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G.C.Verchota 

In this talk I will discuss a method for solving the Dirichlet and 

Neumann boundary value problems for 2nd order strongly elliptic systems 

with re.al coefficients in Lipschitz domains. As it is work :in progress 

only the most elementary case, that of two equations in two unknowns in 

planar domains, will be presented. However, as I hope to show, there is 

at least no :apparent impediment to the generalizing of our ideas to 

general 2nd order systems in higher dimensions. 

Consider the 2nd order differential system equation in two 

variables for m unknowns 
-l> 1 m 
u=(u, ... ,u) given by 

(1) 

Here we use summation convention, 

denotes a 
The coefficients ax. 

l 

s~nmetry condition: 

(2) rs 
a .. 

lJ 

It is convenient to think of the 

entries, A's; for each fixed r 

0 

1 ~ 

rs a .. 
lJ 

sr 
a .. 

rs 
a .. 

lJ 

Jl 

i,j s 2 1 ~ s S m and D. 
1 

are constant and satisfy the 

as forming an mxm matrix with 

and s, Ars is a 2x2 matrix in i 

and j Then r and s denote the row and column respectively of the 

mxrn matrix and i and j the row and column respectively of the 2x2 

matrices. 
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We will look for solutions to (1) in a domain 0 given as the area 

above the graph of a compactly supported Lipschitz function ~: m ~m 
This expedient simplifies some of the algebra but creates difficulties 

at infinity. These difficulties are not of essence, however, and will 

be ignored throughout this presentation. 

We will be interested in two types of boundary conditions on 

~ 2 Dirichlet and Neumann type : letting g € L (80) 

(D) 

(N) 

~ 
u, 

In condition (N) we have the conormal derivative of ri at the boundary. 

Here N = (N1 .~) denotes the outer unit normal at points of an For 

condition (N). g must satisfy certain compatability conditions. In 

both (D) and (N) the boundary values are taken in the sense of 

point-wise nontangential convergence at almost every (a.e.) point of an 

with respect to surface measure, dQ . Note that if we were interested 

in only solving the Dirichlet problem we could with no loss of 

gener.ality impose the additional symmetry condition For 

replacing a~; with (a~;+ a~:)/2 effects neither (1) nor (D), but it 

does effect (N). Thus in general rs rs 
aij '# aji The meaning of (2) is 

that the matrices on the diagonal (of the mXm matrix) are self adjoint 

while for the off diagonal ones the transpose of Ars is Asr . 
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In order to solve (D) and (N) in the sense of nontangential 

convergence at the boundary we need to establish estimates on the 

nonhlmgent:ial JmaXimal fu:ncUons of solu:t:!lons. ~ , 

(3D) - -) 

llu II 2 ~ c llgll 2 
L (80) L (BO) 

"""* s; c llgll 2 IIVu II 2 
L (811) L (oO) 

(3N) 

for (D) and (N) respectively. Here has 2m components being the 

gradient of each component of 

Inequalities (3) follow from properties of layer potentials 

together with a theorem inverting the boundary potentials as operators 

on L2 (80) . This will not be done here, but the main idea can be found 

in [V]. Our technique allows us to reduce the estimates (3) to apriori 

estimates of the same type with rilan and vrilan replacing ';;* and 

v';J* respectively. In order to obtain these modified estimates we need 

the key estimates 

(4) 
~ 

-l> CII~H IIVull 2 ~ 
L (80) av L2(ao) 

""" 11~11 ~ 
...,. 

Cllull 2 av L2(80) L1 (80) 
(5) 

Here Li(arl) is the Sobolov space of L2(afl) functions with first 

derivatives in L2(Bfl) . Both (4) and (5) follow from what are known as 

Rellich identities if the rs 
a ... meet certain conditions which we will 

lJ 
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now give. Actually (5) is in general easier than (4) and does not 

require the full force of our conditions. Therefore the remainder of 

this presentation is devoted to establishing (4). 

