
35 

ESTIMATES FOR LINEAR SYSTEMS 

OF OPERATOR EQUATIONS 

Alan J. Pryde 

1. INTRODUCTION 

(*) 
This is a description of joint work with Alan Mcintosh and Werner 

Ricker of Macquarie University. 

Throughout, X and Y denote (complex) Banach spaces. The space of 

bounded (linear) operators from X to Y, provided with the operator norm, 

is denoted L(X,Y) and L(X) L(X,X). The Taylor spectrum of a commuting 

Sp(S,L(X)) (see Taylor [9]). 

We consider the following linear system of equations 

(l.l) U. for I < i < m. 
J_ 

Here and elsewhere, A= (A .. ) E L(X)mn, B = (B .. ) E L(Y)mn, I< i < m, 
lJ lJ 

I < j ;:;: n, and A, B are com1nuting ron-tuples. Moreover, 

U (U1 , ... ,Um) E L(Y,X) is given and an operator Q E L(Y,X) satisfying 

(l.l) is to be determined. We will order ron-tuples such as A = (Aij) or 

X (xij) E ~mn, l;:;: i;:; m, l < j ;:; n, lexicographically from the left. So, 

X = X ) • 
mn 

For m > I, the system (l.l) is overdetermined and it is readily seen 

that a necessary condition for the solubility of (l.l) is the following 

(*)The continuing support of the Centre for Mathematical Analysis, Canberra, 
is gratefully acknowledged. 



compatibility condition 

(1.2) 
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n 
~ AijU~Bij for 1 < i, t < n. 

j=l 

The operators TiE L(L(Y,X)), defined for 1 ~ i; m by Ti (Q) = 
n 

I AijQBij , are sometimes called elementary operators. 
j=l 

Spectral properties 

of (single) elementary operators, especially on Hilbert space, have been 

studied by a number of authors. See for example Curto [A] and the references 

cited there. System (1.1) with m = 1 is also the subject of Mcintosh, 

Pryde and Ricker [8]. 

(1. 3) 

An interesting special case arises when n = 2, Ail 

B .. 
l 

Then (1.1) becomes 

u. for 1 < i < m. 
l. 

In this case Ti is a generalized derivation. 

-I, 

and Pryde [5], [6] have shown that the compatibility condition (1.2) is 

necessary and sufficient for the solvability of (1.3). Moreover, let 

sist of generalized scalar operators with real spectra. Recall that an 

operator s E L (X) is generalized scalar with real spectrum if and only if 

there exist s ;;; 0 and M ;;; 1 such that llexp (iA S) II ; M (l+ I A I) s for all 

A Em (Colojoara and Foias, [3]). 
' 

So there exist constants s, t ~ 0 and 

M, N ~ 1 such that 
m m 

llexp(i Is AlII S: M(l+lslls, llexp(i Is B l II S: N(l+lsllt 
~=1 ~ ~ - t=l 9, 9, -

for all Emm. It is proved in [6] that there exists a constant 

c = c(m,s+t) such that any solution Q of (1.3) satisfies 

(1. 4) 
-1 -s -t 

IIQII < cMNO max(l,o )max(l,6 ) 11~11 
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where /lull 
; 2 ~ 

( L 1/U. II ) . 
i=l l 

Our original motivation for studying system (1.3) was that it arises in 

the study of perturbation of spectral subspaces of commuting m-tuples of, 

say, normal operators on a Hilbert space. For these applications, see [5]. 

In this paper we attempt to obtain estimates similar to (1.4) for the 

more general system (1.1). To do this it will, at times, be necessary to 

assume that and B = (B .. ) 
- lJ 

are commuting ron-tuples of general-

ized scalar operators with real spectra. So, there exist and 

for l < i < m, 1 < j ~ n such that 

(1.5) 
SQ,. 

llexp(iAA .) II < M . (1+/A/) J, llexp(iAB .) II 
IOJ = ~ IOJ 

tQ,. 

< N .(1+/A./) J 
lOJ 

for all A. E JR, l ::; i :5 m and 1 :5 j $ n. 

