72
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1. INTRODUCTION
Let § be some open subset of ng containing 0 and

Q' =0~ {0} . Let u be a solution of
-+ ufu]¥t =0 in Q' . (1.1)

Brezis and Véron [2] proved that u can be extended to be a solution
of (1.1) in all of Qi if gz N/(N - 2) , N2 3 . Hence isolated
singularities of (1.1) are “removable". Véron [8] showed that the
exponent N/(N - 2) is the best possible becausg there exist singular
solutions when 1 < q < N/(N - 2) . Aviles [1] generalized the result
in [2] by replacing the Laplacian by some linear operators in diverg-
ence form. Vazquez and Véron showed that we can also replace the
Laplacian by the quasi-linear p-Laplacian div(lDqu—zbu) s, N>p>1.

Here Du = (Dlu, ooy DNu) denotes the gradient of the function of u .

A natural question is to ask whether the Laplacian can be replaced
by a more general class of quasi-linear elliptic operators which include

the above mentioned examples.
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In this paper, we shall show that the Brezis-Veron result is
indeed true for a wide class of quasi-linear operators satisfying
certain growth and ellipticity conditions. Specific examples are

given in section Uu.

2.  PRELIMINARIES

. o s N
For simplicity we assume that Q= {x € R : |x| <2}, 822

3

and we set Q' = Q ~ {0} . We consider the following equation

-div A(x, Du) + B(x, u) = 0 , (2.1)

where A(x, p) (Al(x, Py soes AN(X, p)) is a vector-valued function

belonging to C (R x ng)ﬁ Cl(Q % (ngN {0})) for (x, p) € Q x B

and B(x, u) € CO(Q x R) for (%, u) € @ x R. Denote

E(x, p) = Diji(x, p)pipj = aij(x, p)pipj s (2.2)
N

T(x, p) = » a,.(x,p). (2.3)
j=1

From now on, we shall use the convention that repeated indices repres-
ent summation from 1 +to N . Furthermore, we assume the following
ellipticity and growth conditions: for some constants e, > 0,

c, > 0, l<m<N,

N
2
Ipl(lA(x, p)l +le‘Ai(x, p)!)-+N|p[ ) ZL |Dp.Ai(x’ p)] 5cl|plm ,
i i,j=1 %3

for all x € Q , |p| zc, s

piAi(k, p) 2 |pIm ey s for all (x, p) € @ x RN,
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A(x, 0) =0, for all x €§ .,

|a(x, p)| = ¢, » forall xeq, lp| = cy s (A1)

-1 m-2 2
Diji(x, p)gigj z e "k + lp])" 7]

?

for all x €0 , 0#p € IRN, £ ¢ ng, for some « € [0, 1], (A2a)

(Alx, p) - &(x, Q)X p-q)=0,

for all (%, p, Q) € Q x R ><]RN . (A2b)

.. B(x, t) . B(x, t)
lim inf ——2—% > 0 , lim sup —=2—<< 0 ,
t >+ N——-———}(\Im—l) T =00 —-—-—-—ngm;l)
o ]
uniformly on Q . (B1)

Definition 2.1. A function u € Wl’m(Q') N1, (Q') is said to be a
Loc Loc
(weak) solution (resp. sub-solution) of (2.1) in Q' if
(
J Ai(x, Du)Diw + B(x, u)p dx = 0 (resp. = 0) (2.4)
9]
1,4, Lear
for all ¢ € CO(Q ) (resp. 0 =g¢ € CO(Q ) ).

Remark 2.2. By an approximation argument, we can take the test function

¢ in (2.4) to be in ¢ € Wi’m(Q') .

Remark 2.3. By the regularity result of [4], any weak solution of (2.1)
in 9’ has to be in Cl’a(ﬂ') for some 0 < 0 < 1 . So without loss

of generality, we can always assume that u € Cl’a(Q') .
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3. MAIN RESULT
Theorem 3.1. Suppose 1 <m< N and (Al), (A2), (Bl) (as stated in
section 2) hold. Let u € Cl’a(ﬂ’) ., 0 <o <1, be a solution of

-div A(x, Du) + B(x, u) =0 in Q' . (3.1)

Then u can be extended to all of { so that the resulting function
u is a (weak) solution of (2.1) in § . Hence by [4], u € Cl’u(Q)

for some (may be different) o € (0, 1) .
To prove Theorem 3.1, we need the following two lemmata.