The first condition we will impose on 
rs 

a .. 
lJ 

is that of strong 

ellip"l:icit:y, i.e. there exists a constant C ) 0 such that for all 

2 m f = (£' 1 .!;2 ) € IR and Tl = (Til, ... ·11m) E IR 

(6) 

Note that (6) implies that each of the matrices Arr , 1 ~ r ~ m , is 

positive definite, i.e. each V,ArrV is an elliptic divergence form 

operator. 

The next condition we impose is that of semi-positive definiteness, 

i.e. for any m vectors 

(7) 

It is possible for 

rs 
a .. 

lJ 

1 m 2 f , ... ,f € IR 

rs 
a .. 

lJ 
to satisfy (6) but not satisfy (7). 

[ ~/c ~ ] [ ~ b ] 

[ ~ ~ ] [ ~ l~c ] ' t > 0 . 
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r h (~·Ars~) For (6) to hold it is necessary and sufficient ror t_e matrix ~ ~ 

to have determinant > 0 for f ;t 0 , i.e. U\)4 + (!;'2 ) 4 + (c2 + ~) 
E-

2 
4U\f2 )2 For this to be only need 2 .l.> 2 (l:\f2) ) true we IS + 2 

c 
2 ,-1) and f2 = (1,0) 

rs r s 
i.e. c # 1 However for ai}ifj 

and (7) fails for e. < 1 (and fails for c > 1 also). 

A simple integration by parts using the symmetry condition (2) 

establishes the Re1lid1 identity for solutions 
~ 
u: 

(8) 

..., J 2 r rs s J _. au (-N )D.u a .. D.u dQ = 2 (-D2u)· 8- dQ . 
an 1 lJ J an v 

Recall ari av is the conormal derivative from (N) above. The point is 

2s-2 

that ( 4) follows from the Schwarz inequality applied to the right side 

of (8) together with the estimate 

(9) 

(Recall that -N2 > 0 is bounded uniformly from below away from zero 

since an is Lipschitz.) Our assumption of semi-positive definiteness 

means that the int~and on the right side of (9) (i.e. on the left side 

of (8)) is nonnegative_ Observe that if we had positive definiteness 

i.e. 

(10) 
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~ 

in place of (7) then the existence of a constant C independent of u 

would follow immediately for (9). The C would depend only on the 

Lipschitz norm of ~ and the minimum of the expression in (10) when 

m 
I lfrl = 1 . This gives us our first result: 

r=1 

THEOREM 1 The probLems (1), (D), (3D) and (1), (N), (3N) are soLvabLe 

under conditions (2) symmetry, (6) strong eLLipticity and (10) positive 

definiteness. 

Before proceeding observe that the conditions (2), (6), (7) and 

( 10) are invariant under conjugation of a~~ by invertible matrices 
l.J 

or 

B - (b ) - st 1~s.t~m 

-1 though the constants may change depending on the norm of B . That is 

putting either 

(11) or 

~ 

a may replace a in (2), (6), (7) and (10). The first conjugation 

corresponds to a linear charge of variables in m2 . The second 
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conjugation corresponds to rewriting our system in terms of new un_knmms 

~ = B-l~ and solving the appropriate problems for data Bg . The 

estimates (3) may be obtained from those for 

In order to solve the problems, i.e. obtain estimate (9), when (10) 

positive definiteness fails we need further arguments. To illustrate 

these we specialize to the case m = 2 . 

We first claim that in order to solve the Dirichlet problem it 

suffices to assume merely (6) strong ellipticity. As noted above 

symmetrizing the matrices A12 and A21 does not effect the Dirichlet 

problem. More generally letting 

be the standard rotation by -w/2 in the plane and letting ' be any 

real number, A12 and A21 may be replaced by A12 + •R and A21 - •R 

respectively without effecting (1) the equations, (2) symmetry, or (6) 

strong ellipticity. The key estimates (4) and (5) will yield the same 

Dirichlet problem no matter how we have changed the Neumann boundary 

values (N) by this procedure. In addition to (N) the other thing that 

might be altered by the matrices ~R is positive definiteness (10}. 

