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TRINITY ... A TALE OF THREE CARDINALS 

Joan Cleary and Sidney A. Morris 

Dedicated to Igor Kluvanek 

L INTRODUCTION 

In this paper we discuss three cardinal n~bers associated with a 

·topological group G : the weight of G, w (G), the local weight, 

w0 (G), and 8(G), the least cardinal of a f&nily of open sets whose 

intersection is a singleton. It is clear that 8(G) < w0 (G) < w(G). 

We give necessary and sufficient conditions for 8(G) = w0 (G) = w(G). 

In par-ticular they are equal for all a-compact locally compact Hausdorff 

groups. 

The following notation will be used throughout the paper. If G 

is a ·topological group, we denote 

(a) 'che minimal cardinality of a family of open sets having as 

intersection the identity, 1, in G by 8 (G); 

(b) the minimal cardinality of an open basis for G at 1 by w0 (G); 

(c) the minimal cardinality of an open basis for G by w (G). 

If H is a topological subgroup of G, we write H < G. 

Note that if then 8(H) < 8(G), and 

w (H) < w (G) • 
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PROPOSITION 1 If G is any topological group then 

Proof Clearly 8(G) ~ w0 (G) and w0 (G) ~ w(G). So 

We note here that if an infinite Hausdorff non-discrete topological 

group, G, satisfies the second axiom of coun·tabili'cy, then 

8 (G) = w0 (G) = w (G) = ~ 0 • Thus if G is an infinite compac'c metrizable 

group, then 6(G) = w(G) = ~ . 
0 

DEFINITION Let U(n), n E :N, be the compact group of nxn 

matrices, and define U = n U(n). 
n=l 

As U is compact and metrizable w(ll) 

2. COMPACT GROUPS 

e (Ul 

unitary 

We use the following refinement of the Embedding Lemma, ([6],P.l16) 

in the proof of Lemma 3. It's proof is analogous to the usual proof. 

LEMMA 2 Let {(Yi,Ti) I i E I} be a family of Hausdorff spaces, and 

for each i E I, 

into 

e(x) n f. (x) ' 
iEI ~ 

let f. be a mapping of a Hausdorff space 
~ 

Let e : (X,T) -+ n (Y' ,T') be defined by 
iEI ~ ~ 

(X, T) 

for each x E X. Then e is a homeomorphism of 

(X,T) onto the space (e(X),T 1 ) where T 1 is the subspace topology, 

if 
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each f. is continuous~ and 
~ 

(ii) given x E X and any closed set A not containing x, 

the map F 
n 

f. x f. x ••• x f. : X--+-.!!1 (Y. ,1". ) satisfies 
~1 ~2 ~n J- ~j ~j 

F(x) ~ F(A). 

LEMMA 3 Let G be a topological group and {H. I i E I} an infinite 
~ 

family of Hausdorff groups such that G is topologically isomorphic to 

a subgroup of the product n H .• 
iEI ~ 

Then there is a subset J of I~ 

with card J = w0 (G), such that G is topologically isomorphic to a 

subgroup of n H .• 
iEJ ~ 

Proof Without loss of generality, consider G to be a subgroup of 

n H .• Let B = {Bk IkE K} be a basis for G at the identity, 1, 
iEI ~ 

such that card K = w0 (G). For each k E K there exists an ok such 

that where 

is a member of the natural basis for 

k E K put Jk = {k1 ,k2 , ••• ,kn} and 

finite, card J =card K = w0 (G). 

X TI H. 
iEI,{k1 ,k2 ,.7.kn} 

TI H at the identity. For each 
iEI i 

J = U Jk. Then, as each Jk is 
kEK 

Let P : TI H. ~ TI H. be the natural projection mapping. We need 
iEI ~ iEJ ~ 

to show P : G~P(G) is a homeomorphism. As each pi : G~Hi given 

by p. (x) = p. { TI x.) = x;, is continuous, condition (i) of the 
~ ~ iEI ~ • 

Embedding Lemma is satisfied. To see condition (ii) holds, we need 

consider only the identity 1 and any closed set A in G such that 

1 t A. Then 1 E G 'A which is open, and so there is a Bk E B such 
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that 1 E Bk n G. Therefore there is a basic open neighbourhood Ok 

such that 1 E Ok n G; that is 

1 E (0 X 0 x ••• x 0 X n H· ) n G. Define 
k 1 k 2 kn iEI'-.{k1 ,k2 ,=!:.ork} 

n 
F G-+ n H by F(x) 

j=l kj 

n 
n 
.n Pk (x), for x E G. Then 
]=1 j 

F(l) E x 0 x ••• x 0 which is open and 
k 2 kn 

which implies Hence F(l) ¢PIAl, 

and so by cur Embedding i.emrna, P is a homeomorphism of G on·to P (G). 

