EVOLUTION OPERATORS OF PARABOLIC EQUATIONS IN CONTINUOUS FUNCTION SPACE

A. Yagi

1. INTRODUCTION

Let
(P) $\left\{\begin{array}{l}\partial u / \partial t+\sum_{|\alpha| \leq 2 m} a_{\alpha}(t, x) D^{\alpha} u=f(t, x) \quad \text { in } \quad(0, T] \times \Omega \\ \sum_{B \mid \leq m_{j} b_{j}(t, x) D^{B} u=0 \quad \text { on }(0, T] \times \partial \Omega, j=1, \cdots, m}^{u(0, x)=u_{0}(x) \quad \text { in } \Omega} .\end{array}\right.$
be the initial value problem of a parabolic partial
differential equation in a (bounded or unbounded) region Ω in \mathbb{R}^{n}. This Note studies the construction of an evolution operator (fundamental solution) for (P) in the continuous function space $\mathscr{\Omega}(\bar{\Omega})$ on $\bar{\Omega}$. In the $L_{p}(1<p<\infty)$ space case the construction has been studied by several authors, including Kato et al.[1], Tanabe [4] and Yagi [6]. Recently Tanabe [8] and his student Park [2] showed existence of the evolution operator for (P) even in a "worse" function space $L^{1}(\Omega)$ (recall that there is no a priori estimate for elliptic operators in L^{1} space). We are then interested to work in another "worse" function space $\mathscr{G}(\bar{\Omega})$ 。

$$
\text { For } 0 \leq t \leq T \text { let } A(t) \text { denote the operator }
$$

$|\alpha| \leq 2 m{ }^{2} a_{\alpha}(t, x) D^{\alpha}$ acting in $\mathscr{G}(\bar{\Omega})$ with boundary conditions $\sum_{|B| \leq m_{j}} b_{j B}(t, x) D^{B} u=0$ on $\partial \Omega$ for $1 \leq j \leq m$. According to Stewart [3], A(t) are shown under suitable assumptions to be the generators of analytic semigroups on $\mathscr{G}(\bar{\Omega})$, therefore (P) can be formulated as an abstract evolution equation (E) $\left\{\begin{array}{l}d u / d t+A(t) u=f(t), \quad 0<t \leq T \\ u(0)=u_{0}\end{array}\right.$ in the space $\mathscr{G}(\bar{\Omega})$. In the present case, however, we have to notice that the domains $\mathscr{D}(\mathrm{A}(\mathrm{t}))$ of $\mathrm{A}(\mathrm{t})$ may be no longer dense in $\mathscr{E}(\bar{\Omega})$ (for example, consider the Dirichelet condition $u=0$ on $\partial \Omega$ for second order operators in Ω, clearly the space $\{u \in \mathscr{G}(\bar{\Omega}) ; u=0$ on $\partial \Omega\}$ is not dense in $\mathscr{G}(\bar{\Omega}))$.

2. ABSTRACT EVOLUTION EQUATION (E)

Let X be a Banach space. In this section we study the construction of an evolution operator for an abstract evolution equation
(E) $\left\{\begin{array}{l}d u / d t+A(t) u=f(t), \quad 0<t \leq T \\ u(0)=u_{0}\end{array}\right.$
in X. (E) is of parabolic type, this means that each A(t), $0 \leq t \leq T, i s$ the generator of an analytic semigroup on X, but the domain $\mathscr{D}(\mathrm{A}(\mathrm{t}))$ of $\mathrm{A}(\mathrm{t})$ is not assumed to be dense in $X . f:[0, T] \rightarrow X$ and $u_{0} \in X$ are given, $u:[0, T] \rightarrow X$ is unknown.

In the case where $A(t)$ are densely defined, there is already a large literature on the present problem. Some of
them, especially we are concerned with [6], can be generalized to the case of non dense domain. According to [6] let us make the following hypotheses:
(I) The resolvent sets $\rho(A(t))$ of $A(t)$ contain a sector Σ $=\{\lambda \in \mathbb{C} ;|\arg \lambda| \geq \pi / 2-\delta\}$ where $\delta>0$, and there the resolvents $(\lambda-A(t))^{-1}$ satisfy
$\left\|(\lambda-A(t))^{-1}\right\|_{\mathscr{Q}(X)} \leq M /(|\lambda|+1), \quad \lambda \in \Sigma$.
(II) The function $A(\cdot)^{-1}$ is strongly continuously differentiable on $[0, T]: A(\cdot)^{-1} \in \mathscr{E}^{1}\left([0, T] ; \mathscr{L}_{J}(X)\right)$.
(III) The derivatives $d A(t)^{-1} / d t, 0 \leq t \leq T$, satisfy
$\left\|A(t)(\lambda-A(t))^{-1} d A(t)^{-1} / d t\right\|_{\mathscr{L}(X)} \leq N /(|\lambda|+1)^{\nu}, \quad \lambda \in \Sigma$ with some constants $0<\nu \leq 1$ and $N \geq 0$.