Thus the claim will follow from Theorem 1 and the following lemma. 

Given a system with coefficients 
rs 

aij , 1 ~ i,j,r,s ~ 2 

satisfying (2) and (6) there exists a reaL nwnber -r such that 
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Al2+-rR l 
A22 

are the coefficients of a system satisfying (10) positive definiteness 

in addition to (2) and (6). 

PROOF We will first apply conjugations (11) in order to put our system 

into a standard form. Subscripts ij or rs will denote the indices 

on which the conjugations are applied. First apply 

so that we may take det A11 = det A22 = 1 Next apply a unitary 

matrix so that is diagonalized to be 

for some c > 0 . -1/2 
Next apply Eij so that A11 is the identity 

U so that A22 = E for some ij 

I . 

Next apply another unitary matrix 

c > 0 and A11 = I . Next apply E~~/4 so that for some other c > 0 
lJ 

we have A11 = E and A22 = E-l . Finally make an initial choice of -r 

12 21 -so that we may take A = A = A where A is self adjoint. Our 

original system is thus equivalent under conjugations and adding 
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to the standard system 

for some c > 0 and A = AT . 

Strong ellipticity (6) which continues to hold for our system may 

be written 

(12) 

for all 2 f,TJ € IR where denotes inner product. This is true iff 

for all f € IR2 

i.e. iff the discriminant of the quadratic expression in TJ1/TJ2 or 

TJ2/TJ1 from {12) is negative. Of course A may always be replaced in 

(13) by A + ~R and (13) still holds. 

Positive definiteness (10) for some ~ will read 

{14) 

2 for all f,TJ € IR . 

(15) 

-1 
f•Ef + 2f•{A+~R)TJ + TJ•E TJ > 0 

This is equivalent to showing for all f,TJ € IR2 
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Thus (13) is a special case of (15)" We need to show that (13) implies 

the existence of a ~ such that (15) holds" 

Now (15) is merely the statement that the r~trix 

has operator norm on m2 under the standard Euclidean metric less than 

L I11 this context strong ellipticity ( may be written 

(16) 1 

where 

f(E) = E§/ lEE I . 

The function f is best thought of as a nonlinear rotation of the 

circle. We will show that (16) implies 

( liM II < 1 for some 1r • 
7 

Denote the set of 2x2 symmetric matrices, A , satisfying {16) 

(i.e. (12) or (13)) by g . Let ~ denote that subset of g for which 

(17) (i.e. (14) or (15)) may be realized. Note that if A0 and A1 

are in g then so is At = (1-t)A0 + tA1 , 0 ~ t ~ 1 , as (12) shows. 

In particular g is a bounded, open, convex subset of the 2x2 

symmetric matrices under say the operator norm topology. ~ is, clearly 
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nonempty and open (by (17) say) in the induced topology of g In 

order to show ~ = /!, (i.e. (16) implies (17)) it suffices to show that 

~ is a closed subset of g under the induced topology of g 

Suppose there is a sequence {A.} C ~ with {7.} C lR such that 
J J 

for 
-1/2 1/2 

M. = E (A.+'Y.R)E we have llli'I.II < 1 and IIA.-AII ~o for 
J J J J J 

some A in g . The must be contained in a bounded set whence 

there is a subsequence that converges to say 'YO Put 

M = E-l/2 (A+70R)El/2 . We need only examine the case llf111 = 1 and show 

that there is a 'Y such that IIM+-rE-l/2RE1/ 2 11 < 1 whence A is in 

q)J • This will establish the lemma. Fix a vector ITJ I = 1 so that 

IMTJI = 1 . There are now two possibilities. 