As P is also a homomorphism we have that G is topologically 

isomorphic to P(G), a subgroup of n H .• 
iEJ 1 II 

The countable case of the above result was.used by Brooks, Morris 

and Saxon [2, Corollary 6]. 

Using a similar argument to the proof of Lemma 3, we obtain a 

stronger result for compact groups. 

LEMMA 4 Let G be a compact group and {H. I i E I} an infinite 
J.. 

famiZy of Hausdorff groups such that G is topoZogicaZZy isomorphic to 

a subgroup of the product n H .• Then there is a subset J of I, 
iEI 1 

with card J = 8(G), such that G is topoZogicaZZy isomorphic to a 

subgroup of n H .• 
iEJ 1 

Proof Again, consider G to be a subgroup of 

<P (G) {uk I k E K} be a family of open sets 

card @(G) = e (G) and n u 
kEK k 

= {1}. For each 

n H., 
iEI 2 

and let 

of G such that 

k E K there is an 
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open set ok such that ok n G ~ uk where 

X. •. X X n H· 
iEI~{k ,k2 7 ... k} 

1 n 

is a member of the 

natural basis for n H. at the identity. For each k E K put 
iEI l 

J ~ {k ,k , •.• ,k } 
k 1 2 n 

and J = U Jk. Then card J =card K = 8(G). 
kEK 

Let P n H. -r n H. be the natural projection mapping. Then 
iEI l iEJ 1 

P : G -r n H. is a continuous injective homomorphism. As G is 
iEJ l 

compact, G is topologically to P (G), from which ·the resul·t follows.// 

The next lemma is an immediate consequence of the Peter-Weyl 

Theorem ([7], P.62). 

LEMMA 5 If G is a compact Hausdorff group, then it is topologically 

isomorphic to a subgroup of a product of copies of the group U. 

THEOREM 1 [3, 28.58] Le.t G be an infinite compact Hausdorff group. 

Then 8 (G) w0 (G) = w(G). 

Proof By Le~na 5, we can, without loss of generality, assume that G 

llcard I f . d is a subgroup of , or some ln ex set I. But using Lemma 4 we 

have that G is topologically isomorphic to a subgroup of US(G). 

max {w(U) ,6(G)} 

max { ~o, 6 (G) } 

6(G), as 6(G) is infinite. 
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But 6(G) ( w(G) from Proposition 1. Thus 6(G) 

which it follows that w0 (G) = 6(G) ; w(G). U 

w (G) , from 

Hulanicki [3] proved that card G = 2S(G) for G, any infinite 

compact Hausdorff group, or any infinite connected locally compact 

Hausdorff group. Elsewhere we shall give quite a different proof of a 

more general result. Here we point out a corollary to this result and 

Theorem 1. 

THEOREM 2 [3, 28.58) Let G be any infinite compact Hausdorff group. 

Then card G ~ 2e(G) = 2Wg(G) = 2w(Gl. 

3. i\L~10ST CONNECTED GROUPS 

DEFINITION A locally compact Hausdorff group is said to be almost 

connected if the group G/G 0 is compact, where G0 is the connected 

componen·t of the iden'ci ty. (See [ 1) • ) 

Of course, the class of almost connected groups includes the class 

of compact Hausdorff groups and 'che class of connected locally compact 

Hausdorff groups. 

THEOREM 3 Let G 

6(G) = w0 (G) = w(G) 

be any infinite almost connected group. 

and card G = 2e(G) = 2wo(G) = 2w(G). 

Then 

Proof By Mostert ( [7), Theorem 8) G is homeomorphic to G0 x G/G 0 " 

The Iwasawa Struc'cure Theorem ([6), pollS) says that the connec·ted 

locally compact Hausdorff group G0 is homeomorphic 'co x K, 
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where K is a compact group, m is the topological group of real 

numbers with the usual topology, and n is a non-negative integer. 

As GIG 0 is compact, we have that G is homeomorphic to mn x K' 

where K 1 is the compact Hausdorff group K x GIG 0 • 

If K' is finite, then clearly 6(G) w (G) ~ 0 , and 

card G 2~'\ 

K' 
n 

K') e (mnl e (K' J • If is infinite, then 8 (G) e (m-- x = X 

Since e (mn) i-\ we have that e (Gl e (K 1 l . Similarly, 0 

w0 (G) =w 0 (K 1 ) and w (G) = W (K 1 ) • Then, by Theorem 1, we have 

e (G) = w0 (G} = w (G). 

