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I. Koch and C. TarLowski 

1. Introduction 

Airborne magnetic surveys represent a fast and inexpensive 

reconnaissance method of gathering information about the main signatures 

of the magnetic field caused by geological structures in the subsurface. 

In regions of sedimentary basins, the variations in the magnetic 

field are mainly due to the igneous basement rocks and can be considered 

as arising from two causes: from lateral changes in the magnetisation 

of the rocks, and from the relief of the basement structure. 

Experimental evidence (see Nagata [1953]) seems to indicate that, for 

most igneous rock masses, the ma~netisation can be taken to be parallel 

to the inducing field. One may therefore assume that the variations in 

the magnetic field are predominantly due to the relief of the basement 

structure. The following problem, which we address here, therefore 

arises: 

The determination of the depth to the basement rocks, their relief, 

and the occurrence of steep gradients in the relief, from collected 

airborne magnetic data. 

Work in this area started a few decades ago, and, because of its great 

importance in exploration geophysics, has attracted renewed attention 

more recently. 
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During the preparation of this workshop, the authors noticed that 

the only explicit formulation of the (restricted two-dimensional) 

problem in the literature had been derived incorrectly (Peters [1949]). 

As a consequence, our first priority became to derive a 

{three-dimensional) mathematical formulation of the problem from first 

principles. This resulted in an integral equation for the magnetic 

field; the field depends linearly on the derivatives of the relief and 

nonlinearly on the relief itself. 

At the presentation to the workshop, we restricted attention to 

this new formulation and some associated approximations. At that stage, 

little thought had been given to solution techniques or numerical 

evaluations. The first aim of the workshop for us was to obtain a 

better understanding of the presented mathematical formulation of the 

problem in order to arrive at a mathematically tractable inverse problem 

as well as preserving a physically realistic model. In a general sense, 

the discussions of the workshop helped to improve the presentation of 

this report. The more explicit progress of the workshop is presented in 

Section 4. 

2. Statement: of t:he Problem 

2.1 Airborne magnetic surveys 

There are estimates that, between 1961 and 1978, about 36 million 

line-kilometres of aeromagnetic data have been collected by various 

organisations around the world. At present, nearly all of Australia is 

covered by airborne magnetic surveys; between 1951 and 1985, about 3.5 

million line-kilometres of aeromagnetic data were collected by 



73 

government organisations. Government airborne surveys in Australia are 

usually made from fixed wing aircraft flying at the altitude of 150m 

above the ground along lines spaced about 1500-3000m apart 

(see Figure 1). The pilots try to keep a constant altitude relative to 

the ground terrain by following its topography, but in rugged terrain 

the altitude of the aircraft can vary by as much as lOOm. 

~~--- - ·- - - - -- -,-~o---..- - - - - - --y----... 
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Figure L Typical flight path during an aeromagnetic survey. 

The amplitude of the total magnetic field is sampled very densely 

in the direction of the flight {every sec). This gives a sampling 

density of approximately 50-60m along flight lines (depending on the 

speed of the aircraft). The accuracy of the magnetic field measurements 

varies from 0.1- lnT (the Earth's field varies from 30,000- 70,000nT). 
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The location of the position, at which the measurements are made, 

is recovered from aerial photographs and Doppler navigation. The 

accuracy of determining the location along flight lines varies from 

1 - 5m. However, the accuracy of recovering the position in the 

direction perpendicular to the flight lines (see Figure 1} is much less 

precise and varies from 50m up to 300m in exceptional cases. 

A typical aeromagnetic survey covers an area of 1 degree latitude 

and 1.5 degrees longitude and contains about 12,000 line-kilometres 

covered by about 200,000 data points. The data are characterised by 

three numbers: 2 for the position and 1 for the amplitude of the 

magnetic field. 