(i) IMRTJI =a < 1 or 

(ii) IMRTJI 1 

Note that 1 = T 
and liM II 1 imply that actually an wM MTJ 1J is 

eigenvector of MTM whence 

(18) 

Consider now the first case. Ellipticity (16) shows that f(E) and 

M(E) car~ot be colinear for all lfl = 1 in a small enough 

neighbourhood about 1J and -ry , Since for all f f(E)·E-l/~l/2f 

we conclude that E-l/~1/2f•M{f) is unifonllly either strictly 

positive or strictly negative for all E in a small enough 

0 
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neighbourhood of ~ . For lfl = 1 outside this neighbourhood {i) and 

{18) show that (Mfl is uniformly bounded by a constant less than 1 . 

This wi 11 continue to be true for I {M+-rE- 1/~l/2)f I for If I = 1 

outside this neighbourhood by choosing 1-rl > 0 small. But by the 

uniform positivity or negativity of E- 1/~1/2f•M{f) for f inside 

this neighbourhood it will also be true for lfl = 1 inside by choosing 

the sign of -r correctly. 

Now consider the second case {ii). By {18) M is unitary. Assume 

first that det M = -1 . Then M is self adjoint. Thus letting e 1 

and e2 be the standard basis vectors for rn2 and recalling that 

Re2 = e 1 we have 

Put F{f) = Rf{f)•Mf . Since f{e1) = e 1 and f{e2 ) = e2 we see from 

{19) that F{e1) = -F{e2 ) 

F{f) = 0 for some lEI = 1 

i.e. F changes sign. By continuity then 

But this implies that (f{f)•Mfl 

contradicting ellipticity {16). Thus if M is unitary then 

det M = 1 , i.e. it is a rotation. Put 

Now consider any vector 

M = [ cos,P 

-sin,P 

sin,P l . 
cos,P 

lEI = 1 such that 

A calculation then shows that 2 
f•f{f) = -1 . 

c+­
c 

1 

{Note 

that this last quantity is always less than 1 unless c = 1 , i.e. 

E = I in which case the lemma follows immediately.) Although we do not 



315 

now need this fact it is significant that this quantity is the lllliinimum 

value of j;•f(§) , lEI = 1 . The point is that for every angle e such 

th_at 2 lcosEll 2 - 1 there is a vector f(S) that is rotated by f by 
<O+-

c 

precisely e . In other words if lcos,PI 
2 

?: -1 then there is a 
c+­

c 

IE I = 1 such that f(f} •M(f} 

Thus lcos,P I < ~ 

1 contradicting (16) ellipticity again. 

E.+=· 
c 

We now claim that there is a 7 such that I (M+'YE-1/~1/2)£ I < 1 

for all If I = 1 . This will establish the lemma. A calculation shows 

that 

} d~~-r=OI(f>l:+"YE-1/~1/2)£12 = si:,P (f1)2 + 2[6~~] cos..jiflf2 

+ e sin']; (f2 )2 . 

A quarter of the discriminant of this quadratic is 

[e~~t cos2,p - 1 < 0 . 

Thus depending on the sign of sin>}J the above derivative is either 

uniformly positive or negative and the claim follows.// 

We l>_ave thus established for m 2 the following theorem for the 

Dirichlet problem. 

THEOREM 2 Problem (1), (D), (3D) is soLvable under conditions (2) 

symmetry and {6) strong eLLipticity. 
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Our goat is now to soLve the Neumann problem under condition (7) of 

semi-positive definiteness 

[~ -ll 
Oj E. ) 0 0 

This system is strongly elliptic and semi-positive definite. Any 

harmonic function h provides a solution to (1) by putting 
1 

u 

and However the conormal derivative of such a solution is 

always zero. Uniqueness fails for boundary conditions (N). 

