then used 
a 

as 

~~ initial datum to solve (1.1) forward in time. If t + S(t) is the 

semigroup generated by -!J. in L2 (r2) then this process yields an 

approximate solution 

and it remains to prove that ua(T) + u 0 (x) in L2 (r2) as a+ 0. It 
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is shown in [14] that such a convergence in fact occurs if and only if 

2. THE HELE-SHAW FLOW 

Consider a slow incompressible viscous fluid, say oil, moving 

together with a light fluid, say air, between slightly separated plates. 

Such a device is called a Hele-Shaw cell and it is studied in connection 

with flow of fluids in porous media. The objective is to remove the 

heavy fluid from the cell. We will consider two cases. 

HSl The fluid occupies a bounded domain D and surrounds a "core" 

G through which it is removed. The suction along ClG is at constant 

rate Q and causes the fluid blob to recede. 

/ 

/ 

air 

Fig. l. 

J-y 
/ 
X 

Let P = p(x,y,z,t) be the pressure of the heavy fluid, and let 

+ v denote the normal to ClG directed towards the fluid. Then 

(2.1) 
Clp 
Clv = Q > 0 along ClG (pressure decreased) 

where Q is a given positive constant. 
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It is observed in experiments that the suc'cion process ends with 

the formation of irregular "fingers". Moreover repeating the 

experiment with the same configuration of the initial blob D ("same" 

within the limits of experimental errors), it is observed that the 

extinction time and the shape and size of the fingers are dramatically 

different. The problem is physically ill-posed in this sense. 

A na·tural question is then to find the configurations of the 

initial blob (if any) for which the suction ends smoothly with no 

fingers. More generally, given a configuration of fingers, is there an 

initial blob for which the suction process ends with such a 

configuration? 

HS2 'Ehe fluid occupies the whole plane R 2 A light fluid is 

injected and forms a bubble D(t) a·t each time t The oil is 

incompressible and the extraction at lxl + oo is at constant rate Q 

given by 

where II x denotes the gradient vli th respect to the space variables 

(x,y) only and lxl = 

O<h«l 

l 
~-----------

2 2 ~ 
(x + Y l 2 • 

Fig. 2. 
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Also in this case it is observed that as the bubble increases the 

light fluid escapes through irregular fingers. The problem is then to 

determine the shape of those initial bubbles for which the oil can all 

be removed (i.e. for which a solution exists for all times). 

2-(a) The Model 

In both cases we assume the pressure of the air is neglectible and 

the viscous fluid is Newtonian so that the motion is governed by 

Navier-Stokes equations for the velocity 

+ (1) (2) (3) 
v(x,y,z,t) - (v ,v ,v ) (x,y,z,t). 

However the motion is slow ( 1~1 small) so that we may assume 

+ 
that v satisfies the steady-state Stokes equations 

+ 
(2. 3) v!J.v = 1/p 

+ 
div v 0 

where the kinematic viscosity v is proportional to 

0 < h << 1 one can also assume 

(3) 
v (x,y,z,t) 

+ 

0 

(i) 
v zz 

p(x,y,z,t) 

i 1,2 . 

-2 
h • Since 

p(x,y,t) 

The term !J.v accounts for internal friction in the fluid [7]. 

Therefore since ·the motion takes place on planes parallel to z = 0 , 

the terms 

i = 1,2 

(i) 
v 

XX 

(i) 
' vyy are neglectible when compared to 

From (2.3) we have 

(2 .4) 
(l) 

vvzz = px 
(2) 

\)V 
zz 

0 :; z :; h 

(i) 
v zz 

and 
(i) (i) 

v (x,y,O,t) = v (x,y,h,t) = 0 , i = 1,2 (the fluid is 

viscous). Multiplying (2.4) by z and integrating twice in z we find 
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-+-v = -c Vp 

v(i) =! fh v(i) dz 1 

h 0 

c = c(h) 

i 112 • 

Equation (2.5) is Darcy's law and explains the connection between the 

Hele-Shaw flow and flow of fluids in a porous medium. 

