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SOME BASIC SEQUENCES AND THEIR MOMENT OPERATORS 

Rodney Nillsen* 

1. INTRODUCTION 

A well knovm result in Fourier analysis (see [3, p.l07], for example) says that if 

the Fourier series of a continuous function on the ci.rde group is lacunary, then the series 

converges uniformly to the function. Equivalently, if (a(n)) is a lacunary sequence of 

positive integers (that is, a(n + l)a(n)- 1 2:: 1 > 1, for all n and some 

l, eia(l)t, e-i<Y(l)t, eia(2)t, e-ia(2)t, ... is basic in C(O, 21r). 

then the sequence 

On the other hand, Gurarii and Macaev ([5]) proved some analogues of this result 

for power sequences in C([O, 1]) and LP(O, Letting 1 ::; p < oo and letting (a(n)) be a 

given increasing sequence of positive numbers, proved that (a(n)) is lacunary if and 

only if (o:(n) 11Pt"Cn)-lfp) is basic in LP(O, 1), in which case this basic sequence is equivalent 

to the standard basis in RP. They also proved that (a(n)) is lacunary if and only if (t"'C"l) 

is basic in C([O, 1]). 

In [4], Edwards has considered, in a dual form, a related problem concerning 

sequences of measures on a compact Hausdorff space K. If (ttn) is a weak* convergent 

sequence of measures on K which satsifies a one term recurrence relation, he gives 

conditions which ensure that {(JK fdJ-Ln) : f E C(K)} = c. This result is closely related to 

the problem of finding conditions for (J-Ln) to be a basic sequence of measures on K. 

The present paper presents some analogues of the preceding results which are 

derived by considering a general problem in Banach spaces. Throughout, X will denote 

a given Banach space with dual x•, (bn) will denote a given sequence of scalars, u = ( vn) 

will denote a given sequence of vectors in X and r = (xn) will denote the sequence in X 

* This work is dedicated to Professor Igor Kluvanek, for whose encouragement and 

intellectual stimulation the author has been greatly indebted. 
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given by the recurrence relation 

(1.1) Xn- bnXn-1 = vn, for n 2: 1, where xo = 0. 

The general problem considered is to find conditions which ensure that if u is basic then 

r is basic, and also to find when u and r are equivalent bases. If (zn) is a sequence in 

X, the moment operator A of (zn) is defined on X* by (Ax*)(n) = x*(zn), for n E lN and 

x* EX*. Whether (zn) is basic can often be expressed in terms of the range of A ([2,7]). 

These results are discussed in section 2. 

In section 3, basic sequences in a space LP(S,S,p.) are constructed which are of the 

form (fiKn), where (Kn) is an increasing sequence of sets ins, f is a givens-measurable 

function, and JIKn is the function equal to f on Kn and 0 elsewhere. In section 4, 

some bases are constructed for some subspaces of LP(JR.) consisting of piecewise linear 

functions. By taking Fourier transforms in some of these results with p = 2, conditions 

are found for weighted sequences of Dirichlet and Fej€r kernels in L2(1R.) to be basic. The 

dual versions of these results give statements about the ranges of the various moment 

operators. For example, the following conditions are equivalent, where 1 :S p < oo, 

p- 1 + q-1 = 1, and (a(n)) is an increasing sequence of positive numbers: 

(a(n)) is lacunary, 

{ ( a(n)-<1+1/P) j_:~:) (a(n) -iti)f(t)dt) : f E U(lR.)} = eq, and 

{ ( a(n)-3/2 j_: (sin ~(n)t) 2 f(t)dt) : f E L2(1R.)} = £2. 

Some definitions and notation used throughout the paper now follow. All sequences 

(zn) in X or elsewhere are understood to be of the form (zn):;"=1 , unless indicated otherwise. 

If (zn) is a sequence in X, [zn : n E lN] denotes the Banach subspace of X generated by 

{zn : n E lN}. If>.= (zn) is a sequence in X we define 

A>. = { d : d is a scalar sequence and converges in X} . 
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00 

LetS>- :A>.__, X be given by S;.(d) = L dnzn. If S>. is a bijection from A>. onto [zn : n EN], 

.>. is said to be basic in X and to be a basis for [zn : n E N]. If rr and r are two basic 

sequences in X, they are said to be equivalent if A" = A, .. 

A sequence .>. = (zn) in X is basic in X and A>- = £P (for some 1 ::; p < oo) if and 

if there are A, B > 0 such that 

(1.2) 

Also, .>. is basic and A;. = c0 if and if an equality of type (1.2) holds with p = oo 

[11, p.354-355] or [12, p.30] for these facts). In the case where ,\ is basic in a Hilbert 

space, .:\ is said to be Riesz basic if A>. = £2 • Standard results on bases may be found in 

[11] and [12] and used without explicit reference. For convenience rather than necessity, 

spaces such as LP(R), £P will be taken to consist of real valued functions and sequences. 

The bounded continuous real valued functions on JR are denoted by C(JR), and C0 (1R) 

denotes those functions in C(R) vanishing at infinity. The characteristic function of a set 

A is denoted by x(A). 

2. GENERAL RESULTS 

If the given sequence u = (vn) in X is basic, there is a sequence Un) in X* which 

is biorthogonal to u. That is, fn(vm) = 0 if m =!= n and fn(vn) = 1, for all m, n. If (b,) is a 

given sequence of scalars we let xn- bnxn-l = v,., as in (1.1), and let h,. = fn- bn+lfn+l, 

for all n. 

LEMMA 2.1. If u = (vn) is basic in X, then (hn) is a sequence in X* which is 

biorthogonal to (xn)· Also, 

n n+l 

Lh;(x)x;=Ef;(x)v;-fn+l(x)xn+l, for xEX, nEN. 
i=l i=l 

Proof. It is straightforward to prove this from (1.1) and the definition of hn (see also 

[ 4,p.ll] and [ 11 ,p.29]). 
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THEOREM 2.2. Let (j = ( vn) be a basis for X, let ( bn) be a sequence of scalars with 

h = 0, let r = (xn) be given (1.1), and let 1 ::; p < oo. Then the following hold. 

(2.1) If tJ is bounded away from 0 and r is bounded, then r is a basis for X. If (j is 

bounded and r is a basis for X, then r is bounded. 

(2.2) If r is a basis for X which is bounded awa-y from 0, then () is bounded away from 

0. 

(2.3) If A" is f!P or co, r is bounded if and only if r is a basis for X. 