The difficulty with example #2 is that the 4x4 matrix has a 

two dimensional null space. We therefore are left to consider those 

strongly elliptic, semi-positive definite systems with one dimensional 

null spaces for 

A well known example of such a system is given by the system of 

elastostatics. The matrix which corresponds to the Neumann problem of 

most interest, the traction boundary value problem, is 

[2JL~A ~] ~ ~] 

[~ ~] [~ 2M~ A] 

where 1\ and ?L , JL > 0 are called the Lame constants. 
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Let now rs 
a .. 

lJ 
be strongly elliptic, semi-positive definite with one 

dimensional null space. Without loss of generality we may take the null 

eigenvector to be [ i] To see this assume that the null vector is 
-~ 

given by [ww21J wj E m2 . By ellipticity the wj are linearly 

independent. Now conjugate rs 
a .. 

lJ 
in the indices r,s as in (11) with 

the matrix 

to get an equivalent system. Thus we may assume 

W2 = [-01] is the standard null vector. 

Define b:~ to be 
lJ 

[g ! ! -g] 
-1 0 0 1 

m and 

rs 
bij is semi-positive definite with null space containing the null space 

of Thus there is a smallest ~ > 0 such that a:~ - ~b:~ 
lJ lJ 

semi-positive definite with at least two dimensional null space 

containing the original null space of rs 
a .. 

lJ 

is 

Using the remarks about the matrix R given before Lemma l we are 

able to write our system of equations (1) in the standard form 



(20) 

where 7)0 and 

~2 Let 

standard nuLl vector for 

two-vector of f•Jnctions 
~ . 
v 1.-n 
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is as described above. 

and §~w~ = 0 where 
]. l 

0 

s 
w form the 

as described above. Then for an.y 

we have the p~J~int-llllise inequality 

where C is independent of ~ and fs . 

Ll. 
PROOF The vector in lR A belongs to the 3-dimensional subspace 

on which 
rs 

a .. 
lJ 

is strictly positive definite.// 

The next lemma states that estimate (9) holds for harmonic vectors. 

~ 3 Let h be any ~ic 2-vector in n c rn2 V~tishing at 

infinity. Then 

where C depends only on the Lipschitz constant for an and 
rs 

a .. 
lJ 

PROOF 
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The first and third inequalities follow variously from well known 

theorems on the boundary values of conjugate harmonic functions or from 

the Rellich identities for l~rmonic functions, The second is the 

triangle inequality, The fourth is Lemma 2.// 

By symmetry and semi-positive definiteness the nntrix a~~ - 'Yb~~ 
lJ lJ 

from {20) may be written as UTAAU where U is a unitary matrix and 

with A., 2: 0 . Let us rewrite (12) as 
J 

(21) 

where est 
jk is AU and 

Define now 

(22) 

7Ao:l + 

,...sr 
<.-,, 
Jl 

s v. 
J 

sr st t 
DiCjiCjkDku 

is its adjoint, 

0 

Note tl~t s~ - 0 

We have v~ = 0 
J 

The two functions 1 v. we call auxiliary functions. 
J 

When 11.1 = /\2 = 0 our system rs 
a .. 
lJ 

is simply a vector version of 

Laplace"s equation. An example of 11.1 ) 0 and 11.2 = 0 is the 

elastostatic system. Since these systems are now well understood on 

Lipschitz domains let us confine ourselves to Al ) 0 , A2 > 0 so that 

our auxiliary functions are in general both nontrivial. 



320 

~ 4 Let v; be as in (22). Then we have the point-wise inequaLity 

l ~s. (Q) 12 < CD r(") rsD s(Q) "J _ 1u ~ aij ju 

where C depends oniy on 

PROOF The null space of 

Lemma 2J/ 

c~kt (i.e. AU) 
.] 

contains that of Apply 

Let f be the logarithmic fundamental solution for the Laplacian 

in m2 . If F is defined in 0 define 

T(F) T(X-Y)F(Y}dY . 