The first step in an interpretation of the measured data is to 

preprocess the raw data. This includes reducing the magnetic data by 

removing diurnal changes, by levelling the data and by gridding it onto 

a regular grid. There exists a whole spectrum of different 

preprocessing techniques, but these are beyond the scope and interest of 

the present discussion. Different approaches will provide a more or 

less accurate set of values of the magnetic field; from hereon we shall 

simply assume that such values are available together with some estimate 

of the likely error. 

2.2 The derivation of the relief equation 

We select a cartesian co-ordinate system with the x and y axis 

along the geographic north and east directions respectively, and with 

the z axis pointing vertically downward. For notational convenience 
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we assume that the measurements take place in the plane z = 0 at 

denoted by (a,/),'1) Figure 2}. 

Figure 2. The co-ordinate system used in the derivation 
of the full three-dimensional relief equation. 

The potential U at (x,y,O) induced by a magnetic body of volume 

V is given by 

(1) U(x,y,O) I J(a,/).~) v0 (~1Jdv v r ro 

where 
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and j denotes the'magnetisation vector in V, The magnetic field 

vector H is related to the potential by 

(2) H(x,y, - W(x,y, 

where 

i~+j~+k~ ax ay az 

Substituting (1} into (2) leads to 

(3} H(x,y,O) - r J(a,/3,"1) vo 'fJ [-1 J dv ' Jv r-ro 

since V J 

If one assumes that J satisfies div0 (J) = J = 0 (see also 

the comments made in the introduction about becomes 

(4) H(x,y,O) v[r:r0]] dv 

Applying Green's lemma to replace the volume integral in (4) by a 

surface integral over the surface S of the body V gives 

(5) H(x,y, -J8J(a,(3,"1) n(a,/3,"1) V(-1--) ds 
ro-r 

where n denotes the outward unit vector normal to the surface S . As 

most rock formations are very large and extend deep into the subsurface, 

the integral in (5) can be approximated by an integral over the top 

surface a of the rock formation: 
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(6} H(x,y, 

Thus the field H can be expressed as a surface integral over the 

relief function, as the latter represents the top surface a (see 

Figure 

Let 

en ,y,O) -J(a./3, 

denote the contribution to the field from the point (a,/3,-r) on the 

surface a To derive a formulation for dH in terms of the relief 

function we now consider the individual terms in ('7). Let h denote 

the average depth from the plane z = 0 to the basement relief, and let 

f denote the deviation of the relief from h . A point ro on the 

surface a is then given by r 0 = (a,{3,h+f(a,f3)) , and the surface a 

is described by the equation 

a(a,f3) h + f(a,f3) . 

For such a surface, the equation of the outward normal n is given by 

(8) 

(see Spain [1965], ch6.38), where r = ar 
f3 a{3 

The change 

from surface co-ordinates ds to cartesian co-ordinates is given by the 

transformation. 
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(9) ds 

(see Jeffreys & Jeffreys [1980]). 

Substituting (8) and (9) into (7), and recalling that 

V(r_; ) 
0 

one obtains 

{10) 

where J(a,{3,'Y) 

The equation of the magnetic field now becomes 

(11) 
()() 

H(x,y,O) = -JJcJ f +J f -J ) [x-a,y-{3,-(h+f(a./3))] dad/3 
_ ro a a f3 f3 'Y [(x-a)2+(y-{3)2+(h+f(a,f3))2]3/2 

It is clear from (11) that the magnetic field depends nonlinearly 

on the relief function f , as well as on the derivatives of f . (In 

the Appendix a more detailed derivation of the restricted 

two-dimensional problem is given together with Peters' [1949] 

derivation.) 
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3. Related Linea.r Inverse Problems 

3. Jl. Approxi~~n.tiolllS ·to the rel:iief equation 

An integral equation of the form of equation (11) cann.ot, in 

general, be solved directly. No known inversion formulae exist for this 

type of integral, so its nonlinear nature requires the use of iterative 

methods of solution Ortega & Rheinboldt [1970]). Therefore, 

instead of attempting to find appropriate solution techniques straight 

away, we first further analyse (11). 