Lemma 3.2. Assume (Al), (A2), (Bl). Suppose that l<m< N ,

= Mm-1) , u € Wl’m nL (') satisfies (in the weak sense)
N-m Loc Loc

-div A(x, Du) + aul-c=o (3.2)

on {x € Q" : u(x) > 0} , for some positive constants a and C .

Assume that (A1), (A2) hold. Then

c
u(x) = ——-—j%;—— a.e. on {x : 0< |x] <1}, (3.3)

! % l q+l-—m

where cq is a constant depending on N, m, q, a, ¢ and maT u(x) .
|x|=1

+ oo
Lemma 3.3. Under the hypotheses of Lemma 3.2, we have u € Lﬂoc(g) .

Proof of Lemma 3.2. We shall use the convention that c(m, q, ...)

denotes some constant depending on m, Q, ...
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Let r, > 0 be given such that Hro < 1 . Consider the function

vix) = L(r(x)2 - rz)-t + M (3.4)

. 2.5
defined on the annulus D = {x : r =r(x) = (x5 + ...+ xN)2 < uro} .
L, M, t are some positive constants to be chosen. A routine comput-

ation shows:

) 2 2.-t-1
Div(x) = “2Lt(r" - ro) Xs s
|pv(x)]| = 2Lt (r? - rg)_t_lr .
D..v(x) = -2Lt(r2 - r2)-t-16..
ij o 1]
+ 4Lt(t + l)(r2 - r2)-t—2x.x. R
o i™y

Div A(x, Dv) = D_ A.(x, Dv)D,.v + D A.(x, Dv)
p. i ij X, i
3 i
= ﬁE%%l (r2 - rg)t E(x, Dv) - 2Lt(r2 - rg -t

-1
T T(x, Dv)

)

+ D A, (x, Dv)
X. 1
1
(t+1) ,. 2 2.t 2 2
. (r° - ro) cl{QLt(r - ro)

A

‘t-lr}m

+ cl{QL’c(r2 - rg)-t_lr}m_l

9

by (Al). We shall check that |Dv| = ¢, after L, t, M have been

2

chosen.

m-1

1A

( m-1 m
T r

2 rg)-(m-l)(t+l)-l L

(r + Nt+1ncﬂ2ﬂ

(r2 - ri)-(m°l)(t+l)_lcu(t, m)rm L
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Nl a .q, 2 2,-tq a
- av(x)® s - LT - n0)T0 - §-Mq . (3.5)

Hence Div A{x, Dv) - av(x)¥ + ¢ = 0 if we choose

. m
t q+l-m °’
1
g 22m+lC - qfl—m
L > [ ____’-l»_o_
a
e
2c) ¢
and M2 maxy | — ,  max u(x)} . (3.6)
|| =r

By these choices, it can be easily checked that for .sufficiently small

v, > 0, |Dv] =z ¢ We now proceed to show that u(x) = v(x) in D .

2
1 = S(1+dr < <(y-X
Choose 0 =o_ € CO(D) so that ¢ =1 on {x .(lﬁ-n)ro_.r(x)_.(u nk}}

and B a Cl bounded function vanishing on (-« , 0] , nondecreasing on

[0, += ) . Then we have

J ~div(A(x, Du) - A(x, Dv))B(u - v)(pn dx

D
(

= J (A(x, Du) - A(x, Dv))B'(u - v)(Du - Dv)«pn dx
D

+ J (A(x, Du) - A(x, Dv))B(u - v)Dq>n dx O (3.7)
D
because u < v near 9D and (A2). Hence
J a(u? - vq)B(u - vypn dx = 0 for all n , (3.8)
D

which implies u =v in D . In particular
-t

=< = 3.9

u(x) v(2ro) cs(m, q)ro + M ( )

for x such that r(x) = 2r0 . By an iteration argument, we proved

our assertion. . Q.E.D.
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Proof of Lemma 3.3. Let

0 if le< '5‘1; or IX] >1 s
) 7 1 1
1 if S<|x| <3 (3.10)

and 0 si;n <1, |D§n} Scgh s for some constant e > 0. Let B
be a C:L bounded function vanishing on (-, 0) , nondecreasing on