Then we can prove:
THEOREM 2.1 There exists a family $U(t, s), 0 \leq s \leq t \leq T$, of bounded linear operators on X which have the properties: a) $U(t, s) U(s, r)=U(t, r)$ for $0 \leq r \leq s \leq t \leq T, U(s, s)=1$ for $0 \leq s \leq T ; b) U(t, s)$ is strongly continuous for $0 \leq s<t \leq$ T with an estimate $\left.\|U(t ; s)\|_{\mathscr{L}(X)} \leq C_{1} ; c\right)$ the ranges買 $(U(t, s))$ are contained in $g(A(t))$ for all $0 \leq s<t \leq T$, and $A(t) U(t, s)$ is strongly continuous for $0 \leq s<t \leq T$ with an estimate $\|A(t) U(t, s)\|_{\mathscr{L}(X)} \leq C_{2}(t-s)^{-1}$; and d) U(t,s) is strongly continuously differentiable in t for 0 $\leq s<t \leq T$, and $\partial U(t, s) / \partial t=-A(t) U(t, s)$.
$U(t, s)$ is called the evolution operator for (E). In fact, an existence and uniqueness result of strict solution u (i.e. $u \in \mathscr{C}^{1}((0, T] ; X), A(\cdot) u(\cdot) \in \mathscr{E}((0, T] ; X)$, and $\lim _{t \rightarrow 0} A(0)^{-1}(u(t)-$ u_{0}) $=0$ in X) for the problem (E) is obtained by using
the operator $U(t, s)$.
THEOREM 2.2 For any $f \in \mathscr{G}^{\sigma}([0, T] ; \mathrm{X}), \sigma>0$, and any $u_{0} \in \mathrm{X}$, the function u defined by

$$
\begin{equation*}
u(t)=U(t, 0) u_{0}+\int_{0}^{t} U(t, \tau) f(\tau) d \tau, \quad 0 \leq t \leq T \tag{2.1}
\end{equation*}
$$

gives a strict solution of (E). Conversely, let u be any strict solution of (E) where $f \in \mathscr{G}([0, T] ; X)$ and $u_{0} \in X$ are arbitrary, and assume that u satisfies a growth condition: $\|\mathrm{u}(\mathrm{t})\|_{\mathrm{X}} \leq \mathrm{Ct}^{-\gamma}$ near $\mathrm{t}=0$ with some $\gamma<\nu$; then, necessarily u must be equal to the function given by (2.1) for all $0 \leq t \leq T$.

The spirit of proof of these two theoremsis quite similar to that in [6] where the theorems have been proved in the case where $\mathscr{D}(A(t))$ are dense. We have to recover, however, a technical difficulty that the Yosida regularization $n(n+A(t))^{-1}$ of $A(t)$ converges to the identity mapping no longer on the whole space X but only on the closure of $D(A(t))$, which results from lack of the density of the domains. Full proof will be seen in the forthcoming paper [\%].

3. INITIAL VALUE PROBLEM (P)

Let us observe in this Section how to apply the abstract result in the previous Section to the problem (P).

Let Ω be a (possibly unbounded) region in \mathbb{R}^{n} with the boundary $\partial \Omega, x=\left(x_{1}, \cdots, x_{n}\right) \in \bar{\Omega}$. For each integer $k \geq 0$, $\mathscr{g}^{\mathrm{k}}(\bar{\Omega})\left(\mathrm{resp} . \mathscr{G}^{\mathrm{k}}(\partial \Omega)\right.$) is the Banach space of all continous bounded functions on $\bar{\Omega}$ (resp. $\partial \Omega$) which have smooth and bounded derivatives on $\bar{\Omega}$ (resp. $\partial \Omega$) up to the order $k ; \mathscr{Q}^{0}(\bar{\Omega})$
(resp. $\mathscr{C}^{0}(\partial \Omega)$) will be abbreviated to $\mathscr{G}(\bar{\Omega})$ (resp. $\mathscr{G}(\partial \Omega)$).
For $0 \leq t \leq T$, let
$A(t, x ; D)=\sum_{|\alpha| \leq 2 m} a_{\alpha}(t, x) D^{\alpha}$
be differential operators in Ω of order 2 m , where $D_{1}=$ $i^{-1} \partial / \partial x_{1}, \cdots, D_{n}=i^{-1} \partial / \partial x_{n}$, and $D^{\alpha}=D_{1}^{\alpha} 1 \cdots D_{n}^{\alpha} n$ for multi index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$. And let

$$
B_{j}(t, x ; D)=\sum_{|B| \leq m_{j}} b_{j \beta}(t, x) D^{B}, \quad j=1, \cdots, m
$$

