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CAPilLARY SURFACE REGULARlTY 
II\i CO:IU-TER SUBDOMAINS OF Rn 

Nicholas J. Korevaar 

The nonparametri.c capillruy problem is to find a smface Su=graph(u) above a 

subdomain Q ofRn so that § 11 has prescribed mean curvature above Q and makes 

prescribed angle of contact with the bounding cylinder :E=aOxR. Letting u be the 

downward normal to sll its first n components when appropriate), and letting ybe 

the inner normal to :E, this quasilinear elliptic boundary value problem can be written as 

CP 
div u = '¥ in 0, where'¥ u:?:O. 

uoy = $ on S11nl'., where <:!>11~0 and i¢1[<1-o. 

The capillary problem has been solved both variationally (using functions of 

bounded variation or geometric measure theory), and by using an elliptic partial 

differential equation approach that combines apriori estimates with the met.~od of 

continuity. For smooth domains the solution u exists and is regular on the closed 

domain, at least in the case that one c:m prove an a priori height estimate JuJ;;Jvt (This is 

always the case if gravity is positive,'¥ u~l'bO, but may not be the case in general. 

Without the assumtion of positive gravity the shape of 0 becomes important.) 

The capillary problem makes sense even if (:}Q has a compact (n-1 )-dimensional 

singular set r. (The vru"iational problem can still be solved, or alternately the P.D.E 

approach can be combined with a domain approximation argument, to find a function 

that solves CP everywhere except on r.) In this case, at least for positive gravity, one 

knows that the solution is smooth away from r, and it is natural to study its behavior 

near r. For two-dimensional corner domains, where r is a point at which 0 has an 

interior angle 6, and where tl")e contact angle is ¢• (i.e. uo(-y)=cos<j>) the somewhat 

surprising results have been known for several years [1][6][2]: 

(a) lf 8</rr:-2¢;/ the solution to CP is either unbounded at r or it doesn't exist 

(depending on whether gravity is positive or not), 
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If /n-2«/Y/<fkn any solution to CP that is smooth except at r extends to be 

there. 

lf n<6 there are dmnains fl and bounded solutions to CP any 

that are regular rbutwhich discontinuities at r. 

These results are related to peculiarities of :the contact angle condition (For the 

range of angles in there are no functions that are at rand which can satisfy the 

contact angle "'"'"'"""T"'' c:om:!JtJIOn on both arcs of dil for tl•')" to attain the 

prescribed values, u would have to be a vector with magnitude larger than L), and 

Dirichlet problem for the prescribed mean curvature problem (non-convexity leads to 

problems for the contact angle problem as shown by (c)). 

In light of these results a reasonable generalization would be: 

CONJECTURE Let Q be compact in R.n. Let r be a compact subset of iJQ, 

Hn_j(F)=O. Suppose iJiliTis smooth (C3) and that there is a bounded solution u to CP, 

smooth on the closed domain, except possibly on r: Suppose 

(i) There exists a snwothfunction won !2 that extends to be C1 on the closed 

domain and that satisfies the boundary conditions ofCP. 

(ii) i)Q satisfies a uniform exterior sphere condition of radius R>Oo 

Then u extends to be ci on the closure of !1. 

In the paper [4] it is shown that with some modifications this conjecture can actually be 

proven: If condition (i) is replaced with the stronger requirement (i') below then one 

can conclude Lipschitz continuity for u on the closure of 0. (For a comer subdomain of 

R2, blow-up arguments show immediately that Lipschitz implies C1 but this does not 

seem to be so immediate in higher dimensions.) 

(t) There exists a"pseudo-distance" function pEC3 near r, p/r=CJ, Pfn;>O, so 

that on aarwe have 

-EV{)"y=<P 

where E is smooth near r, /Ef::;J-8. 
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To understand (i') consider a corner in R2: If the symmetry axis of the interior angle is 

the x-axis and if the vertex r is 0 then p(x,y)=x works. Furthennore this example has a 

natural generalization to higher dimensions, since a similar p can be constructed if an 

consists of two smooth hypersurfaces meeting along some smooth, compact 

(n-2)-dimensional surfacer, in such a way that the interior angle e satisfies (b) at all 

points of r. If the codimension of r is larger than 2, for example the vertex of a cone in 

· R3, then it is necessary to put more restrictions on the geometry of Q near r. For the 

cone example the right cross sections must be circles in order for a p to exist (or for (i) to 

be satisfied). 