Further, card G 

Hence, card G 

4. THE GENERAL CASE 

n 
card ffi x card K 1 

2 i-\0 X 2 e (K 1) 

2!-lo+ e (K 'l 

2 6 (K I) • 

2w0 (G) = 2w (G) 
• II 

For G, any topological group, we denote the least cardinality of 

a family of compact sets whose union is G by y(G) . 

LEMMA 6 Every locally compact Hausdorff group has an open almost 

connected subgroup. 
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Proof Let G be any locally compact Uausdorff group and let G 0 

be the component of the identity. Let f : G-+ G/G 0 be the quotient 

mapping. Then the quotient group G/Go is a locally compact totally 

disconnected group and so has a basis of compact open subgroups, 

([7] ,p.21). Take one such compact open subgroup, K. Then f- 1 (K) H 

is an open subgroup of G. As H is open and therefore closed, 

G0 ~ H, and so H0 = G0 • This implies H/H 0 = H/G 0 = K. Hence H is 

a locally compact Hausdorff group, and H/H 0 is compact, from which 

the result follows. # 

THEOREM 4 Let G be any infinite ZocaZZy compact Hausdorff group. 

Then 

(iii) 

Proof 

(i) 6(G); (ii) w(G); max{w (G), y(G)} and 
0 

w (G) 
card G = rnax{2 O ,y(G)}. 

(i) Let H be an open almost connected subgroup of G. 

Then w0 (H) = 6(H) by Theorem 3. We show that w0 (G) = w0 (H) and 

6(G) = 6(H), from which the result will follow. 

Let B0 be a basis for H at the identity with card B 0 = w0 (H). 

Then B0 is also a basis for G at the identity. So w0 (G) ~ w0 (H), 

and hence w (G) 
0 

w (H). 
0 

Let ~(H) be a family of open sets in H whose intersection is 

the identity. Then ~(H) is also a family of open sets in G whose 

intersection is the identity,as H is open. So 6(G) ~ 6(H), and hence 

6 (G) = 8 (H) • 
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(ii) If G is compact w (G) "'w 0(G) from Theorem 3, and 

y (G) == 1, which implies w (G) == max{w 0 (G), y (G)}. So assume G is non-

compact. Let {g·. I i E I} be a complete set of coset representatives 
l 

of H in G, and let card I = m. We show firstly that 

w(G) max{w(H) ,m}. Let B be a basis for H. It is clear that 

{g .B 
l 

B E B, i E I} is a basis for G as H is open. Thus 

w (G) ~ rnax{w (H) ,m }. We know that w (H) ~ w (G) , and, as each coset is 

open and must contain a basic open set of G, w(G) ) m. Hence 

w(G) = max{w(H) ,rn}. 

As H is almost connected, it is homeomorphic to JRn x K, 

where K is a compact group and n E ~. Therefore y(H) ~ H o. 

Let {A I n E 1N} be a 
n 

family of compact sets whose union is H. 

Then {g.A 
l n I i E I I n E ~} is a family of compact sets whose union 

is G, and therefore y(G) ~ max{~0 ,m}. Let {K. 
J 

j E J'} be a 

family of compact sets whose union is G and with card J = y(G). 

Then each Kj' being compact, is contained in the union of a finite 
mj 

number of cosets; that is, K. c U g. H for m. E JN. So 
J - k--1 lk J 

y(G) card J ) m. Now, clearly, y(G) ) ~0 , and so we get 

y (G) max{ ~0,m}. 

Finally, we have w(G) max{w (H) ,m} 

max{w 0 (G) ,m}, as w(H) = w0 (H)= w0 (G) 

max{w 0 (G),m, ~ 0 }, as w(G) is infinite 

max{w 0 (G) ,y (G)} • 
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(iii) If G is compact we already have that 

from Theorem 2, so again assume 

G is non-compact. Then 

card G =card H.m = max{2wo(H) ,m} w0 (G) 
max{2 ,y (G)}. II 

We note that Hulanicki's Fundamental lemma is a corollary to the 

above theorem. 

COROLLARY 1 ([4], p.67) If G is an infinite locally compact 

d ff h Card G ~ 26(Gl.,'/ Haus or group, t en - 11 

COROLLARY 2 Let G be an infinite locally compact Hausdorff group. 

Then the following are equivalent 

(i) w(G) = w 0 (G); (ii) y (G) ( wo (G). II 

COROLLARY 3 ([3}, p.lOO) If G is an infinite a-compact locally 

compact Hausdorff group, then w(G) = w0 (G) = 8(G) "# 

COROLLARY 4 ([4]' p.69) If the locally compact Hausdorff group, G, 

is 2S(G)_compact, then card G = 2S(G). 
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