From (11) it is clear that the magnetic field H is a function of 

the mag;netisation vector J , the depth h to the relief, and the 

relief function and its partial derivatives. Unless further assumptions 

are made, the problem is highly underdetermined. Therefore, since our 

main concern is to recover the relief, we shall assume here that an 

estimate for the magnetisation is available &id that the magnetisation 

is constant in the region of interest (these assumptions are justified 

in view of the comments made in Section 1). 

For airborne magnetic field measurements, various methods are now 

available for calculating the (average) depth h to the n1agnetic 

sources. The main three approaches commonly used are spectral analysis, 

error minimisation between the measured field and the field calculated 

from simple geometric reliefs (see Bh_attacharyya [1980]), and finally 

the more heuristic method of characteristics (see Am [1972]). 

These assumptions about j and prior knowledge of h reduce (11) 

to a nonlinear integral equation for the relief function. Some comments 
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concerning possible solution techniques for this equation can be found 

in section 4. 

Sometimes it is advantageous to linearise (11) and to solve the 

resulting approximate inverse problem instead. A linearisation can be 

achieved if one assumes that If ~)I (( h {i.e. the variations in the 

relief are small compared to the average depth from the plane of 

observation to the igneous rocks). Replacing 2 + (y-(:J) + 

(h+f(a, 13/2 by + (y-{3)2 + 
'}' (C'Il 

r-"'"" in (11) results in the 

linearised field equation 

(12) H' (x,y,O) 

A further simplification can be obtained if one replaces 

h + f(a,/3) by h in the numerator, too: 

00 

(13) H"(x,y,O) 

As can be seen, (13) takes the form of a convolution equati.on with knowu 

kernel, and therefore, at least in theory, it may be solved exactly via 

Fourier deconvolution. This i,nversion, however, is unstable, since the 

convolution kernel has an unbounded inverse. Nevertheless the 

linearised equation is still useful in obtaining approximate bounds on 

the ill-posedness of the original nonlinear problem (see also Section 

3.2 and Section 4). 
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To conclude this section, it is worth pointing out the relationship 

between equation (13) and the (geophysically) well-known equation of the 

downward continuation which relates the magnetic field in a plane of 

observation to the field in a lower plane. {Note that the following 

equation is usually just given for the z-component of the field, but it 

is presented here vectorially to enable comparisons with the above.) 

()() 

{14) -~{ 0) J'f,H { (3 h) (x-a,y-(3,h) d d(3 
1r x,y' = JJ z a, ' 2 2 2 3/2 a 

[{x-a) +(y-(3) +h ] 
-00 

Equation (14) can be obtained from {6) under the assumption that the 

relief is constant (i.e. f(a,(3) = 0). Here H denotes the z 
z 

component of the field at height h , the component of primary interest 

to geophysicists. The result is a convolution equation with a symmetric 

kernel. The solution of such equations is an area of active research, 

and many different approaches have been attempted including Wiener 

filtering (see Chittineni [1984]), matrix perturbation methods (see 

Silva and Hohmann [1984]). Backus-Gilbert techniques {see Huestis & 

Parker [1979]) and Direct Surface Smoothing (see Koch & Anderssen 

[1986]). 

3.2 111-posedness of the inverse problems 

To estimate the degree of ill-posedness to be encountered in the 

field equation (11), we now consider {13) and {14). For reasons of 

simplicity, only the z-component part of the magnetic fields in each 

equation, denoted here by h" D and by h respectively, are used. We 

now rewrite {13) and {14) as follows 
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where 

(15) 

and 

h" 
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,0) = [(c1 ~~ + c2 ~y)f 
= ~(~f(x,y) - c 3 ) 

D D 
h (x,y,O) = h (x,y 

2 2 2 -3/2 
k(x,y) = h (x + y + h ) 

The spectrum of the linear operator :II can be described 

explicitly, since 11 is given by a convolution kernel and can therefore 

be written as a multiplication operator in the Fourier domain, i.e. 

