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SOLVABILITY OF DIFFERENTIAL OPERATORS |:

DIRECT AND SBMIDIRECT PRODUCTS OF LIE GROUPS

F. D, Battests

1.  INTRODUCT ION

Let G be a Lie group. The group G acts on itself by left (or
right) translations., A linear differential operator P on G is said
to be left (or right) invariant if it commutes. with the left (or right)
action of G, i.e, if it satisfies

P(f o Lg) = (Pf) o Lg (or P(f o Rq) = (Pf) o Rg)
for all ge G, f ¢ C”(G). where for x ¢ C
Lg(x) = gx and Rg(x) = Xg,

The operator P is said to be bi-invariant if it is left and right
invariant.

All the Lie groups considered in this paper are real.

We identify the algebra of left invariant linear differential

operators on G with the complexified universal enveloping algebra
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U(g), where g is the Lie algebra of G. Bi-invariant differential

operators correspond then to elements of the centre Z(g) of U(g).

A distribution E ¢J)'(6) on G is a fundamental solution of the
operator P if it satisfies the equation PE = &, where & is the
Dirac distribution at the unit of G.

Left invariant differential operators on a Lie group in general do
not possess a global fundamental solution, but under additional
conditions either on the operator or on the group, we can prove the

existence of such solutions,

2. RESULTS

Let us first recall the main results concerning this problem. In
1955 Ehrenpreis [6] and Malgrange [7] proved that every nonzero
differential operator with constant coefficients on R" has a
fundamental solution on R". Rais (8] established the existence of a
fundamental solution for every bi-invariant operator on a simply
connected nilpotent Lie group and Duflo and Rais (5] extended this
result to simply connected exponential Lie groups. For bi-invariant
differential operators on simply connected solvable Lie groups, Duflo
and Rais [5] chowed the existence of a local fundamental solution and
Rouviére ([9] proved the existence of semiglobal fundamental solutions

(i.e. on every relatively compact open subset).
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In all the above cases, the group G is assumed to be simply
connected., This property ’is essential, as can be seen from the result
of Cerezo and Rouviére (4]. They gave a necessary and sufficient
condition for left invariant operators on the direct product
G =K x R", vhere K is a compact comnected Lie group.

For results on semisimple Lie groups we refer the reader to [3].

In the next section we shall recall the results of [1] and [2]
concerning the existence of global fundamental solutions for bi-
invariant operators on the direct product H x K where H and K are
Lie groups and K is compact connected. We give a necessary condition
which coincides with the necessary and sufficient condition of Cerezo
and Rouviére vhen H = Rn, and, when the group H is solvable and
simply connected, we obtain a sufficient condition very similar to the
necessary one. In particular, we prove that evefy nonzero bi-invariant
operator on a simply connected solvable Lie group admite a global
fundamental solution.

In the following section we generalize some of these results to
certain semidirect products of Lie groups., We define the partial
Fourier coefficients of a differential operator on a Cartan motion group

V ® K and study the action of K on the elements of the universal

enveloping algebra U(V e k). Then, use of the partial Fourier

transform on V # K allows us to translate the problem on V x K to an



63

equivalent problem on the group V and to prove a necessary condition
of existence of a fundamental solution for K-bi-invariant, V s K-left
invariant differential operators on V u K,

In the last section, we apply these results to the Euclidean motion
group M(2). In this case we explicitly determine K-bi-invariant and
M(2)-bi-invariant differential operators respectively. We also show
that every nonzero bi-invariant operator on M(2) has a global

fundamental solution,

3. DIRECT PRODUCT H x K

Let H and K be two Lie groups, K compact connected, and
G = H x K be the direct product., Since K is compact we have a
partial Fourier transform on' G. Let § denote the dual of K. In
each equivalence class A ¢ R, we choose an element also denoted A: A
is an unitary irreducible representation of K. The partial Fourier
coefficients of an operator P are defined by

(PAf)(x) =P(f s A)(x,eK)

for every f ¢ O(H) and A € K (D (H) denotes the space of compactly
supported C -functions on H with its usual topology).

