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ESTIMATES FOR LINEAR SYSTEMS

OF OPERATOR EQUATIONS

Alan J. Pryde

1. INTRODUCTION

*
This is a description of joint work( ) with Alan McIntosh and Werner
Ricker of Macquarie University.
Throughout, X and Y denote (complex) Banach spaces. The space of

bounded (linear) operators from X to Y, provided with the operator norm,

is denoted L(X,Y) and L(X) = L(X,X). The Taylor spectrum of a commuting

m-tuple S = (Sl,...,sm) in L(X)m is denoted Sp(S) or Sp(Sl,...,Sm) or

Sp (S,L (X)) (see Taylor [9]).

We consider the following linear system of equations

n
. v = <i<
(1.1) R AijQBij u; for 1<ic<m
j=1
Here and elsewhere, A = (Aij) € L(X)mn, B = (Bij) € L(Y)mn, 1<igm,
1<3j<n, and A, B are commuting mn-tuples. Moreover,

U = (Ul,...,Um) € L(Y,X) is given and an operator Q € L(Y,X) satisfying

(1.1) is to be determined. We will order mn-tuples such as A = (Aij) or
X = (xij) € mmn, 1<igm 1 <3 <n, lexicographically from the left. So,
X = (xll' . Xln' x21, ’ x2n' ey xml' ey xmn)'

For m > 1, the system (1.1) is overdetermined and it is readily seen

that a necessary condition for the solubility of (1.1) is the following

*
( )The continuing support of the Centre for Mathematical Analysis, Canberra,

is gratefully acknowledged.
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compatibility condition

n n
(1.2) $ a .uB .= Y A .UB . for 1<i, &#<n
j=1 23 °1°%3 =1 ij & ij
The operators Ti € L(L(Y,X)), defined for 1 i <m by Ti(Q) =
n
Z AijQBij , are sometimes called elementary operators. Spectral properties
j=1

of (single) elementary operators, especially on Hilbert space, have been
studied by a number of authors. See for example Curto [4] and the references
cited there. System (1.1) with m =1 is also the subject of McIntosh,

Pryde and Ricker [8].

An interesting special case arises when n = 2, Ail = Ai, Aiz = -I,

=1I, B,, = Bi' Then (1.1) becomes

Biy 32

(1.3) AiQ - QBi =10, for 1

A
b
A
=]

In this case Ti is a generalized derivation.

Under the condition that Sp(Al,...,Am)riSp(Bl,...,Bm) = @, McIntosh

and Pryde [5], [6] have shown that the compatibility condition (1.2) is

necessary and sufficient for the solvability of (1.3). Moreover, let
§ = dist(Sp(Al,...,Am), Sp(Bl""’Bm)) be positive and suppose A and B con-
sist of generalized scalar operators with real spectra. Recall that an

operator S €L(X) 1is generalized scalar with real spectrum if and only if

there exist s > 0 and M > 1 such that [lexp (iAS) | < M(l+{)\|)S for all

A ER (Colojoar5 and Foias, [3]). So there exist constants s, t > 0O and
S =
m m
M, N> 1 such that flexp(i § £,a )| < M@+|e)®, JlexpG § €8] < na+|eh®
= 2% = 2% =
o =1 =1
for all (gl,...,gz) ER . It is proved in [6] that there exists a constant

c = c¢(m,s+t) such that any solution Q of (1.3) satisfies

1.4 ol < cmns™ Y max (1,6 Symax (1,8 5) ||u]]
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m
2 %
wnere [lull = (§ llug 1%
i=1
Our original motivation for studying system (1.3) was that it arises in

the study of perturbation of spectral subspaces of commuting m-tuples of,

say, normal operators on a Hilbert space. For these applications, see [5].

In this paper we attempt to obtain estimates similar to (1.4) for the
more general system (1.1). To do this it will, at times, be necessary to
assume that A = (Aij) and B = (Bi.) are commuting mn-tuples of general-

ized scalar operators with real spectra. So, there exist Sij' tij > 0 and
.., N,, >1 for 1<i<m 1< 3j<n such that
ij ij = = = = =

S

(1.5) ||exp(i)\A9,j) Il < M%j(l+|>\|) 23

t%j

AN

, [[exp(lABLj)|| N%j(l+lx|)

for all XE€R, 1 <L <p and 1< j <n.