Incompressibility of the oil fields 

(2.6) 
-+

div V = 0 and I:J.p = 0 in the fluid • 

Suppose the interface r separating air from oil is smooth and 

has an intrinsic representation ~(x 1 y 1 z 1 t) 

~ < 0 in the fluid ~ > 0 in the air • 

0 1 where 2 4 
~Ec(R)I 

Then on r we have X = x(t) I y = y(t) and the velocity of the 

fluid coincides with the velocity of r so that 

• • -+-
(xly) = v on r 

Computing the total time derivative of ~ on f we have 

(2. 7) 

where 

This and (2.5) give 

N 
X 

v ~ 
X 

= TWT 

on r 

on r . 

These remarks yield the following classical formulation of the problems 

at hand. The problems presented are in 2 space variables. We will 

however present a general N-dimensional formulation of them. This 

will give quite general resultsespecially in the case of HS2. 
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2-(b) Mathematical formulation of HSl 

Let D and G be two open sets in RN with c 2+a boundaries 

ao and 3G (for some 0 < 01. < 1 ) • Assume G c D and set n = D\G ' 

QT - Q X {O,T] for any 0 < T < oo 

We wish to find T E (0,00 ) , u :fiT -r R and <P : QT -r R such that 

setting 

Q(t) = {x E Q :<P(x,t) < 0} 

the following conditions are satisfied 

(2. 8) -b.u"' 0 in n (tl ' 0 < t ~ T 

(2. 9) u = 0 on a0n<tl 0 < t ~ T 

(2 .10) 
au 

Q dG X {0 < t ~ T} d\) = on 

(2 .11) II u•N Nt on a0n(tl ' 0 < t ~ T 
X X 

(2 .12) u ~ 0 in nT u(x,O) < 0 in n 

(2 .13) u(x,T) = 0 

If u is a classical solution of (2.8)-(2.13) then by the 

maximum principle IVxul ~ 0 on aon(t) and we can take <P = u 

Then (2.11) becomes 

(2 .14) 

By the maximum principle it then follows that ut ~ 0 hence the 

free boundary is decreasing in the sense that 

We note that (2.12) need not be required; it is in fact a consequence 

of the maximum principle. 
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2-(c) Mathematical Formulation of HS2 

Let D be an open set in RN with 2+a. C boundary ao • 

be the initial bubble. 

Find <I> :RN XR+ + R be c2 , <l>(x,O) > 0 , X E D , and 

u : RN XR + + R such that setting 

~Htl ::: {x ERN: <I>(x,t} < 0} , 

the following conditions are satisfied 

(2.15} -b.u = 0 in ~(t} , 0 < t < 00 

(2.16} u = 0 on an<t> , 0 < t < 00 

(2 .17} 'i/ u•N Nt X X 
on an<t> 0 < t <oo 

(2.18} u :5: 0 in rl(t} 0 < t < 00 

(2 .19} u = 0 ·on D(t} ::: RN\rl(t} 

(2. 20} 'i/ (u(x,t} -Qr <lxl» = O(lxi-N> 
X N as lxl + oo , 

D will 

where Q is a given positive constant and, denoting with wN the area 

of the unit sphere in RN , 

if N = 2 

if N ~ 3 • 

Condition (2.20} is equivalent to 

as lxl + oo (see Lemma 2.1 of [ ] page 10}. 

For further information on the model and classical formulation we 

refer to S. Richardson [11,12], P.G. Saffman, G.I. Taylor [13], Lamb 

[7]. 
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3. HSl, THE INITIAL BLOB 

In this section we will characterize all the initial domains D 

for which HSl has a solution. First we reformulate {2.8)-{2.13) in a 

suitable weak form. 