(2.4) If llbiloo < 1 and (j is bounded, then Ao- = £P (respectively co) if and only if r is a 

basis for X and A 7 = f!P (respectively 

(2.5) Let llblloo < 1, let A" be either f!P or co and let A, B > 0 be chosen so that (1.2) 

holds for(). Then for all dE An 

A(l + llblloo)- 1lldllp :S llf dnXn II :S B (l -liblloo)- 1 lldiiP> 
1 

where, if Ao = co, lldlloo is taken in place of lldllp· 

00 

Proof. As (j is a basis for X, X= L fn(x)vn, for an X EX. Assume that (j is bounded 

away from 0. Then lim fn(x) = 0, for x EX. Hence, if r is bounded, \Ve deduce from 
n-;-co 
00 

Lemma 2.1 that x = ~ hn(x)xn, for all x EX, and it follows that r is a basis for X. This 
.c.-1 
n:::::l 

proves half of (2.1). 

Now let a be bounded and r be a basis for X. Because (hn) is biorthogonal tor, 

there is K > 0 so that llxnll-llhnll :S K for all n. Thus, 

so that r is bounded. This proves the rest of (2.1). 

If r is a basis for X bounded away from 0, choose K as above and observe that, 

using Lemma 2.1, 

Hence (j is bounded away from 0. This proves (2.2). 
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If Au is £P or co, an inequality of type (1.2) holds, sou is bounded and also bounded 

away from 0. Hence (2.3) is a consequence of (2.1). 

If llblloo < 1 and u is bounded, use (1.1) to obtain 

n-1 

llxnll :S llvnll + L llbii::O-illv;ll, 
i=1 

Hence r is bounded. Now let Au be £P (respectively, c0 ). It follows from (2.3) that r is 

a basis for X so that 

00 00 

(2.6) X= L Cfn(x)- bn+dn+1(x)) Xn = L fn(x)vn, for x EX. 
n=l n=l 

Hence, (S;1 o Su) (d) = (I- SM)(d), for d E Au, where S, M are the operators given by 

Sd = (dn+d, M d = (bndn) and I is the identity. SM maps £P into £P (respectively c0 into c0 ) 

and liS Mil::; llblloo < 1. Hence I-SM is a bounded invertible operator on £P (respectively 

co) and Ar = (I- SM)Au = £P. This proves half of (2.4). For the other half, let r be 

a basis with Ar = £P (respectively co). Then r is bounded away from 0. By (2.3), u is 

bounded away from 0, so Au~ c0 • It is easy to see that I-SM is injective on c0 • Thus, 

as £P = Ar =(I- SM)Au, we deduce that Au= £P (respectively, c0 ). This proves (2.4). 

To prove (2.5), observe that III- SMII::; 1 + llblloo and II(I- SM)-1 11::; (1-llblloo)- 1 • 

Then (1.2) and (2.6) give 

for dE Au. 

Replacing d by (I- SM)-1(d) now gives (2.5). 

COROLLARY 2.3. Let u = (vn) be a bounded basis for X which is also bounded away 
n 

from Q. Let (dn) be a sequence of non-zero scalars, let Yn = L d;v; and let,\= (d;;- 1yn)· 
j=1 

Then the following conditions are equivalent: (i) ,\ is basic in X, (ii) ,\ is bounded, and 

(iii) (d~i 1 Yn) is bounded. If there is B < 1 so that ld;_1dj 1l::; (}for all j ~ 2, then conditions 

(i) to (iii) do hold, and Au = £P (respectively c0 ) if and only if A>.= £P (respectively co). 
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of (i), (ii) now follows from (2.1). As d;; 1yn -d;; 1Yn- 1 = vn and (j is bounded, (ii) and (iii) 

are equivalent. If Jlbllco < 1, (xn) is bounded and the remaining statements follow from 

(2.3) and (2.4). 

REMARK. The equivalence of (i), (ii) and (iii) is known ([11, p.29]) and may be 

regarded as the special case of (2.1) which arises when it is assumed that in the recurrence 

relation (1.1), bn # 0 for all n. 

TFIEOREM 2.4. Let X be reflexive, let u = (vn) be a basis for X with JJv1JJ = 1 and 

llvnll :::; 1 for n :0: 2. Let c/ = (Jivnll- 1vn) and assume that A~.= fP ,for some 1 < p < oo. For 

n :0: 1 let bn = (1-JJvnJJP)11P and let r = (xn) be the sequence in X given by (1.1). Let (In), 

be the sequences in X* which are biorthogonal torr, r respectively, as described in 

Lemma 2.1. Then the following conditions are equivalent. 

(2.7) [hn: n E lN] =X'', 

(2.8) IT bi = 0, for all r E and 
j-=::r 

00 

(2.9) L flviJJP = 00 · 

j=1 

Proof. By reflexivity, (2. 7) holds if and only if x E X and hn ( x) = 0 for all n implies 
00 

x = 0. Let x = L d,.JJvnll-1v,., where dE f'.P, be such that h,.(x) = 0 for all n. Then 
n=l 

llvnll- 1dn = bn+lllvn+lll- 1 dn+1 for all n. 

If bn = 0 for an infinite number of n, we deduce that d = 0. In this case (2.7) to 

(2.9) hold. 

On the other hand suppose that there is q so that bq = 0 and bn # 0 for n > q. Then 

dj = 0 for 1 :::; j:::; q- 1 and dn = JJvnJJ.JJvqfl- 1(bnbn-1 ... bq+!)- 1 dq for n > q. Hence 

00 

""" JdnJP = JdqJPJJvqll-p lim (bnbn-1· .. bq+!)-P. L-& n-+oo 
n=q+l 
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As dE £P, either d == 0 or II bn f 0. Hence (2.8) implies (2.7). The converse argument 
n=q+l 

may be used to show that if (2.8) fails, there is x EX, x f 0 so that hn(x) = 0 for all n. 

Hence (2.7) implies (2.8). 

and (2.8) are equivalent, and the latter is equivalent to (2.9) by a 

standard result on infinite products ([9, p.292]). 

COROLLARY 2.5. Let H be a Hilbert space, let (x,) be a normalized sequence in 

H, and let be a scalar sequence such that b1 = 0 and the projection of x, into 

n;:::: 2. Then (xn) is basic in H if and only if ( vn) is bounded away from 0, in which case 

(xn) is Riesz basic. The subspaces [x, : n EN] and [llvnll- 2vn- bn+lllvn+ll!- 2 vn+l : n E :IN] 
00 

of H are equal if and only if L llvn W = oo. 
n=l 

Proof. Let X= [xn : n EN]. Then is an orthogonal basis for H, and 

1 = llxnll2 = lbnl2 + llvnll2 • Hence (vn) is bounded away from 0 if and only if llblloo < 1. The 

first statement now follows from Theorem 2.2. The rest follows from Theorem 2.4 with 

p= 2. 