It follows from (1.5) that T = (T .,Tm) is also a commuting tuple of
generalized scalar operators with real spectra ; that is, there exist u > O,

P > 1 such that

m

(1.6)  lexp(icg ,>) || < P2+ |g))? for all te ®" where <¢,T> = E4T5-
- < Tk

By McIntosh and Pryde [6, Theorem 11.1] any solution Q of (1.1) satisfies
-1 -u

(1.7) llell € ePs ™ max(1,8 ) (U]l

where ¢ = c(m,u) and & = dist(0,Sp(T)) > O.

However, we are in general unable to find a relationship between (u,P)

and (s,.,t,.,M..,N,.). In McIntosh, Pryde and Ricker [8] it is shown that
ij" i3 i3 i3

we can take u = § (sij+tij) when X, Y are finite dimensional. In the
i,]

infinite dimensional case, if X = Y, it follows from Albrecht [1] that

u < 2 (sij+tij+2). In a private communication, M. Hladnik has given an
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.« s - = T
explicit example (X =Y Lz) where u > iLj(sij+tij).
v

In this paper we seek estimates for solutions Q of (1.1) in terms of

the parameters (s,.,t,.,M,.,N,.) and not in terms of (u,P).
iJ° 13 1] 1]

Note that, given (1.5), A and B satisfy

. . t
(1.8)  llexpt<e,nn | < M(+le®, llexp (i<g,B>) || < N1+ |g])
for certain constants s, t 2 0 and M,N 2 1 and all ¢ € ngnn.

In fact, since exp(i<g,A>) = I exP(iEmjALj)' with a similar expression for
- 2,3
B, it follows that we can take s = 2 s.. , t = E t,., M= I M.,
~ L eTig R A | PR i |
1,3 1i,] 1,]
N= 1 Nij'
i,J

2. EXISTENCE, UNIQUENESS THEOREM

Let Lij’ Rij € L(L(Y,X)) for 1 <ig<m 1< J<n be defined by
Lij(Q) = AijQ and Rij(Q) = QBij; Let E = (Lij) and B = (Rij) so that

(L,R) 1is a commuting 2mn-tuple.

n
2mn m
i . = = Y
Define ¢ : C > C by ¥ (wl,...,wm) where wi(x,y) jﬁ Xijyij
for x,y € ™  and we make the identification m2mn = x ™, If
T = (Tl,...,Tm) then
(2.1) T = y(L,R).
In the next proposition, and in section 3, we will assume that
A= (A .,), B= (B .
A ( %3) B ( QJ) are of the form
2. . =A .. +1iA ., B . = L, o+ i .
(2.2) Ayg 231 T a2 25 = Byl T Byso
where ( )., ( for 124 <m 1<Jj<n, 1 <k<2 are

Bosk)r B!
n

commuting 2mn-tuples in L(X)2m ’ L(Y)2mn respectively and

all B . have real spectra.

AIij' 2k
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If A, B satisfy (2.2) they are called strongly commuting, and the tuples

m(A) = ( ), T(B) = ( ) are referred to as partitions of A, B. If

. B .
A%jk 23k
X, Y are finite dimensional, then any commuting tuples are strongly commu-
ting. If X, Y are Hilbert and A, B are commuting tuples of normal
operators, then A, B are strongly commuting. Other examples may be found

in McIntosh, Pryde and Ricker [7].

PROPOSITION 2.3 Suppose one of the following conditions Is satisfied
a) m=n =1,
b) X =Y,
c) X, Y are Hilbert spaces, or
d) A, B are strongly commuting.

~ ~

Then Sp(L) C Sp (B) and Sp(R) C Sp (B) .

Proof. Define & : L(X) » L(L(Y,X)) and r : L(Y) + L(L(Y,X)) by
2 (A) (Q) = AQ and r(B) (Q) = QOB. It is easy to check that Sp(%(A)) C Sp(A)

and Sp(r(B)) C Sp(B), proving the result for a).

If X =Y or if X, Y are Hilbert spaces, then & and r are iso-
metries onto (closed) unital subalgebras of L(L(Y,X)). Further & is a
homomorphism and r an order-reversing-—homomorphism. Hence
Sp(é) C Sp(l(é), L(L(Y,X))) = SP(E) and Sp(g) C Sp(r(g);L(L(Y,X))) = Sp(B),

proving the result for b), c).