-1 
:11 = ~ » ' 

where ~ is the Fourier transform and 

(17) 
2 2 1/2 A 

exp[-h(u +v ) ] 

The last equation implies that ~ has an continuous spectrum, and 

does not have a bounded inverse. The degree of the ill-posedness of 

(14a) may now be estimated from the exponential decay of the spectrum 

of :11 • 

Formally, (13a) involves the same kernel as (14a). ~ne crucial 

difference between the two equations, however, is that :II is applied to 
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the function directly in the equation of downward continuation, while ::1{ 

acts on the derivatives of the function to be sought in the case of the 

field equation (13a). Because of the form of the kernel k, (13a) can 

be rewritten as a function which involves f only. Integration by 

parts leads to the following expression for h" , which we call the 

Jinear field equation: 

(18) h"(x,y,O) - f(x,y) * [(c1 ~ + c2 ~y)k(x,y] - c3 * k(x,y) 

= (~)(f(x,y)} - ~c3 

with 

(19) ~(x,y) 

Equation (18) is a convolution equation, and since it is linear in 

f , ~ can be expressed as a multiplication operator i:h the Fourier 

domain, i.e. 

(20) 

where 

(21) ( ) [ 2 2 1/2 A o 

c 1u + c2v exp -h(u + v ) J g(u,vJ . 

We first note that the operator ~~ is not positive, although it 

is still symmetric (a property it shares with the positive operator ~). 

Equation (21} furthermore shows that !!!til is not invertible, since zero 

belongs to its spectrum. A competrison between the two operators (and 
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hence between the downward continuation and the linear field equation) 

shows that both spectra decay exponentially, but that the spectrum of 

~ decreases slightly more slowly. 

4. &mmary of Workshop Discussions 

4.1 Interpretation of the magnetic field measurements 

During the first part of the workshop discussions, a clearer 

understanding of the actual physical measurements made in practice 

crystalised. We therefore start by summarising this and outlining its 

relevance to the field equation {11). 

Natural rocks in the subsurface of the Earth usually possess the 

properties of paramagnetic material {i.e. they are weakly magnetic 

materials with a small, but positive, susceptibility). In the presence 

of an external {primary) magnetic field {here the existing magnetic 

field Hb of the Earth), a paramagnetic body acquires a magnetic moment 

and an induced magnetisation J {i.e. a magnetic moment per unit 

volume). The induced magnetisation J is defined over the volume of 

the magnetic body and is proportional to the primary or inducing field, 

namely J = kHb , where k denotes the {dimensionless) susceptibility 

and k € [10-5 , 10-3]. Let H denote the anomalous field arising from 

the magnetisation J . At an observation point r , the anomalous field 

H depends on J and the distance between r and the magnetic body; it 

decreases as this distance increases, and as r ~ r 0 , H{r) ~ J{r0 ) (see 

Figure 2 for notation). 
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Close to a magnetic body, the total magnetic field becomes 

(22) 

while It~ H0 a long distance away from the 111agnetic body. Note that 

B is sometimes also referred to as the magnetic field strength, the 

Inagnetic intensity or the magnetic induction. 

In aeromagnetic surveys, usually the total magnetic field B is 

measured. Generally, one is not interested in this total field, but 

rather in the smstll variations caused by magnetic bodies as ore 

bodies) which are placed in the primary magnetic field I\J of the 

Earth. The n:agilitude of B is about 25.000 - 70.000 nT, while 

contributions from the t:momalous field range from only a few nT up to 

several thousand nT. 

In practice, one often assumes that the susceptibility of the 

magnetic bodies is constant in the region of interest. Furthermore, the 

direction and mag;ni tude of the primary magnetic field ~ of the Earth 

is assumed to be ki1own. As part of the preprocessing (see Section 2.1), 

the Earth's ungnetic field is subtracted from the survey measurements. 

The remaining anomalous field (see (22)) is then used for further 

analysis. 