It follows from (1.5) that : = (T1 , ... ,Tm) is also a commuting tuple of 

generalized scalar operators with real spectra ; that is, there exist u ~ 0, 

P > 1 such that 

(1.6) llexp(i<t; .'E_>l /1 < P(l+ lsllu for all I;E JRm where q,T> 
m 

I t; .T .. 
j=l J J 

By Mcintosh and Pryde [6, Theorem 11.1] any solution Q of (1.1) satisfies 

(1. 7) 
-1 -u 

//QII < cPo max(l, o ) 11~11 

where c = c(m,u) and o dist(O,Sp(T)) > 0. 

However, we are in general unable to find a relationship between (u,P) 

and (s .. ,t .. ,M .. ,N .. ) . 
lJ lJ lJ lJ 

In Mcintosh, Pryde and Ricker [8] it is shown that 

we can take u = I (s .. +t .. ) 
. . lJ lJ 
l,J 

infinite dimensional case, if 

when X, Y are finite dimensional. In the 

X = Y, it follows from Albrecht [1] that 

u ~ I (s .. +t .. +2). 
. . lJ lJ 

In a private communication, M. Hladnik has given an 
l,J 
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where u > ~ (s .. +t .. ) . 
. . l.J l.J l.,J 

In this paper we seek estimates for solutions Q of (1.1) in terms of 

the parameters and not in terms of (u,P). 

Note that, given (1.5), A and B satisfy 

(1.8) llexp(i<t;,~>) II ~ M(l+jt;j)s, llexp(i<f;,~>) II ~ N(l+ jt;j)t 

for certain constants s, t ;;;, 0 and M, N ;;;, 1 and all f; E lRmn. 

In fact, since exp(i<t;,~>) = 

B, it follows that we can take 

N = TI N ... 
. . l.J l.,J 

2. EXISTENCE, UNIQUENESS THEOREM 

Let Lij' R~ . E L(L(Y,X)) for 
l.J 

1 < 

with a similar expression for 

~ t .. , M = TI M .. , 
. . l.J . . l.J l.,J l.,J 

i ~ m, 1 < j ~ n be defined by 

Lij (Q) AijQ and Rij (Q) = QBij" Let L = (Lij) and R (R .. ) so that - l.J 

(L,R) is a commuting 2mn-tuple. 

a::2mn 
n 

Define 

"' 
: + a::m by 

"' 
= (lfll' · · · '"'m) where lfli (x,y) = ~ X •. y .. 

x,y E a::mn a::2mn a::mn a::mn. 
j=l l.J l.J 

for and we make the identification = X If 

T (T1 , ... ,Tm) then 

(2.1) T lfl(L,R). 

In the next proposition, and in section 3, we will assume that 

A are of the form 

(2. 2) All.j = A + 'A . Bll.j = Bll.jl + iBll.j 2 ll.jl l. ll.j2 

where (All.jk) • (Bll.jk) for 1 < Jl, ;:; m, 1 < j ~ n, 1 ;:; k < 2 are 

commuting 2mn-tuples in L(X)2mn, L (Y) 2mn respectively and 

all All.jk' Bll.jk have real spectra. 
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If A, B satisfy (2. 2) they are called strongly commuting, and the tuples 

rr (A) (Atjk) , 1f (~) = (Btjk) are referred to as partitions of A, B. If 

X, Y are finite dimensional, then any commuting tuples are strongly commu-

ting. If X, Y are Hilbert and A, B are commuting tuples of normal 

operators, then A, B are strongly co~muting. Other examples may be found 

in Mcintosh, Pryde and Ricker [7). 

PROPOSITION 2.3 Suppose one of the following conditions is satisfied 

a) m = n l, 

b) X Y, 

c) X, Y are Hilbert spaces, or 

d) A, B are strongly commuting. 

Then Sp (L) C Sp (A) and Sp {R) C Sp {B) . 

Proof. Define ~ : L{X) + L(L(Y,X)) and r : L(Y) + L(L(Y,X)) by 

Jl, (A) (Q) = AQ and r (B) (Q) = QB. It is easy to check that Sp(~(A)) C Sp(A) 

and Sp(r(B)) C Sp(B), proving the result for a). 