Suppose A, B are strongly commuting with partitions w(A), m(B).

Since Sp(w(A))C IR2 , by [7, Theorem 1] Sp(m(A)) = y(n(A)) =
2mn 2 2mn mn
€ : - . i : =
{ € R 0 e Sp(Z(Aijk Aijk) )} Define p [} + T by p(x) v,
= = = + 3 .
where x (ijk)' ¥ (y%j), y%j X%jl lejZ Then

Sp(A) = p(Sp(n(A)))

(by Taylor's spectral mapping theorem [10])
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= p(y(w(é)))
D p(Y(!L(n(i\))')')
(by the result proved above for a))

=p(Sp(2(m(A))))

(since Sp(&(n(a))) C ™)

= sp(L).
Similarly, Sp(B) O Sp(R). ]
PROPOSITION 2.4 Suppose one of the conditions 2.3a) - d) is satis-

fied. Then Sp(T) C ¥(Sp(A) x Sp(B)).

Proof. By (2.1), Taylor's spectral mapping theorem and Proposition 2.3,

Sp(T) = Sp(V(L,R))

1]

V(S (L,R))
C ¥(Sp(L) x SP(R))

C ¥(Sp(A) x Sp(B)). |

THEOREM 2.5 Suppose one of the conditions 2.3a) = d) 1Is satisfied and
0 & v(Sp(d) x sp(B)). Then system (1.1) has a solution Q € L(Y,X)
if and only if the compatibility conditions (1.2) are satisfied. Moreover,

when a solution exists it is unique.

Proof. We have observed already that the compatibility conditions are
necessary for solubility of (1.1). Conversely, if 0 & ¥ (Sp (Z;\) X Sp(}z;))
then by Proposition 2.4 and the definition of the Taylor spectrum, the
Koszul complex for ’E is exact. In particular, Q » (Tl (Q) ,...,Tm(Q)) is

an injection from L(X,Y) into L(Y,X)m whose range is precisely those U

satisfying (1.2). B
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3. ESTIMATES FOR THE SOLUTION : REAL SPECTRA

In order to prove estimates for the solution of (1.1) we must place
restrictions on é, E. Throughout this section, we assume
0¢ w(Sp(é) % Sp(?)) and moreover that é, ? are commuting mn-tuples of
generalized scalar operators with real spectra. In particular we assume

that condition (1.8) is satisfied.

It follows that (L,R) is a commuting 2mn-tuple of generalized scalar

operators with real spectra. In particular, if K =MN and r =s + t,
then

R r
(3.1) llexp (i<(g,n), (L,R)>] < K(1+|(g,m )

for all &, n Eim@n.

Let k be a positive integer and r any non-negative real. We denote

by LI(r,iRk) the space of inverse Fourier transforms g of complex-valued

functions h for which (l+|g|)rh € Ll(IRk). In particular,
gx) =n') = 2m " f L EXP (i<E,x>)h(£)dL.  The norm
-k :¥ v k
llgll = 2m .[ k(l+|gl) |lh(g) |dE makes L) (r, R") a Banach algebra with
IR
respect to pointwise multiplication. For the details, see McIntosh and
Pryde [6].
In view of condition (3.1), it follows that (L,R) has a functional
v 2mn . R .
calculus based on Ll(r,]R ). In fact there is a continuous homomorphism
(3.2) o : L‘l’(r,mzm") + L(L(Y,X))
defined by
-2mn N ~
@ (g) = (2m) exp(i<(g,n), (L,R)>)g(g,n)dEdn.

ERZmn

2 . R .
If p: R ™ ,¢ isa polynomial and 6 € C:(IRzmn) is 1 on a
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neighbourhood of Sp(L,R) then 6p € Li(R,]Rzmn) and

(3.3) ¢ (6p) = p(L,R).
From condition (3.1) it follows readily that

K|lg|l for all g € LI (r, IRZmn) .