3-(a) Weak Formulation 

Assume u E c2 ' 1 {QT) is a classical solution of {2.8)-{2.13) with 

free boundary ~{x,t) = 0 of class c2•1 

that supp <P n {ii x {T}) is empty and denote by ( •, •) the 

distribution pairing in QT Then 

( -~u, <P) = - ff ull<P 

nT 

If 
[u<O] 

V u•V <P dxdt 
X X 

fT f V u•N <P dO"- ff ~u<Pdxdt. 
0 a Q{t) X X 

0 [u<O] 

Using {2.8) and {2.11) we get 

{3.1) 

where 

Introduce the graph 

and compute 

<-~u,<t>> = Jr Nt ¢do 

r _ u {{x,tl : x E a0n<tll • 
o<t~T 

{ 
1 if s < 0 

H{s) [0,1] if s = 0 

0 if s > 0 , 

(a: H{u) ,cp) = ( H{u) ,-cpt) = - If <Pt dxdT 

[u<O] 

Comparing with {3.1) we find 
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(3.2) 
() 

ot H(u) - ~u 3 0 

Introduce a new unknow~ function 

v(x,t) ; IT u(x,T) dT 
t 

and observe that if u is a classical solution then, 

H(u) H (v) • 

From (3.2) one obtains 

(3.3) -~v E H(v) - ~(x) , 1ft E [O,T] 

where ~(x) c H(u(x,T)) is to be determined. 

To find T integrate (3.3) over ~(t) for 0 < t < T to obtain 

(3.4) Q(T-t) J3GJ; J [H(v(x,t)l- i;(x)] dx. 
~(t) 

Letting t->- 0 

QT JoGJ I ( 1 - !; (x) ) dx • 
~ 

These quan'ci ties will now be used to define the concept of -.;eak 

solution. 

We seek T E (O,oo) , ~ ~ + [0,1] and v QT +R such that the 

following conditions hold: 

(3.5) v ::; 0 

(3.6) V E 

(3.7) -~v E H(v) - ~ a.e. in ~ , Itt E [O,T] 

(3.8) 

(3. 9) 

(3. 10) 

(3.11) 

v 0 

dV 
o\!;Q(T-t) 

v(x,T) :: 0 

on 3D x (O,T) 

on dG X { 'c} , 0 < t < T 

QJ3GJT; I~ (1-~(x)) dx 
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(3.12) v(x,O) < 0 in S1 

Equation (3.7) has to be interpreted in the sense that 

-~v = n(x,t) -s(x) a.e. ~ , where n is a selection out of the graph 

H(v) . Here (3.9) is meant in the weak sense; hot'llever it is shown in 

[1] that V v is Holder continuous in ~x (O,T) and thus (3.9) will 
X 

hold in the classical sense. 

A triple (T,s,v) satisfying (3.5)-(3.12} is a weak-solution of 

HSl and ~ is the terminal phase; in particular ~ might be used to 

represent the fingers. 

Suppose we assign s a p~iori in the following way. Let E be a 

disjoint union of open sets L. 
~ 

such that contains an 

open subset of (lG , and set 

If E ¢ we set s 0 (final extinction with no fingers). 

3-(b) Existence of Solutions 

We now establish under what conditions on the domain D , occupied 

by the blob at time t = 0 , the problem HSl has a solution. 

Lemma 3.1 If (T,~,v) is a weak solution then 

dV 
dV (x,O) 0 on (lD . 

Proof Integrating (3.7) for t 0 over S1 we find 

f ~v (x,O) do 0 . 
(lD V 

On the other hand since v s 0 in S1T and v 

(lv > 0 
dV - on (lD and the leoona follows. 

From this we deduce 

0 on (lD we have 
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Corollary 3.2 If there ex-ist? a weak solution (T ,f;, v) of HSl then 

the function V(x) = v(x,O) is a solution of the variational 

inequality 

(3.13} 

-tN ,;; 1- f; 

} a.e. v ,;; 0 in F.N\G 

V(-/1V -1 +I;) 0 

ClV = QT 
d\) on ()G 

(3.14) n = {x V(x) < 0} . 