If X = Y or if X, Y are Hilbert spaces, then ~ and r are iso-

metries onto (closed) unital subalgebras of L(L(Y,X)). Further ~ is a 

homomorphism and r an order-reversing-homomorphism. Hence 

Sp(~) C Sp(~(~), L(L(Y,X))) = Sp(L) and Sp(B) C Sp(r(B) ,L(L(Y,X))) Sp(R), 

proving the result for b), c). 

Suppose A, B are strongly commuting with partitions 1f(A), 1T(B). 

Since 
2mn 

Sp ('11 (A)) c lR , by [7, Theorem l) Sp (1f (A)) = y (1T (A)) - -
Define p ~2mn + ~mn by p(x) y, 

Then 

Sp(A) = p(Sp(1T(A))) - -
(by Taylor's spectral mapping theorem [10)) 



= p ( y ( 1f (~)) ) 

:::> p(y(R.(1f(~)))) 

(by the result proved above for a)) 

= p(Sp(R-(1r(~)))) 

(since Sp (t (1f (A))) C lR2mn) 

Sp(~). 

Similarly, Sp(B) :::> Sp(~). I 
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PROPOSITION 2.4 Suppose one of the conditions 2. 3a) - d) 

fied. Then Sp(!l c v(Sp(~) X Sp(~)). 

is satis-

Proof. By (2.1), Taylor's spectral mapping theorem and Proposition 2.3, 

Sp(T) sp <v <~·~» 

v<sp<~·~» 

c V(Sp(~) x Sp(~)) 

c v<sp<~> X Sp (~)). I 

THEOREM 2.5 Suppose one of the conditions 2 ~ 3a) "'" d) is satisfied and 

o ~ v<sp<A> x sp<~>>. Then system (1.1) has a solution Q E L (Y, X) 

if and only if the compatibility conditions (1.2) are satisfied. 

when a solution exists it is unique. 

Moreover, 

Proof. We have observed already that the compatibility conditions are 

necessary for solubility of (1.1). Conversely, if 0 ~ v(Sp(~) x Sp(~)) 

then by Proposition 2.4 and the definition of the Taylor spectrum, the 

Koszul complex for T is exact. In particular, Q 1+ (Tl (Q) , ••• , Tm (Q) ) is 

an injection from L(X,Y) into L(Y,X)m whose range is precisely those U 

satisfying (1.2). I 
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3. ESTIMATES FOR THE SOLUTION REAL SPECTRA 

In order to prove estimates for the solution of (l.l) we must place 

restrictions on A, B. Throughout this section, we assume 

0 ~ ~(Sp(A) x Sp(B)) and moreover that A, B are commuting mn-tuples of 

generalized scalar operators with real spectra. In particular we assume 

that condition (1.8) is satisfied. 

It follows that (L,R) is a commuting 2mn-tuple of generalized scalar 

operators with real spectra. In particular, if K = MN and r = s + t, 

then 

(3.1) 

for all 1;, n E lRmn 

Let k be a positive integer and r any non-negative real. We denote 

by 
v k 

L 1 (r, lR ) the space of inverse Fourier transforms g of complex-valued 

functions h for which (1+ lc I) rh E L1 ( lRk). In particular, 

g(x) hv(x) = (2'lf)-k J kexp(i<t;,x>)h(Odt;. The norm 
lR 

llgll (2'lf)-k j k(l+lsl>rlh(t;)lds makes L~(r,lRk) a Banach algebra with 
lR 

respect to pointwise multiplication. For the details, see Mcintosh and 

Pryde [6]. 

In view of condition (3.1), it follows that (L,R) has a functional 

calculus based on 
v 2mn 

L 1 (r, lR ) . In fact there is a continuous homomorphism 

(3. 2) 
v 2mn 

<l? : Ll (r, lR ) + L (L (Y, X)) 

defined by 

<l? (g) -2mnJ (2'lf) 2mnexp (i< (I;, n), 
lR 

If 
2mn 

p:lR +([: is a polynomial and is 1 on a 
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neighbourhood of Sp(L,R) then 
v 2mn 

6p E L1 (R, 1R ) and 

(3. 3) w (6p) 

From condition (3.1) it follows readily that 

(3. 4) II~~> (g) II < Kllgll for all 
v 2mn 

g E Ll (r, 1R ) . 