The following result concerns the relationship between a sequence in X and its 

associated moment operator. The result is essentially known (see [2], [7, Theorem 1] 

and [12, p.169], for sitnilar results) and is included for completeness. 

THEOREM 2.6. Let IT= (zn) be a sequence in X, let M = [zn : n E JN] and for x* EX* 

let Sx* = (x*(zn)). Then the following hold. 

(2.10) If S(X*) is equal to er for some 1 ::; r::; oo (respectively c0 ), then S is bounded 

from X* onto er (respectively, co). 

(2.11) If 1 < p < oo and p- 1 + q- 1 = 1, then S(X*) = Cq (respectively £1 ) if and only if 0' is 

a basic sequence in X which is equivalent to the standard basis in £P (respectively c0). 

(2.12) If 0' is a basic sequence in X which is equivalent to the standard basis in £1, 
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then S(X*) = £00 • 

(2.13) If M is complemented in X and 1r is a projection from X onto M, the restriction 

of S to 1r*(M*) is a bijection onto S(X*). 

Proof. (2.10) follows from the closed graph theorem. 

Now let 1 < p < oo and S(X*) = £q. Define T on lv!* by Tf.1 = (J1(z,)). Then 

T(M") = p_q and T is a bounded bijection from M* to eq. Hence T* is a bounded bijection 

from £P to M**. If d E f!P and p E M* we have (T''d)(p) = L d,Jl(z,), and it is easy to 
n=l 

co 

see that this series converges uniformly on the unit ball in M''. It follows that L d,zn 

converges in M and that T*d = Ldnz,, ford E J!P. As T* is a bounded bijection onto 
n::::l 

M''*, it follows that M = M** and that u is a basic sequence with Aa = f.P. When p = oo 

and q = 1, apply a similar argument to prove that T* is a bounded bijection from co onto 
00 

M and that T*d = 2.:::; dnzn ford E c0 - then u is basic with Au = c0 • This proves part of 
n::::l 

(2.11). 
co 

Conversely, if u is basic and Au = fP for some 1 ::=; p < oo, let S"d = L dnzn, for 

dE £P. Then S~(X*) = eq. Ass= s;, this proves (2.12) and the rest of (2.11). The proof 

of 13) is straightforwaJ:d. 

3. BASES AND RESTRICTIONS 

In this section, (S, S, Jl) will denote a given measure space, K = (Kn) will denote an 

increasing sequence of sets in S such that Jl(Kn+I - Kn) > 0 for all n, and f will denote 

a givenS-measurable scalar valued function on s. It will be assumed that 1 ::; p ::=; oo is 

given and that, for all n, fx(Kn- Kn-d is a non-zero element of LP(S,S,J-l), where Ko = 0 

when n = 1. We let R(f,p,K) denote all functions g in LP(S,S,f-l) such that g = o on 

S- U Kn and on each set Kn- Kn-1, the restriction of g is a multiple of the restriction of 
n=l 

f. Then R(f,p,K) is a Banach subspace of LP(S,S,f.l) and it is clear that (fx(Kn- Kn_ 1)) 

is a basis for R(f,p,K). This section is concerned with when (fx(Kn)) is also a basis for 
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R(f, p, I<). Let, for n E N, 

(3.1) fn = llfx(Kn) 11; 1 fx(Kn), fo = 0, 

bn = llfx(K.-.)11; 1 1\fx(Kn-1)1\P' and 

v, = \lfx(Kn)l\; 1 fx(Kn- Kn-J). 

It is immediate from (3.1) that 

(3.2) for n EN. 

THEOREM 3.1. Let 7 = Un) and consider the following conditions. 

There is 6 > 0 such that for all n EN, 

(3.3) ll!x(Kn- Kn-diiP 2: oll!x(Kn)IIP' 
(3.4) 7 is a basis for R(f,p, K), and 

(3.5) there is 1 > 1 such that for all n EN, 1\fx(Kn)I\P 2: 11\fx(Kn-dl\p· 

Then if 1 .'S p .'S oo, (3.3) and (3.4) are equivalent. If 1 .'S p < oo, (3.3), (3.4) and (3.5) are 

equivalent and imply that Ar = £1'. If p = oo and (3.5) holds, (3.3) and (3.4) also hold 

Proof. (3.1) shows that b1 = 0 and it follows from (3.2) that Theorem 2.2 applies. Also 7 

is bounded, by (3.1). Now if (3.3) holds, (v,) is bounded away from 0 and (3.4) follows 

from (2.1). Conversely, if (3.4) holds, (3.3) is a consequence of (2.2). 

When 1 .'S p < oo, it is easy to prove that (3.3) and (3.5) are equivalent. As (3.5) 

means that llblloo < 1, it follows from (2.4) that Ar = f.P. 

When p = oo, (3.5) implies that llfx(Kn)lloo = llfx(I<n ·- Kn-t)lloo so that (3.3) holds. 

(3.5) also implies that llvnlloo = 1 and that llblloo < 1, so that A" =co (where u = (vn)) and 

Ar =co by (2.4). This completes the proof. 

If (a(n)) is a strictly increasing sequence of positive numbers let 

(3.6) 1(a) = inf{a(n + l)a(n)- 1 : n EN} and 'if;( a)= sup{a(n + l)a(n)- 1 : n E l.Nl 
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We allow the possibility that 'if;(a) = oo, in which case ,P(a)-1 = 0. Clearly, 1(a) 2: 1. 

COROLLARY 3.2. Let (a(n)) be a strictly increasing sequence of positive real numbers 

and let 1 S p < oo. Then 1( a) > 1 if and only if there are C, D > 0 such that 

( 
r ) 1/p ( r I r d ip) 1/p ( r ) 1/p 

C ~ JdnJP S f;(a(j)- a(j -1)) ~ a(n)1tP S D ~ JdnJP , 

for all scalars d1 , d2 , ... , dr andrE lN'. In this case we may take 

C - ;,...!( 'Y~( a_,)..,..-,....1;.!.,)....,1/_P 
- 1(a)1IP+1 

and 

Proof. Apply Theorem 3.1 to LP(R) with f = 1 and Kn = (O,a(n)). Then fn = a(n)- 11Px(O, a(n))l 

and (3.5) holds if and only if 1(a) > 1. Now observe that 

Thus, an inequality of the above type is equivalent to saying that r = (In) is basic in 

LP(R) with Ar = £P (see (1.2)). The estimates for C,D are consequences of applying 

(2.5) with 0' = (a(n)- 11Px ((a(n- 1), a(n)))), r as above and bn = a(n- 1)11Pa(n)- 11P. This 

completes the proof. 