be boundary differential operators on $\partial \Omega$ of order $m_{j} \leq 2 m-1$.
We assume the following conditions:
(R1) The boundary $\partial \Omega$ is uniformly regular of class $\mathscr{C}^{2 m}$. (A1) $a_{\alpha} \in \mathscr{G}^{1}([0, T] ; \mathscr{G}(\bar{\Omega}))$ for $|\alpha| \leq 2 m$, moreover $a_{\alpha}\left(t,{ }^{\circ}\right)$ are uniformly continuous on $\bar{\Omega}$ for $|\alpha|=2 \mathrm{~m}$. (A2) $A(t, x ; D)$ are uniformly strongly elliptic, i.e. $\sum_{|\alpha| \leq 2 m} a_{\alpha}(t, x) \xi^{\alpha} \geq E|\xi|^{2 m} \quad(E>0)$ for $\xi \in \mathbb{R}^{n}, x \in \bar{\Omega}, 0 \leq t \leq T$. (B1) $b_{j \beta} \in \mathscr{E}^{1}\left([0, T] ; \mathscr{E}^{\left.2 m-m_{j}(\partial \Omega)\right)}\right.$ for $|B| \leq m_{j}, 1 \leq j \leq m ;$ and $D^{\gamma}{ }_{b j}(t, \cdot)$ are uniformly continuous on $\partial \Omega$ for $|\gamma|=2 m-m_{j}$. (B2) For $|\theta| \geq \pi / 2-\delta(\delta>0), A(t, x ; D)-e^{i \theta} D_{y}^{2 m}$ and $B_{j}(t, x ; D)$ satisfy the complementing condition on a product region $\bar{\Omega} \times \mathbb{R}_{y}$ (specifically see e.g.[8,p.251]).

Set

$$
\left\{\begin{array}{l}
\mathrm{X}=\{\mathrm{f} \in \mathscr{G}(\bar{\Omega}) ; \quad \lim \underset{\mathrm{x} \in \mathrm{\Omega},|\mathrm{x}| \rightarrow \infty}{\mathrm{f}(\mathrm{x})=0\}} \\
(\mathrm{X}=\mathscr{G}(\bar{\Omega}) \quad \text { if } \Omega \text { is a bounded region }) \\
\|\mathrm{f}\|_{\mathrm{X}}=\|\mathrm{f}\|_{\mathscr{C}(\bar{\Omega})} .
\end{array}\right.
$$

And define, for each $0 \leq t \leq T$, a linear operator $A(t)$ acting in X by
$\int \mathscr{D}(A(t))=\left\{u \in \underset{n<\hat{q}^{\cap}<\infty}{ } W_{q}^{2 m}(\Omega) ; A(t, x ; D) u \in X \quad\right.$ and
$\left\{\begin{array}{l}\left.\quad B_{j}(t, x ; D) u=0 \text { on } \partial \Omega \text { for } 1 \leq j \leq m\right\}, \\ A(t) u=A(t, x ; D) u-\lambda_{0} u .\end{array}\right.$
Then it is verified that:
THEOREM 3.1 $A(t), 0 \leq t \leq T$, satisfy the Hypotheses (I),
(II) and (III) in Section 2 (we shall assume if necessary that the constant λ_{0} is sufficiently positive).
Proof In fact, (I) has been already verified by Stewart [3]. To verify (II) and (III) we use a priori estimates in $L_{\text {loc }}^{p}$ space for $1<p<\infty$. For $x \in \bar{\Omega}$ and $r>0, \Omega(x, r)=$ $\{y \in \Omega ;|y-x|<r\}$. For $0 \leq j \leq 2 m,\|\cdot\|_{j, p, \omega}$ is the usual norm of the Sobolev space $W_{p}^{j}(\omega)$ on $\omega \subset \Omega$.
LEMMA 3.2 For any $1<p<\infty$ there are two positive constants C_{p} and R_{p} such that, if $|\arg \lambda| \geq \pi / 2-\delta$ and $|\lambda|$ $\geq C_{p}$ and if $r \geq R_{p}$, then
(3.1) $\sum_{j=0}^{2 m}|\lambda|^{1-j / 2 m}{\underset{x u p}{x \in \Omega}}\|u\|_{j, p, \Omega(x, r)}$

$$
\leq C_{p}\left\{\sup _{x \in \Omega}\|(\lambda-A(t, x ; D)) u\|_{0, p, \Omega(x, r)}+\right.
$$

for all $u \in W_{p}^{2 m}(\Omega)$, here $g_{j}(1 \leq j \leq m)$ are arbitrary functions in $W_{p}^{2 m-m} j(\Omega)$ provided $g_{j}=B_{j}(t, x ; D) u$ on $\partial \Omega$.