The PA’s are differential operators on H, with coefficients in
End(HA), where HA is the representation space of A and End(HA) is

the space of endomorphisms of HA’ It is easily seen (using Schur’'s
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lemma) that if the operator P is G-bi-invariant then the PA's are

H-bi-invariant scalar operators.
THEOREM 1: Let H,K be Lie groyns, K compact connected, H
arbrtrary and U an open subset in H, Let P be a linear

abf?érentjaj operator, br-rnvariant on the product H x K.
Then P has a fundamental solution on U x K If£ and only If
there existe for each A ¢ ﬁ a distribution EA on U such that

PAEy = ¥y

and

for every compact subset C In U, there exist a constant

A >0 and positive integers a and b such that

VE ¢ D), VA ¢ K, I<E, €51 ¢ AN(M®IEL,

Here the seminorms | 1., b ¢ N, define the topology of DH) and

N is a positive function on K.

So it is equivalent to study the existence of a family of

fundamental solutions for the partial Fourier coefficients PA'

satisfying a growth condition,

From this theorem we deduce a necessary condition for the existence

of a fundamental solution for P.

Let xi,...,xn be a basis of the Lie algebra h of H. Then,
lod al an
according to the Poincaré-Birkhoff-Witt theorem, the X = X1 ...Xn ,
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ae Nn, form a basis of the complexified universal enveloping algebra

Uch) of h.

We define a norm on U(Ch), for the operator 0 = § aax", as

n
aeN

iol =
Q r . la l.
aeN

where a, €C.
THEOREM 2:> Let W and K be real Lie groups, K compact
connected, and U an open neighbourhood of ey in H, Let P
be a bi-rnvariant linear differential operator on H x K and PA
Its partial Fourier coefficients, The condition

Ja>0 Jacen Vack, P, 1 > AN
Is a pecessary condition for existence of & fundamental solution for
P on U x K,

If H= Rn, this condition is exactly the necessary and sufficient
condition of Cerezo and Rouviére. To prove that this condition is
sufficient, Cerezo and Rouviére [4] used the Fourier inversion formula
(generalizing Hormander’s construction) and they chose a new contour of
integration which avoids the singularities., In the general case. this
condition is probably sufficient but we don‘t know how to prove it. I

proved a sufficient condition, very close to this one, using different

methods,
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The notion of P-convexity enables us to obtain alobal solutions
from semiglobal solutions (i.e. solutions on every relatively compact
open subset),

DEFINITIONS: Let G be a Lie group, Q an open subset of G and P
a linear differential operator on G. 2 is P-convex if for every

compact subset L C Q. there exists a compact subset L°c 2 such that

supptPtcL 7 supp < L°
for all ¥ ¢ D(Q),
A compact subset L € G is said to be P-full if
supp PcL => supp¥cl
for all ¥ e(G).
EXAVPLE In R'. the convex subsets are P-full. In the definition
of P-convex. for L° one can take the convex hull of L.
THEOREM 3: Let G be a second countable Lie group and P a
linear differential operator on G such that
(1) Every compact subset of G 1s contarned Iin a P-full
compact subset of G.
17) P has a fundamental solution on every relstively compact
open subset of G.
Then P has a aglobal fundamental solution on G and

PCT(G) = C (G).
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The proof of this theorem uses general methods in functional
analysis.

QOROLLARY 4: Let G be a simply connected solvable Lie group,
Every ponzero br-invariant linear differential operator P on G
has a global Fundsmentsl solution on G and PCT(G) = CT(G).

Therefore, to study the existence of global solutions it is enough
to study the existence of semiglobal solutions and P-convexity.

The P-convexity of H x K corresponds by Fourier transform to a
property of uniform convexity of H for the PA's. I proved this
property when H is solvable simply connected.

To show the semiglobal solvability of P, I used Rouviére’s method
which,qeneralizes to =solvable Lie groups Hormander’s method based on
Lz—inequalities on Rn. In the case of one linear differential operator
on a solvable Lie group, Rouviére [9] proved some inequalities ;nd
deduced from them the existence of semiglobal fundamental solutions for
this operator. I calculated explicitly the constants in the
inequalities and studied their dependance on the operator.