[0, ) . Denote

= x: 2 1
T o= x:go< x| < =} . (3.11)

Choose M = max{ [g—]q s sup u(x)} . Then ¢ = B(u - M)T,n is a
%-s;x| =1
legitimate test function and

(
0= J (au? - C)B(u - M) dx = I
Q n n

= -jQAi(x, Du){B(u - M)Dit_,n + ;nB'(u - M)Di(u - M) lax
= J B(u - M)|A(x, Du)| |Dz_|dx by (A2) ,
Q n
-3 LI o
< c7(c6, nIBI I {J |a(x, Du)|m_ldx} o (3.12)
L Tnn{x:u(x)>M}

Here we use the fact that piAi(X, p) Z 0 which follows from (A2)
and A(x, 0) = 0 . Letting B(t) ~ sign+t (=1 if t>0, = J7'2 if
t=0,=0 1if t < 0) , we have

1--1!- m m-1

|A(x, Du)lm"ldx} "o (3.13)

o
IA
—
1A

m
c, n {j
n Tnn{x su(x) >M}

As in (3.12), taking ¢ = (u - M)+Crgn ., we obtain
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m +
LZQQnAi(x, Du)Di(u - M) dx

s mJ Z;r;;l[A(x, Du)|(u - M)+lDz,'2nldx
T
2n

which implies (by (Al))

m-1 1
m m

JQID(u - M)+|m§2n dx
_m_
m m m-1 + m
clJQc2ndx+mU z_:2n|A[ dx} {J [(u-mM) |DC2n|] dx}

A

Qn{x :ulx)>M} T,
_m_ LU
= clm[ + (n-1)e™t j g’;‘nlAlm‘l dx
QNn{x:ulx)>M}
+e ™" J [w-m oz, [ax , (3.14)
T 2n

2n

by Young's inequality. € > 0 1is to be chosen sufficiently small.

By (Al) and (3.14), we have

m m
m m-1 m m-1,m-1
CQHIAI dx = CQn(CllDu| )T dx
QN{x:u(x)>M and |Du|z<:2} QNn{x:ulx)>M and |Du]2c2}

m m m

m-1 m-1 m m-1
Se {cllal + (m-1)e S VY R
QN {x:ulx)>M}
+ e'mj [(u - M)+IDC2 1dex} . (3.15)
T n
2n
But by (Al),
m
m m-1 m-1
;2n|A[ dx = e o] . (3.16)

QN {x :u(x)>M and |Du sc,}
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Combining (3.15) and (3.16), we obtain

m
J C’;nlAlm_l dx = cgleys e, m, |2])
QN{x:ulx) > M}
_m L
{1+ (m- 1)sm‘lj g’,’,‘nlAP’"l dx
2N0{x:ulx)>M} ©
+ e‘mj [tu - M)+|Dc2n|]mdx} . (3.17)
T
2n
.
Choose € > 0 small enough so that c8(m - l)e:m_:L 5% . (3.17) then
gives m
m-1

|a] dx = cg(cl, cys m,|R]) {1+

JT N{x : u(x) >M}
n

+
+ J [(u-M) IDCin]mdx} . (3.18)
T
2n
By Lemma 3.2,
2
m
[(u-m7 |z |1Max < ¢ (2n)" ¢ (un)3m g 7N
T 2n 6 3 N
2n 2
- Nt——
=< clo(m, Cgs Cgo N)n q+l-m , (3.19)
where w_ = the volume of the unit ball in IRN .

N

Going back to (3.13), in view of (3.18), (3.19), we have

2
1 -% m—N+q-:nl m mr-n:L
< < -
0= In S e, cg{l tCpB } . (3.20)
N m2 m-1
- — 4 - — = <
As 1 o [m N + q+l-m] = 0,0 In 1 for some constant