From the above comments, it follows that the field on the l.h.s of 

(11) is to be interpreted as the anonnlous field. Equation (11) 

therefore represents the functional relationship between the anomalous 

field, the induced magnetisation of the body, its relief, and lastly the 

distance between the magnetic body and the observation point. 
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It is easy to check that the anomalous field satisfies the 

requirements made at the beginning of this section: 

(i) As l1r-r0 1 ..., ro , where r 0 denotes points on the relief 

surface 

( ii) 

-2 
a , IH(r) I -> 0 , because of the term lr-r0 1 

? 

, note that (r-·r0 )/(r-r0 )'> tends to the 

li-function in three dimensions, It follows that 

I . 

Note that the anomalous field converges to the weighted magnetisation, 

where the weights are given by the direction of the nornn."Ll n on the 

surface ,a (see also (6) & (8)). This is to be expected., since we have 

assumed that the magnetisation is nearly constant and that the reiief 

function is the main cause of the anomalous field, 

A similar jnterpretation of the equation of the downward 

continuation (14)) can also be made. Equation (14.) relates 

the anomalous fields in dj_fferent planes. Si.nce :l. t cFm be shown that 

the anomalous field in the plane z = h is the magneti.sation (recall 

that a constant relief in the plane z = h is the underlying assumption 

in downward continuation), the equation of the downward continuation 

also relates the anomalous field at an arbitrary height to the 

magnetisation J of the magnetic body. 
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In airborne magnetic surveys, a typical data set would be collected 

over an area covering about 500 x 600 km, thus measurements are 

restricted to this regiono Let R"' [-a,a] x [-b,b] denote such a 

surveyed region. In principle, one would like to determine the relief 

over the same region R at average depth h . If 

1 if (x,y) € !R 

0 if (x,y) ~ !R 

denotes the window function for R , we denote by 

of a function g E L2 (!R) to the region R , Le. 

1il"R(x,y) g(x,y) o 

the restriction 

Thus in practice (13a} is :replaced by the following equation 

(23) 1fRqru{(f) 0 

This is now an equation over finite regions and the associated operator 

is now a compact operator [Baker, 1977]; that is, it has a spectrum 

consisting of a_n infinite but discrete set of eigenvalues, as opposed to 

the continuous spectra of ~ and ~ . If f is expga1ded as an 

infinite sum of eigenfunctions of 'ITR~ only coefficients of components 

corresponding to eigenvalues that are significantly greater th_a_n the 

error levels in the data will be accurately recovered. The remaining 

coefficients will be hopelessly corrupted by data errors. 
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Fortunately it is possible to estimate the distribution of the 

eigenvalues in terms of the transform of the kernel (given in (21)) and 

the region R . In particular they depend on the depth h and on the 

area of R (see Newsam and Barakat, 1985). 

However (23) is still not an accurate statement of the practical 

problem as, while measurements have been restricted to a finite region, 

the equation does not impose any limits on the extent of reconstructions 

of the relief function f . Obviously it is not possible to determine 

the relief function everywhere from survey data on a finite region. 

Therefore one would like to replace (23) by 

(24) 

where S = [-a',a'] x [-b',b'] is the region over which f is to be 

reconstructed. 

For this replacement to be valid S must be chosen so that the 

difference between the operators vR~ and vR~v8 is of the same 

order as the noise level in the data. However, the question of exactly 

which sets satisfy this requirement is as yet unsettled. In particular, 

while one would like to take S = R it is not clear that this choice 

will not introduce unacceptably large truncation errors. 

Nevertheless, given the size of R and S and the average depth, 

one can calculate the decay rate of the eigenvalues of the finite 

problem (24), and hence obtain an estimate of the ill-posedness of the 

associated computational problem that is to be solved. It is clear that 



89 

the inverse problem h<:ocomes more ill-posed the greater the dista;<ce h 

becomes. Usually, the variations in the relief function are small 

compared to the depth h . However if steep gradients occur, more 

ii:tforTil2Ltive are upper &11.d lnt'trer bounds for the decay of the eigenvalues 0 

St1ch estimates are obtained by replaclng the average depth h by h± = 

h:]::max!f 
s 

respectively. 