The "winning coefficients” of a nonzero operator P are the
coefficients which may occur in the final inequality. These
coefficients turn out to be the maximal elements (in the sense of a

particular order on Nn) a e N"  such that % = 0.
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Applying this method to the partial Fourier coefficients PA of
the operator P, together with theorems 1 and 3, allows us to prove a
sufficient condition for the existence of a global fundamental solution
for P on H x K,
THEOREM §: Let H amd K be real Lie groups, H solvable
simply connected, K compact connected and G be the direct
product H x K., Let P be a br-invariant linear differential
operator on G and P A A e ﬁ, Its parfz'a! Fourier coefficients.,

If for each A ¢ ﬁ the operator t(PA) I's ponzero and If the
followring condrition is satisfred

3a>0.JacN Yack, 1S 1 > W™

then the operator P has a fundamental solution on G and
PC(G) = C(G).

If Q= ¥ aax“ ¢ Uh) is nonzero, then 101’ = Llagl for a,

aeN”

winning coefficient,

4. CARTAN MOTION GROUPS
Some of the above results can be extended to semidirect products of
Lie groups, In this section we study the existence of fundamental

il

solutions for left invariant linear differential operators on Cartan

motion groups,
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Let G be a Lie group., A subgroup K of G is said to be

reductive in G if there exists a vector space V such that

g=keV and AdKKIVcV

where g and k denote the Lie algebras of G and K respectively

and Ad is the adjoint representation of G.

When the group G is semisimple, connected, with finite centre and
K is a maximal compact subgroup of G, the semidirect product V xu K
of V by K relative to this action is called the Cartan motion group
associated to the pair (G,K).

The multiplication law in V % K is given by
w,k)(v' ,k°) = (vék.v’ kk’) for all v,v' ¢V and k,k’ ¢ K, where

k.v’ = Ad(k)(v').,

In this situation, the relationship between existence of
fundamental solutions for differential operators on G and V x K
respectively is studied in (3], using contraction maps.

Since the group K is compact, we have a partial Fourier transform
on V u K.

Let P be a left invariant linear differential operator on V # K.
As in the case of a direct product, the partial Fourier coefficients

A

PA' A e K, of P are defined by

(PAf)(v) = P(f ® A)(v,er)
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for every £ ¢ D(V) and A ¢ ﬁ. They are left invariant differential
operators on V,

Let (Xl.....Xn) and (Tl""’Tp) be bases of V and 5

respectively. Then (xi""’xn’Tl""'Tp) is a basis of the Lie

algebra Ve k of VxuK (here V & k is a direct sum of vector

spaces).

Let e X T e i Ty Xy e X Tao, suaT
Xv‘1 v_r K, K, Hvark, vaK - FvaK, VaK

denote the corresponding left invariant vector fields on V.K and V u K

respectively. For a = (a1,....an) eN" and B8 = (Bl,....Bp) e NP, we
set
a «a a a
“extox" ¥ =xt . xP
\'} V1 Vn VaK xVxK1 VaKn
and
A Sy S I B
K K, "K_: VaK V8K, °° "VaK_°
1 ] 1 o)

LEWA 61 (2) Forall X eV.T ¢k, £e &) and ge C (K

we have
XQxK(f & g)(v.k) = (k.XQf)(v)g(k)
and
TQxK(f & g)(v.k) = f(v)(TKg)(k)
(11) For all X eV, fe DW), ke K. a e N and v eV,
e fave

K XPUEW) = [XXCE 0 MCK)) o i,
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PROOF (i) We have, for X' eV,

%“Gegwa=ga (£ 8 @)((v.K)(EX" )
t=0

_d_ .
= dtlt=0 (f ® g)(vetk. X' k)
- g—,a [ECvetk. X )g00T = 5, (ECuatk. X )glk)
t=0 t=0
= (k.xof)(v)g(k)
and, for T’ ¢ k,
3 - _(_i_ e
TVxK(f ® gl(v,k) = dtlt:o (f ® g)((v,k)(Ov,exp(tT )
e d— 4
= dtlt=0 (f & g)(v, kexp(tT’))
_4d B
= dt|t=0 C£(v)g(kexp(tT’))]
d
= f(v) 5T g(kexp(tT’))
dtlt=0
= f(v)(Tkg)(k).