PROPOSITION 3.3. Let (H, <,>)be a Hilbert space, let (en) be a Riesz basis for H, let 

(en) be a sequence of scalars and let (a(n)) be a strictly increasing sequence of positive 

integers. Then the following conditions are equivalent. 

(3.7) There is 17 > 0 such that for all n E lN', 

(3.8) 

(3.9) 

(
a(n) ) -

1 
( a(n) ) L Jci12 L Jci1 2 2: '11· 

j=1 j=a(n-1)+1 

(
a(n) ) 

The sequence L ciei 
J=1 

is basic in H. 

lfwe let 
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then there are A, B > 0 such that for all scalar sequences (d,) of finite support, 

AJJdJJ5 :::; l.f aj,kd/dk I :::; BJJdJJ~. 
J,k=1 

When the above conditions hold, 

is Riesz basic in H. 

Proof. Apply Theorem 3.1 to P(JN), with f::: (en) and Kn == {1, 2, ... , Then (3.7) 

is equivalent to (3.3) with p == 2. Let J d == (f: Jd1 J2 'J· -
112 

{ f: diei) , for d E £2 • Then J 
J=1 \J=l 

(
a(n) ) - 1/ 2 (a(n) ) 

is an isomorphism from £2 (lN) onto H such that J(fx(I<n)) == ~ Jc1 J
2 ~ ciei . 

Hence the equivalence of (3.7) and (3.8) is a consequence of the equivalence of (3.3) 

and (3.4). Condition is equivalent to saying that (J(fx(Kn))) is Riesz basic in H. 

This observation and Theorem 3.1 give the remaining conclusions. 

REMARKS. 1. An alternative proof of Proposition 3.3 may be based upon Corollary 

2.5. 

2. If (en) is an orthonormal basis for H and en== 1 for all n, then 

In this case the inequality (3.9) is the same as the one in Corollary 3.2 with p == 2. 

COROLLARY 3.4. Let (a(n)) be an increasing sequence of positive integers. For 

n E lN, let Dn(t)::: sin(n+ t)tjsintt,for t E (0,2·n'). Then r(a) > 1 if and only if(Da(n)) 

is basic in L 2 (0, 21r), in which case (a(n)- 112 Da(nJ) is Riesz basic. Iff E L 2(0, 21r), then 

(Da(n) *f) is not basic in L2(0, 21r). If r(a) > 1, a function f E L2(0, 21r) has a unique 

expression in L2 (0, 21r) of the form L dna(n)- 112 Da(n)• dE £2 , if and only if the Fourier 
n=l 

transform off is constant on the set { -a(l), ... , a(l)} and also upon each set of the form 

{ -a(n), ... , -a(n- 1)- 1} U {a(n- 1) + 1, ... , a(n)},for n 2': 2. 
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Proof. Apply Proposition 3.3 with H = L2 (0, 21r), en = 1 for all n, e1 = 1 and 

en(t) = ei(n-l)t + e-i(n-l)t, for n ::0: 2. Then (3.7), (3.8) imply that 1(a) > 1 if and only if 

(Da(n)) is basic in L 2 (!R). Da(n) * f is the nth partial sum of the Fourier series of J, and 

(Da(n) *f) is thus not basic by Corollary 2.3. Finally, observe that the Fourier transform 

off is constant on {-a(l), ... ,a(l)} and upon each set 

{ -a(n), ... , -a(n- l)- 1} U { a(n- 1) + 1, ... , a(n)} 

if and only iff E [Da(n) : n EN]. This completes the proof. 

REMARKS. A consequence of Corollary 3.6 is that there exist basic sequences (Da(n)) 

in L 2 (0, 21r) such that for no f E £ 2 (0, 21r) is (Da(n) *f) basic in U(O, 21r). 

COROLLARY 3.5. Let (a(n)) be an increasing sequence of positive real numbers. 

For !3 E R, let n'f(t) = sinf]tjt, fort E R. Then r(a) > 1 if and only if (Dl'{n)) is 

basic in L2 (R), in which case ( a(n)- 1 1 2 D~n)) is Riesz basic. If r(a) > 1, a function 

f E L 2 (R) has a unique expansion in L 2 (JR) of the form ::[ dna(n)- 112 D~n)' d E £2, if 

and only if the Fourier transform off is constant on each subset of R of the form 

(-a(n),-a(n-l)]U[a(n-1),a:(n)). 

Proof. This is similar to Corollary 3.4. 

PROPOSITION 3.6. Let 1 ::; p < oo, let (a(n)) be a strictly increasing sequence of 

positive integers, let a;j = a(i)- 11P for 1::; j::; a(i), and let a;j = 0 if j > a:(i). Let A denote 

the operator obtained by multiplying by (a;j). Then A is a bounded operator from p_q 

onto £1 (where p- 1 + q- 1 = 1) if and only if r(a) > 1. In this case, the restriction of A 

to the subspace of gq consisting of those sequences which are constant on each interval 

{a( n - 1) + 1, ... , a( n)} in N is a bounded invertible operator on gq. 

Proof. Let an denote the nth row of A. Then Theorem 3.1, ()'=(an) is basic in fP if 

and only if 'Y(a) > 1, in which case A"= fP. By (2.10), (2.11) and (2.12), A is bounded 
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from Rq onto £q. If 1 < p < oo and A(£q) = Rq, then (2.11) implies u is basic and thus 

r(o:) > 1. If p = 1 and A(£00 ) =goo, we have ford E £00 , 

so that 

i(Ad)(n)- (Ad)(n + 1)1 5 lldlloo2(1- a(n)a(n + 1)-1). 

Hence, if A(£00 ) = £00 , r(a) > 1. 

Now let Mp denote the subspace of fP consisting of those sequences which are 

constant on each interval [a(n- 1) + 1, o:(n)]. Then if 

( 
a(k) ) 

(11'd)n = (a(k)- a(k -1))- 1 :E d; , 
i=a(k-1)+1 

ford E £P andn E [a:(k-l)+l,a(k)], then'll' is aprojectionfrom£P onto 

By (2.13) the restriction of A to Mq is a bounded invertible operator onto gq, as required. 