The average depth to the magnetised rocks varies from very shallow 

rocks {tens of meters} up to a few km. I<nowledge i)f the average depth 

leads to information about the resolution: in practice, the critical 

scaie on which features can be resolved from the observed data appears 

to be ~1 .5h. 

Another issue discussed at the workshop concerned possible solution 

tedlJ.'"liques. Because of the nonlinear nature of the rel. ief equation, it 

seems most appropr·iate to employ iterative tedmiques. As a starting 

point for the iteration, the relief function f can be chosen to 

consist of a number of prisms with flat tops (Le. the relief function 

is approxima.ted by step functions in two dimensions). A similar model 

was employed by B:b.attacharyya [1980], however he used an assortment of 

fixed prisms in order to find the magnetisation in these prisms (i.e. he 

worked with the equation of the downward continuation over a surface 

consisting of prisms). 

In summary, the relief equation is nonlinear and ill-posed, making 

it a very l1ard problem to solve. For this reason, it seems more 

promising to solve the linear relief equation (equation ( or (18)) 

first- possibly by starting with the two-dimensional problem. One may 
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then hope that the solution to the linear problem might be a.n acceptable 

solution to the nonlinear problem, or that at least it would serve as a 

good starting point for iterative solution for the nonlinear problem. 

This paper is published with the permission of the Director, Bureau of 

Mineral Resources, Canberra, A.C.T. 

Appendix 

Under the assumption that the magnetisation is constant in the 

y-direction, its contribution to the field can be integrated out. This, 

formally leads to the following two-dimensional analogue of equation 

{6): 

(Al) H(x,O) I J(a,"Y) n(a,"Y) V(-1-) dE , 
a r-ro 

where dl! now denotes the line element along the curve f (see 

Figure 3), and r-r0 [(x-a)2 + (h+f(a))2 ] 1/ 2 . The contribution to H 

at the point (x,O) from an infinitesimal element on f now becomes 

(A2) dH(x,O) -2J(a,'Y) n(a,'Y) 
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Figure 3. The co-ordinate system used in the derivation 
of the simplified two-dimensional relief equation. 

Expressions for n and dE in terms of the relief function f 

now become dE= (l+(f'}2 ) 1/2 da and n = (1+(£') 2 )-l/2 (f',-1), with 

f' = ~a f Substitution into (A2) yields the following equation for 

the field in two dimensions: 

(A3) H(x,O) 

To obtain a more geometric interpretation of (A2), substitute 

sin /3 = h+f(a) 
r-r0 
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into (A3), noting that f is positive in the positive (downward) z-

direction as indicated in Figure 3. The components of dH may now be 

written as 

(A4) 

dHz(x,O) = -2J(a,7) n(a,7) sinfi dE r-r0 

Furthermore, let 9 denote the angle between the line element dE on 

f and the x-axis, so that tan 9 = f' . Since n = 

(1+(f')2)-1/ 2 (f',-1), equation (A4} becomes 

dHx(x,O) = -2(Ja sin 9 - J 7 cos 9} cosf3 dE 
r-r0 

(A5) 

dHz(x,O} = -2(Ja sin 9 - J7 cos 9} sinfi dE 
r-r0 

The expression dH z is given in this form as (1) in Peters [1949]. 

The latter author then claims to derive the following integral equation 

for H . 
z 

-2J[J (h+f(a)} + J (x-a}] 2 f'{a) 2 da 
a 7 (x-a) + (h+f(a)) 

(see (3) in Peters [1949]). A simple calculation shows, however, that 

the last equation is derived from an equation slightly different from 

equation A5, namely 
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-2[J~, sin/3 - J~ cosp] d-2 . 
u: ' r-ro 

(Note the roles, hut not the meaning, of 13 and B have been 

interchanged. ) 
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