The method used to prove the Lipschitz result involves approximating CP with 

capillary problems in smooth nj near 0 (smoothed appropriately in a 11j- neighborhood 

of n. and with positive gravity at least 1/k: 

CP·k J, 

div u = 'Jf+0/k in Oj. 

u•y=-SVp•y on oOj. 

For the smooth solutions uj,k to CPj,k one can apply a maximum principle argument to 

derive bounds for !Vuj,kl· The argument works because of the interplay between the 

boundary condition ofCPj,k and Vp that is a consequence of (i') (Note u•yis not 

extended to be <1> on anj, but rather in a manner using Vp•y. This extension is natural: 

for the comer in R2 the required contact angle is exactly the one attained by the 

hyperplane satisfying the original contact angle boundary condition along 1: as it 

contacts the tube above ()Qj.) Also important is the almost convex nature of the 

smoothed domains that is a consequence of (ii). One derives bounds indepently of j (for 

k fixed), lets j~oo, uses the convergence properties of capillary surfaces and concludes 

a Lipschitz bound for uk, the solution to the gravity capillary problem in 0. After 

showing that this bound is actually independent ofk, one lets k~oo and concludes the 

desired Lipschitz bound for u. 

In smooth domains and for interior estimates, maximum principle arguments of 

this type have been studied extensively by G. Lieberman and this author [3][4][5]. One 

way to understand them (but not the way they are explained in the previous work) is in 

tenns of the intrinsic gradient and Laplacian of the surface Su. One seeks to bound 
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v=(l+JDuj2)112, or some functional involving v. This is because = -un+l = 

hence !J.v, is easy to compute for a surface of prescribed 

mean curvature: If an orthonormal frame {fpf2, ... ,fn} is chosen on Su so that at Pe Su 

the covariant derivative of fi with respect to fj is normal to S11 , if we use [hij) and !AI for 

the corresponding second fundamental form and its norm at P, and if !J. and V are the 

surface Laplacian and gradient, then 

1 1 
fl.(-)= f.(f.(-)) = -f.<V. '0, e 1> = 

V I l V I 'i tl+ 

2 1 e 1>=<-V'i',e 1>-IA! (_:.), 
D+ D+ V 

Note the use of the Codazzi formula to interchange derivatives of the second fundamental 

form, and then the use of the prescribing function'¥. 

In general for the capillary problem one actually studies expressions of the form 

<Z,'O>v on Sll, where Z is a vector field in (part of) R.n+], with <Z,u>::::o>O. 

generally has the form Z=1ltl+X where 11 and X are smooth functions in Rn+ 1, 

independent of Su.) If one can show a bound for vat the maximum value of <Z,'O>V it 

follows that the expression is bounded in the entire domain. The strategy is to pick Z so 

that the maximum occurs in the interior of S, to use the fact that the gradient and 

Laplacian of <Z,'O>V are zero and non-positive there, and to conclude (for good Z and 

using calculations like the one above) that vis bounded there. 

The way to force an interior maximum of <Z,'O>v is as follows: For Pe S~,~r1I: 

pick a local orthonormal frame {fi}, 1:9~n, on Su so that for l~i~n-1, fiE T p(Suf"'\E), 

and with fn pointing into the tube. Also complete the frame with f 0 so that {fi}, 

O~i~-1, is an orthonormal basis forT p(I.). It suffices to force fn( <Z,tl>v) > 0. In 

computing what this expression is one gets a linear combination of terms involving hjn> 

I~j~n. But by differentiating the boundary condition of CP one can control hin' 

l~i~n-1, in terms of the second fundamental form [kij] (actually the term ki0 ) of :E, and 

derivatives of <1>. The hnn term cannot be bounded from the data, but its coefficient is a 

multiple of <Z,"(>. We require this to be zero. (Because of the boundary condition for 

CP this holds iff n<I>+X•y=O along the boundary.) By then adjusting the behavior of Z 

inside 0 one can force fn( <Z,'U>V) >0. 
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For the estimates in then-dimensional corner problem one picks Z to be: 

Z=(E+p)eLz(tHEVp), E small, L large. 

In computing whether fn(<Z,u>v) >0 one must eventually have a one-sided bound for 

kijzizi, and that is where the almost convex nature of anj, made possible by (ii}, is 

crucial (and the R2 examples show this is not just a technical requirement). The choices 

of£ and L are required to complete the maximum principle argument. The details are 

straightforward but necessarily technical. They are explained in some detail in [4], 

although as explained earlier the method of exposition is slightly different. 
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