REMARK. Proposition 3.6 should perhaps be compared with the result ([1] and [6, 

p.239]) that if p > 1, the Ces'ko operator is bounded on £P, and with a recent result ([8]) 

on the partial invertibility of the Cesfu-o operator. 

PROPOSITION 3.7. Let 1 5 p < oo, let (a(n)) be a increasing sequence 

positive integers and let 

l a(n) 

(Af)(n) = a(n)- 1/P f(t)dt, 
-a(n) 

for n E :IN" and f E Lq(R), 

where p- 1 + q- 1 = 1. Then r(a) > 1 if and only if A is a bounded operator from Lq(R) 

onto p_q. In this case the restriction of A to the subspace of Lq(R) consisting of those 

functions which are constant on each set [-a(n), -a(n- 1)] U [a(n -- 1), a(n)] is a bounded 

invertible operator onto p_q. 

Proof. This is similar to Proposition 3.6. 
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THEOREM 3.8. Let 1 < p < oo, p- 1 + q-1 = 1 and for n E N let 

( ) 
-1/q 

w,. = L.-K._, lfl~'dtt x(K,.- Kn-1)(sign f)lfiP-1, and 

h,. = (L.-K._, lfl~'dtt) - 1 
x(Kn- K,._l)(sign f)IJIP-1 

- ( { lfl~'dtt) - 1 
x(I<n+1- Kn)(sign f)IJI"-1· 

}Kn.+1-K.,. 

Then [wn: n E 1N] = [h,.: n E :N] in Lq(S,S,tt) if and only if lim llfx(Kn)llv = oo. 
n-co 

Proof. Let X= [v,.: n E 1N] in LP(S,S,tt)· As the v,. have disjoint supports, 

u' = (llvnll;1v,.) is a basis for X and Au'= £P. It is easy to check that w,. E Lq(S,S,tt), that 

llwnllq = 1 and that is v,.wndtt = llvnllv· It follows that (llvnll;1wn) is a sequence in U(S, S, tt) 

which is biorthogonal to (vn)· Also, X* is isometrically isomorphic to [wn : n E 1N] in 
00 

Lq(S,S,tt) under T, where T>.. = I::.~(vn)llvnll; 1 w,., for,\ E x•. From (3.1) it follows that 
n=l 

bn = (1 - llvn 11~) 1/P, and, as X is reflexive and (3.2) holds, we may apply Theorem 2.4. 

The result now follows from the equivalence of (2.7) and (2.8) by observing that, in the 

present context, (2.7) means that [wn : n E 1N] equals [hn : n E N] and (2.8) means that 

lim llfx(K,.)IIv = oo. This completes the proof. 
n-oo 

4. BASES IN SPACES OF PIECEWISE LINEAR FUNCTIONS 

Let a= (a(n)) denote a given strictly increasing sequence of positive numbers and 

let 1(a) be defined as in (3.6). If 1 ~ p ~ oo, PLC(p,a) will denote the piecewise linear, 

even functions in LP(R) which are linear on each interval [a(n- 1), a(n)), continuous on 
00 

U (-a(n), a(n)), and zero off this union. Let PLCo(oo,a) = PLC(oo,a) n Co(R). Then 
n=l 

for 1 ~ p ~ oo, PLC(p,a) is a Banach subspace of LP(R). Also, PLC0(oo,a) is a Banach 

subspace of C0 (R). Let 

f(t) = maximum(O, 1-ltl), for t E R, 

and for n E N and t E R let 
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if p = 00. 

Then, for 1:::; p:::; oo, 9n E PLC(p,a) and IIYniiP = 1. We also let, for n E lN and t E R, 

a(n) -ltl 
<f;,.(t) = ( ) ( l), for a(n -1):::; it!:::; a(n), an -an-

<j;,.(t) = 0, if ltl < a(n- 1) or ltl > a(n), 

q,' (t) = ltl- a(n- l) , for - 1):::; ltl :S a(n), 
n a(n)- a(n- 1) 

,P~(t) = 0, if ltl < a(n- 1) or !tl > a(n), and 

Let <P6 = 0 and = a(-1) = 0. Note that 9n,zn depend upon p. The function zn is a 

type of Schauder hat function used in discussing bases of C([D, 1]) (see [10, section 2.3]). 

Expressions of the from a11P, (p+ l) 11P, etc., will be taken to be 1 when p = oo. The main 

result in this section is the following. 

THEOREM 4.1. Let 1:::; p <co, let (gn) be given by (4.1) and v = (z,) be given (4.2). 

Then vis a basis for PLC(p,a) and fP ~ Av. Also, if we consider the conditions 

(4.3) Av=f.P, 

(4.4) 1(a) > 1, 

(4.5) (gn) is a basis for PLC(p,a), and 

(4.6) (a(n)- 312r 2 sin2 2- 1a(n)t) is basic in L 2 (R), 

then (4.4), (4.5) and (4.6) are equivalent, (4.4) implies (4.3), and if (a(n)- a(n- 1)) is 

increasing then (4.3) and (4.4) are equivalent. When conditions (4.4) to (4.6) hold, (gn) 

is equivalent to the standard basis in f.P, and the sequence in ( 4.6) (which is a sequence 

of weighted Fejfr kernels in L 2(1R)) is Riesz basic in L 2(R). 

The case p = oo is covered by 

THEOREM 4.2. Let p =co, let (g,.) be given by (4.1) and let v = (z,) be given by (4.2). 

Then v is a basis for P LC0 ( co, a) and Av = c0 • Also, 1( a) > 1 if and only if (g,.) is a basis 

for PLCo(oo,a). 
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A function f E P LC( oo, a) if and only if there exists a (necessarily unique) d E .eoo 
00 

so that the series L dnzn converges uniformly to f on each compact subset of JR. 
n=l 

The proofs of Theorems 4.1 and 4.2 require some preliminary results and observa-

tions. Let 1::; p::; oo be given. We define 

rn(t) = a(n)- a(n- 1), for ltl::; a(n- 1), 

rn(t) = a(n) -ltl, for a(n- 1)::; ltl::; a(n), and 

rn(t) = 0, for ltl > a(n). 

Also, let 

(4.7) 

From (4.2) and (4.7) we now have 

(4.8) 

(4.9) 

(4.10) 

llci>niiP = llcf>~llv = 211P(p+ 1)-1/P(a(n)- a(n -1))1/P, 

llznllv = (1- a(n- 2)a(n)-1 )1/P, and 

llwnllv = (1 + pa(n- 1)a(n)-1)11P. 