For any I; of the form Xz and A > 0 , denote by rl(i';,,A) the open 

set {v < 0} , where v is the unique solution of (3.13) with QT = A 

The Corollary says that if HSl has a weak solution then the 

initial blob must be concentrated. in the support of the solution of 

(3.13). Note that given (3o13) the solution V will determine its own 

support (3.14) so that such a domain cannot be assigned in an arbitrary 

way. 

The following theorem, proved in ] establishes the converse. 

Theorem 3.3 Let I; = Xz and rl(i';,,A) be given. There exists a 

unique weak solution (T,I';,,v) of HSl urith Q = A/T 

These facts characterize comple·tely the initial domains D for 

which there is a solution to HSl. 

Given I; = Xz:: <md the problem (3.13) we may say that HSl has a 

solution if and only if ·the blob is confined in the complement of the 

coincidence set of the obstacle problem (3.14). 

In particular if a specific configuration of fingers is prescribed, 

say Z:: , then setting I; = XI: the arguments above give a "vlay of 

finding an initial blob which \•ill terminate vlith fingers Z • 
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Analogously if 2: ~ ¢ (i.e. !; := 0 ) then (3.13) says how to 

choose the initial blob to have extinction without fingers. 

The results in [1] are more general. In particular more general 

structures for the final phase !; are considered and regularity 

results concerning the free boundary are established. 

In [1] we also stress that the phenomenon of smooth extinction 

without fingers is only linked to the variational structure of (3.13) 

and not to the regularity of dD • We give an example that shows that 

any finger configuration (however irregular) can develop from an 

initial blob D whose boundary is nearly spherical and analytic. 

4. HS2. THE INITIAL BUBBLES 

We let 2: be a set in RN prescribed to be the final phase of 

the fluid (at t + oo ); l: consists of "fingers" created at time 

t = oo in the viscous fluid, or equivalently we may say that the bubble 

increases to RN\2: as t + oo • 

We will give conditions both on E and the initial bubble so that 

the fluid reaches ·the configuration L: after a large time. In 

particular if we impose E ~ ¢ then we will find conditions to extract 

the fluid without fingers. 

We start by noting that the distributional formulation (3o2) holds 

also in the present situation. Therefore at least formally we have to 

solve the following problem. Given an open set D(O) 

bubble), find u such that 

(4.1) 

() 
dt H(u) /J.u ~ 0 

H(u(x,O)) = X[RN\D(O)] 

\lx(u-QfN()xlll = O(lxi-Nl 

H(u(x,O)) ~ Xr, • 

as lxl + oo 

(the initial 
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The key idea in section 3 was to introduce the new unknown 

(4. 2) v(x,t) 
T 

Jt U(X,T) de , 

and define the concept of weak solution in terms of v , In our case 

T = oo so that it is difficult to work directly with v • Instead we 

shall define a sequence of truncated problems corresponding to 

fictitious final phases ( z:: 
n 

will decrease ·to the terminal 

phase I: as n + oo ), with "pressures" 

(4. 3) 

To start and describe the process, we truncate (4.1) at time 

t = T and rewrite it in ·terms of v defined by (4.2). We let 2: 0 be 

an open set in RN containing a neighbourhood of infinity and set 

To the truncated problem we impose a fic·ti·tious final KO ::: RN\Z::O 

phase t;0 = Xz 
0 

Thus we have to find (x,t) + v(x,t) , ·t E [O,T] 

satisfying 

(4. 4) v ,; 0 ' 

(4. 5) -D.v E H(v) - t; 0 a.e. vt E (o,•r) 

(4.6) as lxl + oo \It E (O,T) 

(4. 7) v(x,T) ::: 0 • 

The problem (4.4)-(4.7) is different in nature with respect to 

(3.5)-(3.12). From (4.6) by integration over RN and letting t ~ 0 

>ll'e find 

(4.8) QT 

where D is the initial bubble. Also from (4.5) and (4.7) we have 
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1;0 E H(v(x,T)) (in the sense of the graphs). 

Thus we are given 1;0 , Q , T and we are asked to find a function 

v(x,t) and a set D such that (4.4)-(4.8) hold with 

(4.9) RN\D ::: {x : v(x,O) < 0} . 