(ii) Let £ ¢ D (V) and put g(v) = £(k.v) for all v eV, i.e.
g = f o Ad(k) (k ¢ K).
Then, for X’ ¢ V,

. -4 '
(k.va)(v) = dt't:G f(v+tk . X7)

(k. (kL vetx’ )

"

d_
dtle=g

d

e -1 .
= dtlt=0 gk ~.v+X)

. -1
(ng)(k V).
So

kXGE = Xp(F © Ad(K)) o Ad(k ™)
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and, by induction,
(kX% = X, %CE o Ad(K)) o Ak ™D,
g.e.d.

Let P ¢ U(V e k), According to the Poincaré-Birkhoff-Witt

theorem, P can be written
) | g
P= 1 35 Xuak VK
aeN ,BeNp

where aaﬂ e C,

Then, for every £ ¢ (V) and A ¢ K, we have

e a B
P(f & M)(v,k) = T &, [CkX)EIVIAGIT,

a,B
and
B8
P, = } a T
A a8 an(JA
.
where TA = dt|t=0 A(exp(tTK)).

PROOF: For £ ¢ H(V) and A ¢ K we have

8
P(E @ M(v,K) = [(T ay, xng Ty (£ ® M1, K)

o,B

_ 8
= azB ag szK(TVxK(f ® A))(v,k)

and applying lemma 6

PE e DK = T &, X (E o (TﬁA))(v,k).
.8

But  TAAGK) = A(k)Tﬁ where T

K A(exp(tTK))

_d
AT atl g

So P(f ® A)(v, k)

o 8
{B a8 XVxK(f ® (ATA))(v,k)

’

8
azﬂ 88 xﬁxK(f ® M) (v, k)T,
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and using lemma 6 again

a, B8
P(f ® A)(v,k) = ¥ a [(k.X,) £I(VIAK)T,.
g o X, A

Now (PAf)(v) P(f ® A)(v,eK)

a
[T eyl (kXy) EICIAUTH]

8
¥y a OCEI(WVT
I a0t

|k=eK

hence
B
P, =Y a T,.
nm 2
q.e.d.
Furthermore, if we choose a system of coordinates (xl,...,xn) on

V, the partial Fourier coefficients P,, A ¢ K, of P can be written

3 )
(1) P =0 (G —eee, )
A A ax1 axn

where 0A is a polynomial of n wvariables, with coefficients in
End(HA).
Let U be an open subset in V and E be a distribution on
U = K.
The partial Fourier coefficients E(V,A) of E are defined as
follows:
CE(W,A),E(V)> = <E(v. k), E(VIACK)>

for all AeK and £ ¢ D).
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They are distributions on U with values in End(HA). Let
$'(U,End(HA)) denote the space of distributions on U with values in
End(HA).

If u is an endomorphism of a vector space, IulHs denotes the

Hilbert-Schmidt norm of wu. i.e.

= Jtr(uu*)

where u* is the adjoint of u and tr(uu*) is the trace of uu*.

IuIHS

We have the following characterization of distributions on U a K:

~

PROPOSITION 7: Zet (E)

~ be a family of distributions in
A AeK

9 " (U,End(H A))' The distrrbutrons E A are the partial Fourier
coefficients E(v.\) of a distribution E on U xn K If and only
If for every compact subset C In U, there exist a constant
A >0 amd positive Integers a and b such that
I<E, 31,0 ¢ ANCOZIEL,

forall ANeR and £ ¢ DW) swch that supp £ c C.

This result was proved in (4] in the case of the direct product
R" x K. The proof given in [4] can be easily adapted to the case of the
semidirect product V xu K.
PROPOSITION 8: Let P be a left Invariant linesr differential
operator on the Cartan motion eroup V n K.

I£ the operator P Is K-bi-invariant. then we have
@ PE(v.0) = “LC*P) JECv. )

for every E ¢ D' (VuK) and A ¢ R
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PROOF: Let Ee D'(VaK), AeK and £ & O(V).
By definition of the partial Fourier coefficients of a distribution, we
have

o~
<PE(v,A),£(Vv)> = <PE(v, k), £(VIACK)>

EBW.K), 5P 8 MK,

But P(f & A)(v.K)

ttece o M1 0 R(ov'k)(v,eK)

totcc o M) o R(Ov.k)l(v,eK)

since the operator P is K-bi-invariant.