The sequences (un) and ( wn) also satisfy the following recurrence relations. 

( 4.12) 

LEMMA 4.3. Let 1::; p < oo and let Cp = inf{(1 + t)- 1(1 + tP+1): 0::; t::; 1}. Then for all 

a,b E lR, 

C~fP2 1fP(p + 1)-1fP(a(n)- a(n- 1))1/P maximum (Ia I, lbl) 

::; llacf>~ + bcf>nllv::; 21+1/P(p+ 1)-1/P(a(n)- a(n -1)?1P maximum (ial, lbl). 

Proof. The right hand inequality follows easily from (4.8). For the left hand inequality, 

note that llacf>~ + bcf>n llv is symmetric in a, b. If ab 2: 0 and Ia I > lbl, 

llacf>~ + bcf>nllv = 211P(p+ 1)-1/P(a(n)- a(n- 1))1/Pial C ~ !iba):;1
) 

1
/p, 

2: 21/P(p+ 1)-1/P(a(n)- a(n -1))1/Pial. 



262 

If a= b, then 

If ab < 0 and ial2:: lbl, then 

lla<f>~ + b<f>nllp = 21/P(p+ 1)-1/P(a(n)- a(n- 1))1/P[ai C 7 :{:):~ 1 ) 1/P, 

2:: c;fP21fP(p+ 1)-lfP(a(n)- -1))1fP[a[, 

Lemma 4.3 now follows from these observations. 

LEMMA 4.4. Let 1:::; p < oo and let (dn) be a sequence of scalars. Then the following 

conditions are equivalent. 

00 

( 4.13) Ldnzn converges in PLC(p,a), 
n=l 

(4.14) 

2- 1/P(p + 1)1/P (~ ( dn+ 1a(n + 1)-lfpq,~ + dna(n)-lfpq,n)) converges in LP(JR), and 

( 4.15) 

When these conditions hold, the sums of the series in (4.13), (4.14) are equal. If dE fP, 
00 00 

then Ldnzn converges in PLC(p,a). lf1(a) > 1, Ldnzn converges in PLC(p,a) if and 
n=l n=l 

only if d E £P, and in this case, 

(4.16) 

Proof. First observe that 

~ djZj = 2- 1/P(p + 1)1/P { (~ ( dj+ 1a(j + 1)-1/P.pj + dja(j)- 11P <Pi)) + dna(n)-lfp¢n} . 