To this end we observe that if v is a weak solution, setting 

D(t) - {x E RN; v(x,t) ~ 0} ; V(x) v(x,O) , 

we have by (4.8) 

(4.10) A = meas (K0 \D) 

and v is the solution of the variational inequality 

in 
(4.11) 

as lxl +co • 

The following theorem establishes existence of time-truncated problems. 

Theorem 4.1 Given L0 as above and Q > o , for any 

A E (0, meas K0) there exists a unique solution of (4.4)-(4.10) !uith 

T A/Q 

The proof of the theorem is in [2] page 15-23 and makes use of 

potential representation of solutions by means of the kernel fN The 

proof shows also the following additional facts 

( 4.12) 

where t + y(t) is a bounded function of t and v(x,t) 0 

\IX E D(t) Moreover 

(4.13) meas D(t) meas D(O) + Qt • 
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Using this existence result we now define a sequence of truncated 

problems as follows. 

(i) Definition of truncated final phases 

Consider the spheres 

of s0 given by 

and the exterior 

n 

S co ::: {x E RN : J xI > n} • 
n 

If E is the (prescribed) final phase of the fluid, introduce 

fictitious truncated phases E 
n 

(4.14) 

U E l En_- Sn 

K s0\E n n 

A meas K -11 
n n 

(ii) Definition of truncated times 

Having given An by the last of (4.14) and the positive number Q 

being fixed, we may define T 
n 

according to theorem 4.1, by 

T = A /Q . n n 

(iii) Definition of truncated problems 

For n = 0,1,2, ••• , solve the problems 

(4.15) 

We 

v (x,T ) = 0 . n n 

briefly comment: on the parameter ]1 

as Jx J + oo 

in the last of (4.14). 

The sets L: and so being given, then K c K 
n+l 

is a well defined 
n n 

sequence of sets and {me as K } 
n is an increasing sequence. Then 
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motivated by (4.10) we assign a value ~ for the measure of the 

initial bubble and define A.n by the last of (4.14). Thus when the 

construction of the solution will be completed, it will have an 

indeterminate parameter ~ • This is not surprising in view of (4.13) 

and essentially it corresponds to fixing the initial time. 

By virtue of Theorem 4.1, problem (4.15) has a unique solution 

and moreover 

(4.16) 

(4.17) 

(4.18) 

where 

(4.19) 

vn(x,t) I fN(x-y)dy + yn(t) 
K \D (t) 

v (x,t) = 0 
n 

meas D (t) 
n 

n n 

~ + Qt 

D (t) = {x E RN : v (x,t) = 0} • 
n n 

Next we let n + oo and def·ine constructively a suitable concept 

of weak solution. 

For this we will need a priori estimates on {v } 
n 

and {n } • 
n 

Such estimates are derived under the assumptions that the final phase 

L: is made out of fingers which are not "too thick". Precisely we 

assume 

(4.20) ( meas{L: n (I xi 2)} dV < oo. 

(a) A priori estimates on the bubbles 

Let (4.20) hold and let D (t) 
n 

be the approximate bubbles 

arising from'(4.15). Then D (t) , for finite time are all confined 
n 

within a finite ball'. Precisely vt0 > 0 there exists R0 > 0 , 



(4. 21) D (t) 
n 
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vn E N 

~'!here For the proof we refer to Lemma 4.1 

and Corollary 4.3 of [2] pp.35-39. 

(b) A priori estimate on {vn} 

Let (4.20) hold. The following estimates are local. Fix a box 

There is a constant C = C(R0) such that 

jvn (x,t) - vn (O,t) I ,; C 

for all (x,t) E box{jxj < Ro; 0 < t < Ro} and for all n EN 

From (a) ... follows that, given Ro within 'che box l<.- ' 
{ jxj < Ro, 0 < t < Ro} ' there is a sequence {xn} such tha·t 

v (x ,0) = 0 • 
n n 

This implies by (4.22) that jvn(O,t) I :<:; C and 

(4.23) uniformly in n • 

Estimate (4.23) is the key fact to derive founds in stronger norms 

(for example 

subsequence 

cl+a l 
loc • 

Therefore by a suitable selection of a 

v + v 
n 

uniformly on compact sets. 