Since 0 ~ ~(Sp(A) x Sp(B)) and Sp(A) x Sp(B) - -
-2 

is compact, I~J I ~i 

00 

is C on a neighbourhood of Sp(~) x Sp(~) for 1 < i < m. So there 

(3 0 5) gEL~(r,JR2mn)m and g 
-2 

1~1 ~ on a neighbourhood of 

Sp(A) X Sp(B). 

(3. 6) c(m,n,r,Sp(A), Sp(~)) inf{jjgjj g satisfies (3.5)}. 

THEOREM 3.7 Let z:, B be commuting ron-tuples of generalized scalar 

operators with real spectra such that 0 '¢ 1[J(Sp(A) x Sp(B)). In parti-

cular, suppose condition (].1) is satisfied. If Q is a solution of 

system (1.1) in L(Y,X) then 

!IQII < K c(m,n,r,Sp(A), Sp(~)) 11~11· 

Proof. Let I!> be the functional calculus homomorphism (3.2) and g any 
m 

function satisfying (3.5). Let P = I l!>(g~)Ut. 
J!,=l 

1 on a neighbourhood of Sp(L,R), then for 1 < i < m, 

m 

Ti ( I l!>(g~~,JUJ!,) 
~=1 

m 

I <P(gJ!,)Ti (U~) 
J!,=l 



m 
I 1>(gli)Tli(Ui) 

t=l 
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(using the compatibility condition (1.2)) 

m 

I 1>(gli)1>(81jJQ,)Ui 
Ji=l 

(by (2.1) and (3.3)) 

m 

1>( I gli81jJQ,)Ui 
Ji=l 

= 1>(8)U. 
l 

(by (3.5) and proposition 2.2) 

(by (3. 3)). 

= u. 
l 

Hence P 

m 

Q and by (3.4), 

IIQII II I 1> (gli)uill 
,Q,=l 

m 
< K I II g li II II u li II 

!i=l 

from which the result follows. 

4. ESTIMATES FOR THE SOLUTION COMPLEX SPECTRA 

A more general result for operators with complex spectra can also be 

obtained. Again we assume that 0 ~ 1jJ(Sp(A) x Sp(B)). In addition we 

assume that A, B are strongly commuting ron-tuples whose partitions 

1T (A) = (A,Q,jk) and 1T (B) = (BQ,jk) 

(with real spectra) . 

We define operators LQ,jk 

consist of generalized scalar operators 

R 'k E L(L(Y,X)) 
9-J 



44 

R.tjk(Q) = QB.Q.jk and set L (k) = (L.tjk)' 
R(k) = (R.tjk ) ' 1 < Q, ~ m, -

1 < j < n, l < k < 2. Then (L (1) ,L (2) ,R (l) ,R (2)) is a commuting 4mn-

tuple of generalized scalar operators with real spectra. Hence there 

exist r ~ 0, K ~ l such that 

for all E; 

Moreover, 

Hence 

(4.2) T = ¢ (L(l) ,L( 2 ) ,R(l) ,R( 2 )) 
Q, Q, - - - -

where 
4mn 

<l>g, : IR + a: is defined by 

( (1) (2) (l) (2)) 
<jl.Q, X ,X ,y ,y 

1\l.t (x (1) + ix (2) y (1) + iy (2)) 

(k) (k) E IRmn 
for x = (x.tjk), y (y.Q,jk) 

4mn m # 
Let <jl = (<j)Q,) : IR + 0: , let 4>,q, = <llg, the complex conjugate of ¢g,• 

and define T: ¢:(~(l),~( 2 ) ,~(l) ,~ 121 1. 