A

(3.4 leta |l

Since O & VY(Sp(A) x Sp(B)) and Sp(A) x Sp(B) is compact, |¢|_2¢i

is C on a neighbourhood of Sp(A) x Sp(B) for 1 < i < m. So there

exists g = (gl,...,gm) such that

(3.5) g € L\l'(r, ]RZmn)m and g = |\u|—2\p on a neighbourhood of

Sp(A) x Sp(B).
m

. 2
with lgll = (] llg; I
i=1

5 .
define

(3.6) c(m,n,r,Sp(a), Sp(B)) = inf{||g]l : g satisfies (3.5)}.

THEOREM 3.7 Let A, B be commuting mn-tuples of generalized scalar
operators with real spectra such that 0 & V(Sp(RA) x Sp(B)).In parti-
cular, suppose condition (3.1) is satisfied. If o 1s a solution of

system (1.1) in L(Y,X) then
lloll < k ctm,n,z,spa), sp@®) |lull.

Proof. Let @ be the functional calculus homomorphism (3.2) and g any
m
function satisfying (3.5). Let P = 2 Q(gm)Uz.
‘ =1
1 on a neighbourhood of Sp(L,R), then for 1 < i < m,

If eec:(mzm“) is

m
T.( ) 0(g,)U)
i oe1 [N

T, (P)

|
I~ 8

Q(QL)Ti(U%)

=1



43

m
v

®(g, )T, (U.)
L
9/=19,Q,l

(using the compatibility condition (1.2))
m
LEIQ(%)@(e%)Ui
(by (2.1) and (3.3))
m

o( § g 8y )U,
Pt 2 2!

]

@(O)Ui

(by (3.5) and proposition 2.2)
= U.

1

(by (3.3)). Hence P = Q and by (3.4),

m
Y
“ L o (gR,)Ul“

llell =
=1
m
<x 7 g, I llu,ll
= 0=1 3 3
< x gl ol
from which the result follows. B

4. ESTIMATES FOR THE SOLUTION : COMPLEX SPECTRA

A more general result for operators with complex spectra can also be
obtained. Again we assume that 0 £ w(Sp(é) x Sp(g)). In addition we
assume that é, ? are strongly commuting mn-tuples whose partitions
ﬂ(é) = (Aljk) and n(g) = (Bij) consist of generalized scalar operators

(with real spectra).

We define operators L .. , R .. € L(L(Y,X)) by L

23k ¢ Besx gk Q= By
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= (k) _ (k) _
Riij Q) = QB%jk and set J‘;. = (Lk,jk) B 13 = (szk)’ 1<% <m,
1< <n, 1¢ k < 2. Then (L(l),L(z),R(l),R(z)) is a commuting 4mn-
tuple of generalized scalar operators with real spectra. Hence there

exist r 20, K> 1 such that

N r
. 3 k(gﬂ,jkLﬂ,jk * g Ra i) I xa+l,mDh

o Jr

(4.1) |lexp(i

for all £ = (g5, 1= (ny ) e r¥™,
Moreover,
T, = L TyiRey
= % o 31Re31 7 Bg2Re92) * 1 EpgoRpq1 ¥ LpgiReg2) -
Hence

(4.2) T, = ‘D,L(E(DIL(Z)'I}(I)'R(Z))

where ¢L :]R4mn + € is defined by

1 2 1
¢1z,(x( ),x( ),y( ),Y(z))

=V - i
LR 51Y9517%p 92052 T K g2Y 05151 052
=y, (x(l) + ix(z), y(1) + iy(z))
(k) _ (k) _ mn
for x = (xljk)' y (yzjk) € R
Let ¢ = (¢2) :IR4mn > Qm, let ¢t = $l the complex conjugate of ¢L'

and define T: = ¢i(L(l),L(2),R(1),R(2)).

LEMMA 4.3 If the compatibility conditions (1.2) are satisfied for U

then the solution Q of (1.1) 1s

#..-1 o #
= Y
Q (éTSI,Tl) (;TQUL).
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Proof. By (1.2), assuming that ETETz is invertible,
2
#_ -1 #
= (% v
Ti(Q) (LTZTz) (LTzTiUL)
2 %
# -1 #
= (Y v
QT Ty) QT T, Uy
% 2
= U..