Letting n + oo in (4.15) we find 

(4.24) 11T > 0 

(4.25) -/',.v E H(v) - v 
"~ 

:RN X (0 ,oo) 

The last of (4.15) loses meaning as n + oo in view of the fact that we 

have only local estimates on {vn} • We will discuss later the case of 

~ = ~ when v(x,oo) = 0 is recovered in some sense. 

Finally the third of (4.15) has to be interpreted in the limit as 



(4.26) 
2 

lv(x,t)j s cjxl , 
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for I xj + oo 

This last fact is proven by suitable expansion of fN in harmonic 

polynomials for jxj + 00 For the proof see Theorem 4.5 of [2] pp.39. 

Finally note that (4.24)-(4.26) is a family of variational 

inequalities, parametrized with t E (O,oo) and with non-coincidence 

sets 

D(t) = {x E RN; v(x,t) = 0} • 

Then by a classical stability result for variational inequalities we 

have 

(4. 27) d(Dn(t), D(t)) + 0 as n -+- oo , 1ft > 0 ' 

where d(A,B) denotes the Hausdorf distance between two sets A , B 

Moreover from (4.18) and the mentioned stability result, it follows 

(4.28) meas D(t) 1J + Qt • 

Now we have completed the construction of solutions of HS2. 

2-(i) Conditions of the initial bubbles 

The construction shows that, given L , the final phase, then the 

bubbles D(t) , t ~ 0 that generate the solution are the non-

coincidence sets D(t) of the variational inequality (4.24)-(4.26). 

2-(ii) The case of L empty 

Let us return to the solution vn , Dn of (4.15) and set 

L = ¢ • Then from (4.16) and the convergence arguments just discussed 

we deduce 

(4.29) 

(4. 30) 

so that 

lim 
n-roo 

f [f (x- y) -
0 N 

sn\D(t) 

v(x,tl 

v(x,t) 0 if X E D(t) , 



53 

(4.31) vx € D(t) • 

For X > 0 · consider the surfaces ~s0 and the corresponding weak 
n 

solutions 

v , (x 1 t) 
nl" 

Analogously to (4.31) we obtain 

(4.32) lim 
n-+<x> 

if x € :X.D(t/:X.) • Taking t 

obtain 

T ,·-= :X.T -. 
n1" n 

0 and comparing (4.31) and (4.32) we 

(4.33) I [f (x-y)- fN(y)] dy = 0 
:X.D\D N 

if X € D I 

and where D = D(O) • 

Equation (4.33) is a geometric condition on D 1 i.e. on the 

initial bubble. It says that the Newtonian potential generated by a 

uniform distribution of masses on the "shell" XD\D 

XD 

Fig. 3 

is constant inside the cavity D • Such domains are called homeoids 
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(see Po Dive [3]). A theorem of Newton asserts (see Kellogg [6]) that 

ellipsoids are homeoids. 

The converse is also true. In dimension N = 2 a proof is in 

Kellogg [6] and in dimension N 3 the proof is given in P. Dive [3]. 

Both these proofs rely heavily on calculation procedures. We have 

demonstrated that the statement is in fact true in every dimension N , 

via an indirect argument (see Theorem 5.1 of [2] p.45). Therefore we 

have 

Every N-dimensional homeoid is an ellipsoid and vice versa. 

The discussion above shows that if the initial bubble is a homeoid, 

then a solution of HS2 with E = ~ exists and it is classical. The 

fact that it is classical follows from the smoothness of the free 

boundary 3D(t) 

In fact also the converse is true. Every classical solution of 

HS2 has a homeoid as initial bubble. Therefore we have 

A classical solution of the Hele-Shaw problem with empty final 

phase E exists if and only if the initial bubble is an ellipsoid. 
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