c., > 0 , independent of n . Letting n » « , we conclude that

11
(au? - ©) sign+(u - M) € Ll(Q) . Knowing this fact we can further

improve the estimate of In .
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Case (i): If q =zm (i.e. m? = N) , then
N
1 -2
n o P l-mTipg, |17
LT, )
1.
<n m(CG(Qn) )m—l lICa - M)+ ”m;l
L (T, )
2n
N m, ,m-1
m-— {(1-=)(—)
st Mr L 0T -
n LT, )
n
m-NoN(r-By L
<c. (c., m N) n L T T
1276 Lq T )
2n
= ¢ II(u~M)+|Im‘l +0 as n >, (3.21)
12 Lq(TQH)
Case {ii): If q<m (i.e. m2 < N) , then
nl%l}(u—m)*lnc [mt
2n m
L (Tgn)
m-
sn ™)™ u-wmt
6 m
L (T2n)
n-X (m-1)(m-q) m-1
<o T (2c6)m_lc3(l+n) gtl-m ”(u-M)+” nq
LT, )
n
n-1
= ClS(CB’ cgs M, )l (u—M)WI“&q +0 as n >, (3.22)
L (T2n)

So in any case
J (au?-¢) sign+(u-M)dx =0 .
!x] =1

This implies that u(x) <M for almost all |x| =1 . Q.E.D.
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Proof of Theorem 3.1. By (Bl) we have B(x, u) 2au® -¢C for u =0

2

where a and C are positive constants. So we have
-div A(x, Du) + awl - c=o on {x €8 : u(x) >0} .

+ @ - ®
By Lemma 3.3, u € LZoc(Q) . In the same way u € LZDC(Q) . So u

and B(x, u) are both in L?OC(Q)

Let Cn be as before and n € Ci(Q).. Substituting the test
function ¢ = u(Cnn)m in the equation, we get
m m-1
jﬂAi(x, Du)D,u(Z )~ + u * D, (E n)m(Z n)

+ u E:nt(x, u)dx = 0 . (3.23)

We proceed as in (3.13) - (3.18) to conclude that |Du| € LZOC

Then in (2.23) with m replaced by 1 , we let n =+ ® and conclude

()

that u is indeed a weak solution of (2.1) in all of § . By regul-
arity theory [4], u is almost everywhere equal to a Cl’a(Q) function

for some O<a< 1. Q.E.D.

4.  EXAMPLES

Example 4.1. Consider
-bu + |u!q-lu =0 in Q' ,

where q 2 ﬁ¥§’ and N> 2 . It is easily checked that (Al), (A2) and

(Bl) are all satisfied with m = 2 . This was Brezis and Véron's

result [2].
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Example 4.2. Consider

N
-y 2la 6o 2ty |u|q’lu =0 in ',
S OX. ij o .
=1 i 3
where q = 7 and N > 2 . We assume that aij(x)'s are Lipschitz

functions in © . Again (Al), (A2) and (Bl) hold with m

2 .

Example 4.3. Consider

- Div(lDulthDu) + ]u|q_lu =0 in Q' ,

o N(m-1)

where q = N o 1l <m<DN . Then (Al), (A2) and (Bl) hold and

we obtain Vidzquez and Véron's result [5].

Example 4.4, Consider

m

o1
- Div((l-rlDulz)2 Du) + Iulq_lu =0 in Q' ,
N(m-1)
where 1l <m< N , g = T Then (Al), (A2) and (Bl) hold and

we can apply Theorem 3.1.

Example 4.5. More generally, we can consider the Euler-Lagrange

equation of the following functional

u(x)
I(u) = J F(x, Du)dx + J [J B(x, z)dz)dx (3.1)
9] QY70

where F 1is a 02 function in § X ]RN
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The FEuler-Lagrange equation has the form
- div Fp(x, Du) + B(x, u) = 0 .

Then Ai(x, p) = FP (%, p) = Dp F(x, p) . Condition (Al) simply says
i i

that F(x, p) grows like ]plm when |p| is large. The condition

(A2a) is a natural assumption for minimizing problems. Notice that

if (A2a) holds for all p € RN, then (A2b) is automatically satisfied.

Remark. 4.6. In the cases of the uniformly elliptic or m-Laplacian
operator, the singular set can be taken to be largef by appropriately
increasing the value of q ; cf. [1,7]. Our proof fails to work in
this more general case since we are only assuming. the various growth
conditions when ]pl is large. Notice that in Example 4.4, A(x, p)
behaves like lplm_l or lpll depending on whether |p| is near o

or 0 .

Remark 4.7. The exponent in (Bl) is sharp as shown in [8] in the

Laplacian case.
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