1

To prove that ETtTm is invertible, we note that
2
# # 1 2 1 2 . # 4mn
ET%TZ = E(wlw%)(g( )'5( ),R( ),R( )). Since 2¢z¢m : R +IR is a
% % %

polynomial, it follows from Taylor's spectral mapping theorem [10] and

Proposition 2.3 that

Sp(ETzTQ)
% g

1
2(“’4:%’ spa™, 1 g R

I

(l)+iL(2),R(l)+iR(2)))

~

2
Elvg 1" (sp(@
%

1012 (sp (L. R))

n

they|?: x esp@), v € so® 1.

Since O & y(Sp(A) x Sp(B)), ETtTm is invertible. B

Now |¢|—2¢# is € in a neighbourhood of Sp(L(l),L(z),R(l),R(Z))

1 ~ ~ ~

So there exists a function g such that

(4.4) g € L\]/_(r,]R‘lmn)m and g = |¢!—2¢j on a neighbourhood of

Sp(L(l),L(z),R(l),R(z)).

~ ~

Analogously to (3.6) we define
(4.5) c(m,n,r,Sp(a),Sp(B)) = inf{l|g]l : g satisfies (4.4)}.
For g satisfying (4.4) and Q any solution of (1.1), we conclude from

Lemma 4.3 that Q = 2®(gl)U
%

. Hence
2
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generalized scalar operators such that
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be strongly commuting mn-tuples of

0 & V(Sp(d) x Sp(B)) and

is a solution of system (1.1) in

condition (L4.1) is satisfied. If ¢
L(Y,X) then

llell < ® ctmn,x,sp@),sp®) [Ull.
5. UNIVERSAL ESTIMATES

The estimate (1.7) for system

.1 ol < C(m)s_lllljll

in the case where A, B  are, say,
operators on Hilbert spaces, c(m)

to such tuples.

In this section we attempt to

obtaining a more general constant.

x e]Rmn

(1.3) reduces to

commuting m-tuples of self-adjoint

being a universal constant with respect

improve the estimate of Theorem 3.7 by

Let © be the unit sphere |x] = 1}. If Kl, K2 are
compact subsets of § we define
(5.2) §(Ky,K,) = inf{lvix,y)| : x e Ky y € K,}.
If o >0 and V is any subset of @ we define
(5.3) I‘a(V) = {tx : t €ER, [t] 2 a, x €V}.

As in previous sections, we will consider

operators with real spectra, such that 0 £ y(Sp(A) x Sp(B)).

we will take compact subsets Kl B

mn-tuples A, B of

In addition

K of @

5 such that
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(5.4) sSp(a) C PO(Kl), Sp(?) C FO(KZ) and S(Kl,Kz) > 0.

For example, we could take K, = {|x|_lx : X € Sp(d)} and
-1 . N
K2 = {|x] "x : x € Sp(B)}, in which case G(Kl,KZ) > 0 follows from the

condition O & Y (Sp(A) x Sp(B)).

LEMMA 5.5 Jf K,,K, are compact subsets of © with §(K;,K)) >0 ,

there exists g € C(:IRzmn)rn such that g€ L‘i (r,IRzmn) for all r> O

and g = le_zxp in a neighbourhood of T,(K,) x T

1 Ky 1(Kz).
Proof. Let ¢ = G(Kl,KZ). Since ¢ is continuous, there exist open
neighbourhoods Ul' U2 in @ of Kl' K2 respectively, such that
v, v)| > %8 on U, x U,.  Choose open neighbourhoods V,, V, in & of
Kl' K2 whose closures are contained in Ul' U2 respectively.

Let p € C:(]R) and qhe; Cm(ﬂ) for h =1, 2 be even functions

%, p(t) =0 for |t| >21; g

satisfying p(t) =1 for |t -

A

(w) =1 for
w e Vh' qh(w) =0 for o¢ Uh ; and p(t), qh(w) e [0,1] for all te€ IR,

w e Q.

For integers k and h =1, 2 let ¢k e C:(]Rmn) and

n, € ¢ (®R™ \ {0}) be defined by o) (x) = p2 ¥|x|) ana ny (%)

-1 o 2
g, (Ix]77%).  For integers k, & let €Cc(R ™ pe defined by

Pk, e

uk’yv(x,y) = [lopx) =0 x)16, (v) - ¢ (y) Ing (x)n, (y) .