LEMMA 4.3 If the compatibility conditions (1.2) are satisfied for u 

then the sol uti on Q of (1.1) is 

Q 
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Proof. ~ # By (1.2), assuming that LT2,T~ is invertible, 
2, 

( 1 T#T )-l(\ #T ) 
t~~ iT~iu~ 

( \T#T ) -l (l'l'#T U ) 
L Ji, Ji, L-Ji, ~ i 
~ ~ 

u .. 
l 

To prove that 2T~TJI, is invertible, we note that 

2T~T~ 2 (1/J:\j!~) ~L (l) ,L (2 ) ,R (l) ,R (2)). Since 2<P:<l>~ : JR4mn + lR is a 
Ji, Ji, ~ 

polynomial, it follows from Taylor's spectral mapping theorem [10] and 

Proposition 2.3 that 

I<<J>:<jl~) (Sp(L(l) ,L(2) ,R(l) ,R(2))) 

~ 

21 1/J~ 12 (Sp {~ (1) +i~ (2) ·~ (1) +i~ (2))) 
Ji, 

II/J 12 (Sp (~,~)) 

C {I>J!(x,yJI 2 : x ESp(A), y E Sp(B)}. 

Since 0 E 1/J(Sp(A) x Sp(B)), IT:T~ is invertible. I 

Now in a neighbourhood of Sp(L(l) ,L( 2 ) ,R(l) ,R< 2 l). 

So there exists a function g such that 

(4.4) 
v 4mn m -2 # 

g E L1 (r, lR ) and g = I <jl I ~i on a neighbourhood of 

Sp (L (l) ,L (2 ) ,R (l) ,R (2)). 
..... ...... ..... -

Analogously to (3.6) we define 

(4. 5) c(m,n,r,Sp(A) ,Sp(B)) inf{llgll g satisfies (4.4) }. - -
For g satisfying (4.4) and Q any solution of (1.1), we conclude from 

Lemma 4.3 that Q = I~<gJi,)U~. 
~ 

Hence : 
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THEOREM 4.6 Let ~ , ~ be strongly commuting mn-tuples of 

generalized scalar operators such that 0 ri ¢ (Sp (~) X Sp (~)) and 

condition ( 4 .1) is satisfied. If Q is a sol uti on of system (1.1) in 

L(Y,X) then 

\\Q\\ < K c(m,n,r,Sp(~),Sp(~)) 1\~11. 

5. UNIVERSAL ESTIMATES 

The estimate (1.7) for system (1.3) reduces to 

(5.1) 1\QII 
-1 

< c <m> o II~ II 

in the case where A, B are, say, commuting m-tuples of self-adjoint 

operators on Hilbert spaces, c(m) being a universal constant with respect 

to such tuples. 

In this section we ~ttempt to improve the estimate of Theorem 3.7 by 

obtaining a more general constant. 

Let n be the unit sphere 

compac-t subsets of n we define 

(5. 2) in:f{\l(J(x,y) I 

mn 
{x EJR \xl 

If a ~ 0 and V is any subset of n we define 

(5. 3) r (VJ 
a 

{tx t EJR, ltl >a, x EV}. 

1}. 

As in previous sections, we will consider ron-tuples A, B of 

operators with real spectra, such that 0 ~ l(J(Sp(A) x Sp(B)). In addition 

we will take compact subsets K1 , K2 of n such that 



47 

(5. 4) 

For example, we could take 
-1 

Kl = {lxl X: X E Sp(A)} and 

-1 
K2 = {lxl X x E Sp(B)}, in which case o(K1 ,K2 ) > 0 follows from the 

condition 0 E ~(Sp(A) x Sp(B}). 

LEMMA 5.5 If K1,K2 are compact subsets of Q with o (K1 ,K2 ) > 0 

there exists C ( JR2mn) m such that 
v 2mn for all g E g E Ll (r, JR ) r > 

and 
-2 

neighbourhood of g = I~ I ~ in a r 1 (Kll x f 1 (K2 ). 

Proof. Since ~ is continuous, there exist open 

neighbourhoods u1, u2 in Q of K1, K2 respectively, such that 

I~ (x,yl I > "lo on u1 X u2. Choose open neighbourhoods v1, v2 in Q 

Kl, K2 whose closures are contained in ul, u2 respectively. 

Let p E c: ( JR) and qh E C00 (Q) for h = 1, 2 be even functions 

0 

of 

satisfying p(t) = 1 for ltl < "2, p(t) = 0 for ltl ~ 1; qh(w) = 1 for 

and p(t), qh (w) E [0,1] for all tE JR, 

w E rl. 