Now let (4.15) hold. Then by (4.8), lim dna(n)-lfpq,n = 0. Also, by Lemma 4.3, 
n~oo 

~~~dH 1 a(j + 1)-lfpq,j + dja(j)- 11Pq,jll: 

:::; 2P+ 1(p+ 1)-1 (~(a(n)- a(n- 1)) max(~(~;,~~~~~~))) , 
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a.11d we deduce that the series in (4.13) and (4.14) converge and have equal sums. 

Now let (4.13) hold. Then lim dnzn = 0 and it follows from (4.2) that 
n~oo 

lim dna(n)- 11P¢n = 0. From the initial observation in the proof, we now see that (4.14) 
n~oo 

holds and that the series in (4.13), (4.14) have equal sums. 

Let (4.14) hold. Then 

fll ( dn+1a(n + 1)-lfpq,~ + dna(n)- 11P.f>n) liP< oo. 
n=l P 

Applying Lemma 4.3 shows that (4.15) then holds. This proves the equivalence of (4.13) 

to (4.15). 

If dE f!P, (4.15) holds and hence (4.13) holds. 

Now let 1(a) > 1. Then if 2::: d,zn converges, we deduce from Lemma 4.3 and 
n=l 

(4.14) that 

Cp2(p + 1)-1 (1- 1( a)-1) [[d[[~ :::; Cp2(p + 1)-1 (~ (1- a(n- l)a(n)-1) [dn [P) , 

:::; Cp2(p+ 1)-1 (~ (a(n)- a(n -l))max (~(:!;, ~~~~~~))), 

:::: 11~ ( dn+!a(n + 1)-l/pq,~ + dnOt(n)- 11P¢n) [ 

= 2(p + l)- 1 ~~~ dnZn r 
Hence dE f!P and the left hand side of (4.16) holds. 

as [[zn[[p:::; 1 by (4.9), and the z2n have disjoint supports, as do the z2n-l· This proves the 

right hand side of (4.16). 

LEl\llMA 4.5. Let 1:::; p < oo. Then a function is in PLC(p,a) if and only if it is the sum 

of a convergent series in LP(lR) which is of the form :L(an4>n + an+l<P~). 
n=l 
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Proof. The condition is dearly sufficient. For necessity, observe that iff E PLC(p,a), 

there are a,, bn so that f ::=: an¢n + bn¢~ on [a(n- 1),a(n)]. As f is continuous, we must 

have bn = an+l. This completes the proof. 

Proof of Theorem 4.1. Let 1:::; p < oo and let f E PLC(p,a). By Lemma 4.5 choose a 

n:::::::l 

Then by Lemma 4.4, f = L dnzn, where this series converges in LP(R). Also, if 

LdnZn = 0, then dnZn + dn+lZn+l = 0 on [a(n- a(n)]. As Zn,Zn+l are independent 
n=l 

on - 1), a( n)] we deduce that dn = dn+l = 0, hence d = 0. This proves that v = ( zn) is 

a basis for P LC(p, a). Lemma 4.4 implies that f.P ~ Av. 

If l'(a) > 1, Lemma 4.4 shows that Av = Rl. If (a(n)- at(n- 1)) is increasing, then 

(4.15) is equivalent to having L(l-a(n-l)a(n)- 1)ld,IP < oo. Together with Lemma 4.4, 
n=l 

this implies that if - 1)) is increasing, then 1'( a) > 1 if and only if A, = .£P. 

Let !'(at)> L The recurrence relation (4.12) shows that we may apply Theorem 2.2 

with O" = (zn), 7 = (wn) and bn = (o:(n -l)at(n)-1 ) 11P. We see from (4.9) that O" is bounded 

away from 0, and from (4.10) that 7 is bounded, so we deduce from (2.1) that r = 

is a basis for PLC(p,a). As JJbllco = l'(a)- 1/P < 1, (2.4) implies that A 7 = f!P. 

Now as !'(at) > 1, ((1- o:(n -l)o:(n)-1)wn) is also a basis for PLC(p,a) which 

is equivalent to the standard basis for f.P. The recurrence relation (4.11) shows that 

Theorem 2.2 may be applied again, with u = ((1- at(n- Wn), r = (gn) and 

bn = (a(n -l)at(n)- 1)1+1/P, Then 7 is bounded, u is bounded away from 0 and 

JJblloo = 'Y(a)-(l+l/p) < 1. It follows from (2.1) and (2.4) that (gn) is a basis for PLC(p,o:) 

which is equivalent to the standard basis in £P. This proves that (4.4) implies (4.5). 

Conversely, let (gn) be a basis for PLC(p,at). As JlgniiP = 1, (2.2) and 1) imply 

that -l)a(n)- 1)wn) is bounded away from 0. As 

uu'"'"'"'"u, we deduce that 1(a) > 1. Thus, (4.5) implies (4.4). 

= 2, observe that the Fourier transform of 9n in 

shows that (wn) is 

is a multiple, independent 
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of n, of a(n)-312 ((sin a(n)t/2)/t) 2 • The equivalence of (4.5) and (4.6) is thus a consequence 

of Plancherel's theorem. If (gn) is basic in L2 (R), we have seen that it is Riesz basic, so 

in this case Plancherel's theorem also implies that the sequence in (4.6) is Riesz basic in 

L 2 (R). This completes the proof of Theorem 4.1. 

REMARK. If we let a(2n) = 2" and a(2n + 1) = 2" + 1, it can be shown that (4.15) holds 

if and only if dE fl. By Lemma 4A, A"= J!P. Thus r(a) = 1 but Av = fP, so (4.3) does 

not, in general, imply (4A). 

COROLLARY 4.6. If m, n E ]['.f let 

fa(m)) 112 ( a(m)) 
am,n(a) = ~ a(n) 3- a(n) , if m::::; n, and 

( a(n)) 112 
( a(n)) 

am,n(a) = a(m) 3- a(m) , if n < m. 

Then r( a) > 1 if and only if there are A, B > 0 such that for all scalar sequences ( dn) of 

finite support, 
00 

Alldll~ :::=; L dmdnam,n(o:) :::=; Blldll~-
m,n=l 

Proof. Let p = 2. Then (am,n(a))~,n=l is the Gram matrix of (gn), except for a constant 

factor. The inequality is thus equivalent to saying that (gn) is Riesz basic in L 2 (R) (see 

[12, p.32]). The result now follows from Theorem 4.1. 

COROLLARY 4.7. Let r(a) > 1. Then a function h E L 2 (lR) has an expansion as a 
00 

convergent series in L2 (lR) of the form 2:::C•(n)-312dnr 2 sin2 2- 1a(n)t, for dE 1'.2 , if and 

only if the Fourier transform of h is in P LC (2, a). 

Proof. Observe that the Fourier transfonn h of h is in P LC(2, a) if and only if 

hE [§n: n E lN], where g" is given by (4.1) with p = 2. Now apply Theorem 4.1. 

Proof of Theorem 4.2. Let p = oo. Note that llznlloo = 1 and that zn is supported by 
00 

[a(n- 2),a(n)]. Hence Ldnzn converges in PLCo(oo,a) if and only if dE co. It also 
n=l 
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00 

follows that f E P LC( oo, a) if and only if there is d E eoo so that L dnzn converges 
n=l 

unifonnly to f on compact subsets of JR. It is easy to prove that v = (zn) is a basis for 

PLCo(oo,a) by analogy with the case 1:::; p < oo in Theorem 4.1. 

If 1(a) > 1, we apply (2.1) of Theorem 2.2 twice, using the recurrence relations 

(4.11) and (4.12) with p = oo. This is similar to the case 1:::; p < oo in Theorem 4.1, and 

we deduce in a similar way that (gn) is a basis for P LC0 ( oo, a). 

Conversely, if (gn) is a basis for P LC0( oo, a), then (jjgn+l - 9n lloo) is bounded away 

from 0. As 

we deduce that 1(a) > 1. This proves Theorem 4.2. 

PROPOSITION 4.8. If !(a)> 1, there is a projection 1r1 from C0 (JR) onto PLC0 (oo,a) 

such that 1ri(PLC0(oo,a)*) = PLC(l,a). 

If 1 :::; p < oo, p- 1 + q- 1 = 1 and 1(01) > 1, there is a projection 1r2 from LP(JR) onto 

PLC(p,a) such that 1r2 (PLC(p,a)*) = PLC(q,a). 