Now,
[(f ®A)O R(Uv,k)](v"k') = (£ ® A)(V' k°k)
= £(v Ak k)
= £(v Ak IAk)
= (£ ® AV’ k"IACK).
Therefore

oL e ) o Reo, 01V = ttecs » NI, e IAK)

[(tP)Af](v)A(k)

and

PAN
PE(v,0),E()> = <E(v.K), 0P £1(vIAC)>

<E(v.A).t(tP)AfJ(v)>

<tt(tp)A]E(v,A),f(v)>.

i

q.e.d.

From these two propositions we deduce the following theorem:
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THEOREM 8: Let P ¢ UV o lf) be K-bri-invariant and le¢ U

be an open subset in V,

Then P has a fundemental solution on U % K JF and only If,
for each A € f< there exists a distribution EA € $'(U,End(HA))
on U such that
() trce 38, = 3,
and

for everj/ compact subset Cc U, there exist a constant
(4) A >0 and positive integers a and b such that
VEe DO, VA ek, IKE,EI . ¢ WML,
PROOF By partial Fourier transform on K, the equation PE = BVxK
“is equivalent to
VaeK PE(v.A) = B, (v,A).
VaK

But &, (v,A) = 6v(v) and since the operator P is ' K-bi-invariant,

VaK

according to proposition 8, we have
A ~
PECv,n) = rctey JECv, ).

So, P has a fundamental solution on U w K if and only if, for each

A

A £ K, there exists a distribution EA € o@’(U,End(HA)) on U such
that

t. t _
(C°P),IE, = 8,

and the distributions E,, A ¢ K, are the partial Fourier coefficients

A’

of a distribution on U = K,
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By proposition 7, this condition is equivalent to the inequalities

4.

g.e.d.
This theorem allows us to give a necessary condition for the
existence of a fundamental solution for K-bi-invariant differential

operators on the Cartan motion group V u K.

[ole)

If M is a matrix in End(HA), let us introduce the comatrix M

of M, that is the transpose of the matrix of the cofactors of M. We

have

€O, M = H.%%4 = det M.1d,
A

where detM is the determinant of the matrix M.

Let M(€) be a matrix in End(HA) such that its coefficients with

respect to an orthonormal basis of HA are polynomials mij(ﬁ). Then

M(€) denotes the matrix whose coefficients with respect to this basis

are mij(f) , where

- (a) 2,172
m,_.(§) = CY¥ Im,7(E)IT) .
13 aeN 13

This definition does not depend on the choice of the orthonormal

basis in HA and one has

2 _ (a),2
HS = Y IMCE) 'HS’

aeN

1HCE)

THEOREM 10: Let V x K  be a Cartan motion group and U an open
neighbourfiood of the origin in V. Let P be & K-bi-Invariant,

V 8 K-Zeft rnvarient linear differential operator on V u K and,
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for A e |€, Jet QA be the polynomial defined by (1) for the

operator ¢ tP)A] .
The followring condition

JA>0,Ja ¢ N, VA € K
(%%, (0))

< aNG?

(S) det Q,(£) £0 and
(detOA(O)) HS

I8 a necessary condition for the existence of a fundamental solution
for P on U 1 K.
PROOF Let P e U(V e l__s) be K-bi-invariant.

If P has a fundamental solution on U s K, then, according to
theorem 9, for each A ¢ lz there exists a distribution
EA € of)'(U,End(HA)) on U satisfying (3) and (4).

Since the operators t(I(tP) A] are differential operators on the
vector space V, we can use the same arguments as in [4] to prove the
necessity of the condition (S). The idea of the proof is to apply the
inequalities (4) to particular functions. For the details we refer the

reader to [4], p.576-577.

g.e.d.

5. THE EUCL IDEAN MOTION GROUP
In this section we apply the above results to differential

operators on the Euclidean motion group M(2).
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The group M(2) is the Cartan motion group V % K when V = R2

and K = 80(2). In this case the group K acts by rotations on the
Euclidean plane.
If we ;hoose a gystem of coordinates (x,y,8) on M(2), with
X,Y, € R and 8 ¢ T = R/2rZ, then the multiplication is given by
(%,y,8)(x°,y°.8°) = (x+x’'cosf-y’'sind,y+y ' cosf+x‘sind, 8+6°)

Let m(2) be the Lie algebra of M(2), and let (X,Y,T) be a

basis of m(2) with the brackets

x,yl= 0
0,11 = =¥
v,11 = X

(X,Y e V and T ¢ s0(2)).