For integers k and h = 1, 2 

oo mn 
11h E C ( JR "-.. {0}) be defined by 

-1 
qh(lxl x). For integers k, ~ 

co mn 
let <j>k E Cc ( JR ) 

-k 
<l>k(x) = p(2 lxll 

let 
oo 2mn 

Ilk, ~ E C c ( JR ) 

and 

and nh(x) = 

be defined by 

Then l11k,~ (x,y) I ; 1 for all 

the set 

mn 
x, y E 1R and Ilk,~ 

< 2k, 2~-2 < 

has support in 

Moreover, for K, L positive integers, 

K L 
I I llk,~(x,y) = (q,K-q,-1) (x) (q,L-cj>-1) (y) 111 (x) 112 (y) 

k=O ~=0 

which is identically 1 on the set 



For 1 < j ~ m and k,~ 

defined by 

Gk • . (x,y) 
, ,11.1, J 
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integers, let G E c"' ( m.2mnJ 
k,~.j c 

5-k-~ -1 
where GJ. = G0 0 . Then IGk •. (x,y) I~ 2 o because 

I I] I .Kit] 

I1!J<x,y) I = lxl IYI l111<lxl- 1x, IYI-\J I~ 2-5 & on the support of 

be 

llo,o· 

Hence 2 }: Gk ~ . (x,y) 
k=O ~=0 ' ,J 

denotes the limit, then 

'f ml 2mn converges unl or y on m. If gj(x,y) 

g = 11111-2111 

on a neighbourhood of Further, 

\ . 
~ Gk ~ . converges to gJ. 

k, ~ , , J 
the Schwartz space of tempered 

distributions. Taking Fourier transforms we conclude that 

~ 

converges to gj 

2-k-~J<HI~;I>rl22mn<kHJc;j<2\' ,2~~;''> ld~; 

2-k-~J (1+1 (2-kJ.l, ,2-~J.L' ') l>riG. (J.L' ,!J' ') ldJ.L 
J 

-k-~ ~ 

2 IIGj II 2mn 
L 1 (r, m. ) 

where I; = (!;',I;'') E m.mn x m.mn = m.2mn and k, ~, r ~ 0. Also 

2: II& .11 < "'. 
k ~ k,~,J L (r m.2mn) , 1 , 

2mn in L 1 (r, m. ) , proving that \ ~ Hence ~ Gk . converges to 
k,~ .~.J 

v 2mn 
g j E L 1 (r, m. ) . I 

Analogously to (3.6) and (4.5) we define 
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(5. 6) inf{llgll 
v 2mn n 

g E L1 (r, lR ) , g as in Lemma 5. 5 } . 

If A is a co~muting mn-tuple of operators, define 

(5. 7) inf {lxl x E Sp(A) }. 

THEOREM 5.8 Let !:; , E be commuting mn-tuples of generalized scalar 

operators with real spectra such that 0 (/: 1(J(Sp(!:;l x Sp(B)). In parti-

cular, suppose condition (1.8) is satisfied. be compact 

subsets of n satisfying condition (5. 4). If Q IS a solution of 

system (1.1) then 

II Q II :;. cdMN II~ II 

and d 
-1 -1 -s -t 

o(A) -o(B) max(l, o(A) J max(l,o(BJ ) . 

Proof. If o(A) = o(B) = l, let g be as in Lemma 5.5 with 

r = s + t. Then 
-2 

g = 11fll 1(! on a neighbourhood of Sp(A) x Sp(B), 
m 

and so, as in the proof of Theorem 3. 7, Q I <!> (g 1/,J uli 
!i=l 

Hence 

II Q II ~ M N II g II II U II from vJhich the required estimate follows. 

The result for general A, B follows by applying the part proved 

already to the tuples 
-1 

B' = o (B) B. 

A, B satisfy condition (1.8) with M, N replaced by M' 

N' N max(l,o(B)-t). 

Remark 5.9 

Note that 

M max(l,o(A)-s), 

a) By the methods of section 4, Theorem 5.8 can be generalized to 

strongly commuting ron-tuples with partitions consisting of generalized 

scalar operators. 

b) The method for constructing the function g in the proof of 
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Lemma 5.5, using Littlewood-Paley decompositions, follows a similar con-

struction in Bhatia, Davis and Mcintosh [2]. 
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