Proof. Let 1 < p < oo, p- 1 + q-1 = 1 and 1 (a) > 1. We let 

By (4.9), llz~\lq:::; 1. Also, z~ is supported FnU-Fn, where Fn = [a(n-2),a(n)]. Hence, 

for f E LP(R), 

( 4.17) IJJR f(t)z~(t)dtl :S llfx(Fn U -Fn)IIP' for n E IN. 

Now let A 1 = o, 

-~ 1 _(p+l)11P(q+1)1fq(a(n-1)) 1/P( _a(n-2)) for 
An - Zn(t)zn-1 (t)dt- ( ) 1 ( ) , R 6 an an-1 

n;::: 2, 

B = f z (t)z' (t)dt = (p+ l) 1IP(q + l)1/q (1- a(n- 2)) for n >_ 1, and 
n }R n n 3 a(n) ' 

_ { 1 _ (p+l)lfP(q+l)1fq ( a(n) )l/q ( a(n-1)) for 
Cn- }Rzn(t)zn+l(t)dt- 6 a(n + l) 1-~ ' n 2': 1. 
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As 'Y(a) > 1, (B;; 1) is bounded. Iff E £P(1R), we now let 

1r(/) = f B;;1 (~ f(t)z~(t)dt) Zn. 
n=1 ]R 

From (4.16) and (4.17) we see that the series of 1r/ converges in £P(1R) and that 

Hence 1r is bounded from LP(1R) into PLC(p,a). We will now show that 1r is invertible 

on PLC(p,a). Iff E PLC(p,a), as (zn) is a basis for PLC(p,a) by Theorem 4.1, there is 
00 

dE £P so that f = Ldnzn. Then 
n=l 

00 

(4.18) 7r(/) = L (An+1B;; 1dn+1 + dn + B;;1Cn-1dn-1) Zn, where, do= 0, 
n=l 

00 

= L ((I+ S)d)n Zn, 
n=l 

where I is the identity operator on PJ', and 

Now, 

Hence Sis bounded on £P and IISII ~ 2-1 (i(a)- 11P + i(a)-1fq) < 1, so I +Sis invertible on 

PJ'. By (4.16), PLC(p,a) is isomorphic to PJ', and we deduce from (4.18) that 1r is invertible 

on P LC(p, a). Denote this inverse by >. and let 1r2 = >. o 1r. Then 1r2 is a projection from 

LP (1R) onto P LC(p, a). 

Now by Theorem 4.1, v = (zn) is a basis for PLC(p,a) and A.= PJ'. Then (2.11) 

shows that {(JL(zn): JL E PLC(p,a)*} = lq. Hence if JL E PLC(p,a)*, (B;; 1JL(zn)) E lq and the 
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series :L; B;1 p(z,..)z~ converges in P LC(q, Ot). It is easy to prove that 1r*(p) = :L; B;1 p(zn)z~, 
n=l n=l 

for p E PLC(p,Ot)*, and it follows that 1r"'(PLC(p,Ot)*) = PLC(q,Ot) (here we have used the 

fact that (Bn) is bounded above and below and that (z~) is a basis for P LC(q, 0t) equivalent 

to the standard basis in fq). Finally, as>. is invertible on PLC(p,Ot), 

?!'; (P LC(p, 0t)*) = 1r* (>.* (P LC(p, a)*)), 

= ?!'* (P LC(p, 0t )*), 

= PLC(q,a), 

This proves the proposition for 1 < p < oo. 

from above. 

When p = l and q = oo, the proof proceeds on the lines above, except that when 
00 

we have 1r*(t') = L B;; 1p(zn)z~, this series is taken as converging uniformly on compact 
n=l 

sets, rather than in the L00 (1R) norm. 

When p = oo and q = 1, the proof is again similar to the preceding. Instead, 1r is 

defined on C0 (R), £P is replaced by c0 , and Theorem 4.2 is used in place of Theorem 4.L 

REMARKS. 1. If one only wishes to show that P LC0 ( oo, 0t) is complemented in C0 (R) 

a simpler proof than the one above may be found in [10, p.27] - this proof does not 

require 1( Ot) > 1, but it does not give the identity ?l'J' (P LC0(oo, oc)*) = P LC(l, Ot). 

2. Let P L(p, a) denote those (not necessarily continuous) functions in 

LP(1R) which are even and linear on each interval [a(n -l),Ot(n)]. Then it can be proved 

that for 1 :::; p < oo, P L(p, a) is complemented in LP(JR) under a projection w such that 

?l'*(PL(p,a)*) = PL(q,a). This is true without restriction on 1(01). Thus, it is not clear 

whether the role played in Proposition 4.8 by the condition 1(0t) > 1 is essential, although 

1( a) > 1 is essential for the next result. 

PROPOSITION 4.9. Let 1 s p < oo and p-1 + q-1 = L For g E Lq(R) and n EN let 

l a(n) 
(Ag)(n) = Ot(n)-(l+l/p) (Ot(n) -It I) g(t)dt. 

-a(n) 

Then 1(a) > 1 if and only if A(Lq(JR)) = lq. In this case, the restriction of A to the 

subspace PLC(q,a) of Lq(R) is a bounded invertible operator onto R.q. 
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Proof. By Theorem 4.1, 1( a) > 1 is equivalent to saying that (g,.) is a basis for P LC(p, 01) 

which is equivalent to the standard basis for fP. When 1 < p < oo, we deduce from 

(2.11) that this is equivalent to A(Lq(lR)) = eq. When p = 1 and q = oo, 1 (01) > 1 implies 

that A(L00 (R)) =goo is a consequence of (2.12). Conversely, if 1(01) = 1 and g E L00 (lR) 

j a(n) 
let an = 01(n)-2 (01(n) -itJ)g(t)dt. Then it can be shown that liminfJa,.,+l- a,.,J = 0 

-~) ~00 

(compare with the corresponding part of the proof of Proposition Hence, if 1( 01) = 1, 

A(L00 (IR)) c goo and A(L 00 (R)) 1-£00 • The final statement in the proposition comes from 

(2.13) and Proposition 4.8. 

There are also discrete versions of the preceding results, some of which are pre-

sen ted. 

THEOREM 4.10. Let 1 ~ p ~ oo be given, and let (a(n)) be an increasing sequence of 

positive integers. Let hn E fP(Z) be given by 

hn(j) = a(n)-(l+l/Pl(a(n) -Jjl), for JjJ ~ a(n), and 

hn(j) = 0, for IJI > a(n). 

Then 1(01) > 1 if and if (hn) is basic in fP(Z). If 1(a) > 1 and 1 ~ p < oo, (hn) 

is equivalent to the standard basis in fP. 1(a) > 1 if and only if the sequence 

(a(n)- 312 sin 2 (a(n)t/2)sin- 2 t/2) is basic in L2([0,21r]), in which case it is Riesz basic. 

Proof. Let P LC(p) denote the closed subspace of LP(R) consisting of the even, continuous 

functions which are linear on [n- 1, n] for n EN. Iff E PLC(p), let (Tf)(n) = f(n), for 

n E Z. It follows from Lemma 4.3 that T is an isomorphism from P LC(p) into f!P(Z). 

Also, T(gn) = 2-1/P(p + 1) 11Phn, for all n. The statements concerning (hn) are thus a 

consequence of the equivalence of (4.4) and (4.5), and Theorems 4.1 and 4.2. When 

p = 2 the Fourier transform of a(n) 312hn is the Fejlr kernel sin2 (a(n)t/2)sin-2 t/2. The 

remainder of Theorem 4.10 now follows from Plancherel's theorem. 
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COROLLARY 4.11. Let'Y(OL) > 1. Then a function hE L2([0,21r]) has an expansion 

as a convergent series in L2 ([0, 21r]) of the form 

00 

L 01(n)-312dn sin2 (OL(n)t/2) sin- 2 t/2, 
n=1 

if and only if the Fourier transform of h is the restriction to Z of some function in 

PLC(2,a). 

Proof. This is analogous to the proof of Corollary 4.7. 

COROLLARY 4.12. Let 1::; p <co and p-1 + = 16 Let aiJ = -j+ 

for 1 ::; j ::; a(i), and a;i = 0, for j > a(i). Let A denote the operator obtained by 

multiplying by the matrix (a;i)· Then A is a bounded operator from l!q onto l!q if and only 

if 'Y(Ot) > 1. 

Proof. This is similar to the proof of Proposition 4.9. 
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