The corresponding left invariant vector fields are given by,

for £ e D(M(2)),

. 3
‘(XH(Z)f)(x,y,O) = cosé %& + sing 35
i OF af
(Y“(z)f)(x,y,a) = -giné ax t cos@ 3y
_ af
(TH(Z)E)(x,y,O) =30

and for g e V), h e D (K),
3q
ax

3g
3y

n

(xvg)(x.Y)

(ng)(X,Y)

(TKh)(O) =

@ o
|7

The dual K of K 1is here isomorphic to Z and we have, for

nestZ,
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An(e) =e .

Thus, if

P= § a Yoot e um(2))
. bren "G %2 %@ e m

the partial Fourier coefficients of P are given by

P = T a (in)TXSYB
n a,B8,reN asy v

for all n e Z,
LBwWA 11: Let P Lbe a left rnvariant linear differential operator
on M(2),
) I P Js K-br-invariant then

2 )#TB

2
P= ¥ a .( + Y .
e ot X2y * Yme2)? e

15) I P 1s WM(2)-br-invariant then

P= L 8 X2y i)™
PROOF: Since there is no ambiguity here (we consider only vector
fields on M(2)), we shall omit the subscript M(2) in this proof.
(i) P is K-bi-invariant if and only if it satisfies (P,T] = 0.

In the symmetric algebra, this condition can be written

p,T]

n
=<
=3
—
+
<
=3
)

5
3

This implies that P is of the form
P = %+v2.T)

where Q 1is a polynomial of two variables, i.e.
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2 2 a B
P= ¥ a_ X +Y 3T .
a.BeN af""M(2) M(2) M(2)
(ii) P is M(2)-bi-invariant if and only if it satisfies (P,X] =
p,Yl = [P, T] = 0.

In the symmetric algebra, we have

_ P ap
P.X] = ;;(v,x] + 3¥{T,X]

= 3P, _
= STY =0,
3 _
Therefpre aT = 0
- 3P _
Also (PY] =0 = 3T =

and since P is K-bi-invariant, we have

2 2 a
P= ¥ al[ +Y .
oy e %2y * Y

q.e.d.

Let P ¢ U(m(2)) be K-bi-invariant.

Then
P= T a0, + Yo T
a,BeN
and
e v a0l +v2 %t )E
w.iin o Y2y * Yue) M(2)

. 2 2 a . . . t 2 2 =
(since (XM(Z) + YH(Z)) is M(2)-bi-invariant and (xH(Z) + YH(2)) =

2 2
Xue2y + Yueay)-

So, for all ne Z, we have

t. . \B,,2 ,2.a
(P) Y a  (-in) (X +Y)
n a.BeN aB XV Vv

=P
-n
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and
t tP _t _
[¢ )n] = (P_n) = P_n.

Therefore. (2) can be written

A ~
PE(v.n) = P_ E(v.n).

THEORBM 12: Avery nonzero br-rnvariant linear differential operator
on the Euclidean motion group has a global fundamental solution on
M(2),

PROOF: Let P be a nonzero bi-invariant lineer differential operator

on M(2). By lemma 11(ii), we have

2 2 o
P= 2 a (X“ +Y. ).
acN @ (2) "M(2)
So, for every n e Z

2 2

2 .2.a ) .«

P =Y a (XV+Y Y =Y a (5 + )" =P,
n o, v a @ axz ayz

Now, P (considered as an operator on V) has a global fundamental
solution F on V,

Putting Eh =F for every n ¢ Z, the family (En)nez satisfies
(4) since F is a distribution: for every compact subset C in V,
there exist a constant A > 0 and a positive integer b such that

VEed), [<F.E>] <Alfly

(take U=V, and a =0 in (4)).

Hence we have the existence of a global fundamental solution for P

on M(2) by theorem 9,

q.e.d.
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