~ 5 Let ti satisfy (1) in 0 . Let v~ be as in (22). 
J 

Then 

where C depends only on and the Lipschitz constant for an . 

r r -1 sr s 
PROOF Let h = u + 7 DiCjiT(vj) By (21) li is harmonic. It 

follows that 

I 1Vril 2 ~ C I 1Vlil 2 + }:IVVT(v~) 12 
an an j J 

I r rs s ~I 1 12 < C D.h a .. D .h + L VVT(v .) - an l lJ J j J 

I r rs s ~ 1 2 < c D. u a .. D . u + L I vvr ( v.) I - an l lJ J j J 
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The first inequality is the triangle inequality. The second is Lemma 3. 

The third follows from the definiteness of a~~ and the triangle 
lJ 

inequality.// 

Lemma 5 is almost inequality (9). We need to show that integrated 

on the boundary, two derivatives of the Newtonian potential of our 

auxiliary functions are bounded by the auxiliary functions. This will 

follow ultimately from the theorem of Coifman, Mcintosh, Meyer and the 

fact that the auxiliary functions are themselves solutions to a system 

for which we can solve the Dirichlet problem. This sytem we call the 

auxiliary system. 

We have by (21) and (22) 

Thus taking derivatives, operating with the matrix 

again 

(23) 0 . 

cqr and using (22) 
gh 

Recalling that the 2 
vj are identically zero we are left to consider the 

second order system of two equations in two unknowns 

(24) 0 . 

Since the system (24} meets the symmetry conditions. 
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Strong ellipticity follows from 

for non zero f and ~ in m2 . The system (24) is the auxillary 

system for the original system (1). By Theorem 2 we can solve the 

Dirichlet problem for (24). In particular since by (23) is a 

solution for (24) we have estimate (3D) for our auxiliary functions 

Consider now a strongly elliptic, symmetric, pos:U;ive definite 

system in n 

(25) 

For any X € 0 put 

Both W and D1W are also solutions to (25). By positive definiteness 

(8) and (9) can be obtained for W so that in particular using the 

Schwarz inequality on the right side of (8) we can get 

(26) 
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Also note the following (see condition (N)) 

(27) 

The last equality follows because W is a solution. The derivatives in 

parenthesis are tangential to an 

Let f = (fst) t _ 1 2 be the fundan1ental solution nmtrix for 
a a s, - _, 

system (25) ra has the property that 

for two-vectors of functions f . Now the Newtonian potential of u 
w 

u = 1,2 can be written for Z E rl 

(28) 

I f(Z-X)vP(X}dX 
Q 

I r a rs a I st 
nw (X)aX. aij ax. ra (Z-X-Y) otu 
" 1 J!Rn 

=I wr(Q)Ni a:~£_ f 5 u(f)(Z-Q) dQ an Q lJ aQj a 

I j rs r su = - NQ a .. D.w (Q)f (f)(Z-Q) dQ ao lJ 1 a 

f(Y) dY dX 

where 0 tu is the Kronecker delta~ In the last integral the conormal 

derivative of ~ can be by (27) transfered to but with the 

result that VW replaces i. This however is of no real consequence 

since we }.ave inequality (26). If we now take any two derivatives in Z 

of f(11l'u) a.nd let z approach an nontangentially we find, with three 

derivatives on the potentials f 5 u(r) , that we lm.ve produced bounded 
a 
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singular integrals of the type studied by Coifman, Mcintosh, Meyer 

acting on vW . We have shown that on the boundary two derivatives of 

the Newtonian potential of any ~olution to (25) are bounded in L2 by 

the Dirichlet boundary values of the solution. Returning to our 

auxiliary functions v~ considered as solutions to the Dirichlet 

problem for system (24) (which by Lemma 1 can be considered positive 

definite) we have proven the following lemma. 

LEMMA 6 Let s 
vj be as in (22). Then 

where rs 
C depends only on aij and the Lipschitz constant for 80 . 

For m=2 we have the following theorem. 

THEDREN 3 Problem (1), (N), (3N) is solvable under conditions (2) 

symmetry, (6) strong ellipticity, and (7) semi-positive definiteness 

provided that the nuLL space of the system matrix is one dimensional. 

PROOF Inequality (9) follows by lemmas 5, 6, and 4.// 
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