-1

Then ka L(x,y)[ <1 for all x,y er®r™ and has support in

k, 2

k-2

k =2
the set {(x,y) e Tj(U;) x I (0, : 2 < x|

2, 2V <yl < 2hy

A

Moreover, for K, L positive integers,

K L

TV -

L Loow (2, y) = (om0 L) (X)) (o-=0_.) (¥)ny (X)n, (y)
k=0 %=0 k% K 1 L 1 1 2

which is identically 1 on the set
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K-1 L-1

(oY) €TV x ToWVy) = %< x|l 22707 % ¢ fyl g 27 )

For 1< jg<gm and k,8 integers, let G < C:(]Rzmn) be

k,R/,j
defined by
-2 -k=2% -k -2
Gy, g, 5 ) = v (x,y) | b ) e Gey) =27 62 Tx, 2 )
5-k-¢ -1
where G, =G .. Then G L (x < 2 S because
J 0,0,3 I K,2,5" g
-1 -1 -5
lvz, )1 = |x| |yl lvdx| "%,lyl "v)| 2 2 76 on the support of Mo 0°
-] o ’
v Ay . 2mn
Hence L . G . (x,y) converges uniformly on IR . If g.(x,y)
k,%,3 ]
k=0 2=0
2mn, m

denotes the limit, then g = (gl,...,gm) € C(R™) and g = lwl_zw

(K,) . Further,

on P%(Vl) X r%(vz) a neighbourhood of Fl(Kl) X Fl 5

) in 5'(]R2mn) the Schwartz space of tempered

L Gk,L,j converges to gj
k,% -
distributions. Taking Fourier transforms we conclude that E Gk 04
o K, )
converges to 95 in S'(RTT). Now
18, , .1 . = ) omn WHIEDTIE, (0 lag
* e ] Ll(r,]R ) R v %e ]
-k-% r, 2mn (k+%) » k' "
= 275 g 22 6 @ 2" ) lae
-k-% -k - r -
2 J<1+|<2 B2 DTG et fau
-k=% r)n
<2 J(l+|ul) IGj(u)[dp
—k=0 A
= 277l .
L, (r, R )
1
where ¢ = (£',£'') € BJMIxZRmn = IRZmn and k, %, ¢ > 0. Also
&, e S(rR™) ¢ Ll(r,IRzmn) and so nék o sl o, < 7
J koo L e, T
Hence E ék 2,3 converges to éj in Ll(r,IRzmn), proving that
k,Q, Ny
v 2mn
95 €L (r, 7). B

Analogously to (3.6) and (4.5) we define
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(5.6) c(m,n,r,K K = inf{|lgl] : g € L;(r,IRzmn)n, g as in Lemma 5.51}.

If A is a commuting mn-tuple of operators, define
(5.7) §(A) = inf {|x]| : x € sp(a)}.

THEOREM 5.8 Let A, B be commuting mn-tuples of generalized scalar
operators with real spectra such that 0 ¢ y(Sp(A) x Sp(B)). In parti-
cular, suppose condition (1.8) is satisfied. Let K., K, be compact
subsets of @ satisfying condition (5.4). If ¢ 1s a solution of
system (1.1) then

llell ¢ camn|lu]|

where ¢ = c(m,n,s+t,Kl,K2)

and a= s Yem tmax(1,sm) %) max(l,s(m® ).

Proof. If 6(5) = 6(%) =1, let g be as in Lemma 5.5 with

r =s + t. Then g = |w|—2w on a neighbourhood of Sp(A) x Sp(B),
and so, as in the proof of Theorem 3.7, Q = El¢(gl)Ul. Hence

lell < M~ |igll ||EI[| from which the required estg'i_mate follows.

The result for general A, B follows by applying the part proved
already to the tuples A' = G(A)-lA and B' = 6(B)-1B. Note that

A, B satisfy condition (1.8) with M, N replaced by M' =M max(l,d(A)—S),

N' = N max(1,8(8) 0. B
Remark 5.9
a) By the methods of section 4, Theorem 5.8 can be generalized to

strongly commuting mn-tuples with partitions consisting of generalized

scalar operators.

b) The method for constructing the function g 1in the proof of
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Lemma 5.5, using Littlewood-Paley decompositions, follows a similar con-

struction in Bhatia, Davis and McIntosh [2].
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