We take some $n / 2 m<p<\infty$, and assume that $\lambda_{0} \geq C_{p}$. Let $f \in \mathscr{G}(\bar{\Omega})$ be a function with compact support; since $f \in$ $L^{p}(\Omega), A(t)^{-1} f$ belongs to $W_{p}^{2 m}(\Omega)$ and satisfies (3.2) $\quad\left(A(t, x ; D)-\lambda_{0}\right) A(t)^{-1} f=f \quad$ in Ω, and (3.3) $B_{j}(t, x ; D) A(t)^{-1} f=0 \quad$ on $\quad \partial \Omega, 1 \leq j \leq m$.

Then, by using the a priori estimates in $L^{p}(\Omega)$, it is shown from (A1) and (B1) that $A(\cdot)^{-1} f$ is, as a $W_{p}^{2 m}(\Omega)$-valued
function, continuously differentiable on [0,T] and the derivative $d A(t)^{-1} / d t f$ is specified by $(3.4)\left(A(t, x ; D)-\lambda_{0}\right) d A(t)^{-1} / d t f=$

$$
-\sum_{|\alpha| \leq 2 m} \partial a_{\alpha}(t, x) / \partial t D^{\alpha} A(t)^{-1} f \text { in } \Omega
$$

$(3.5) B_{j}(t, x ; D) d A(t)^{-1} / d t f=$

$$
-\sum_{|B| \leq m_{j}} \partial b_{j B}(t, x) / \partial t D^{B} A(t)^{-1} f \quad \text { on } \quad \partial \Omega
$$

This then shows by the Sobolev imbedding theorem $\left(W_{p}^{2 m}(\Omega) c\right.$ $\mathscr{G}(\bar{\Omega})$) that $A(\cdot)^{-1} f \in \mathscr{G}^{1}([0, T] ; X)$. Take an arbitrary point $x_{0} \in \bar{\Omega}$, and let $\phi_{0}(x)=\phi\left(x-x_{0}\right)$ be a function such that $\phi \in$ $\mathscr{E}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with supp $\phi \subset\left\{|x|<R_{p}\right\}$ and $\phi(0)=1$. Then $\left|\left\{d A(t)^{-1} / d t f\right\}\left(x_{0}\right)\right|$

$$
\leq\left\{\left\|\phi_{0} d A(t)^{-1} / d t f\right\|_{2 m, p, \Omega}\right\}^{\mu}\left\{\left\|\phi_{0} d A(t)^{-1} / d t f\right\|_{0, p, \Omega}\right\}^{1-\mu}
$$

with $\mu=n / 2 \mathrm{mp}$, so that
$\leq C_{p}\left\{\left\|d A(t)^{-1} / d t f\right\|_{2 m, p, \Omega\left(x_{0}, R_{p}\right)^{\mu}\left\{\left\|d A(t)^{-1} / d t f\right\|_{0, p, \Omega\left(x_{0}, R_{p}\right)^{1-\mu}} .{ }^{1-\mu} .\right.}\right.$ We here use the local a priori estimate (3.1) with $\lambda=\lambda_{0}$, then it follows from (3.4) and (3.5) that

$$
\leq C_{p} \sup _{x \in \bar{\Omega}}\left\|A(t)^{-1} f\right\|_{2 m, p, \Omega\left(x, R_{p}\right)}
$$

We use again (3.1), then (3.2) and (3.3) yield
(3.6) $\underset{x \in \Omega}{\sup }\left\|A(t)^{-1} f\right\|_{2 m, p, \Omega\left(x, R_{p}\right)} \leq C_{p} \sup _{x \in \Omega}\|f\|_{0, p, \Omega\left(x, R_{p}\right)}$

$$
\leq C_{p}\|f\|_{\mathscr{G}(\bar{\Omega})}
$$

Hence we have proved that

$$
\left\|\mathrm{dA}(t)^{-1} / \mathrm{dtf}\right\|_{\mathscr{G}(\bar{\Omega})} \leq \mathrm{C}_{\mathrm{p}}\|\mathrm{f}\|_{\mathscr{G}(\bar{\Omega})},
$$

the constant C_{p} being independent of f. (II) then follows easily from the fact that functions in $\mathscr{G}(\bar{\Omega})$ with compact support are dense in X.

Verification of (III) is now an easy analogue to the
L^{p} case (cf. [5] or [6]). For $|\arg \lambda| \geq \pi / 2-\delta$ and $0 \leq t$ $\leq T$, we denote the operator $A(t)(\lambda-A(t))^{-1} d A(t)^{-1} / d t$ by $D(\lambda, t)$. Let $f \in \mathscr{G}(\bar{\Omega})$ be again with compact support; $D(\lambda, t) f$ is a function in $W_{p}^{2 m}(\Omega) \subset \mathscr{G}(\bar{\Omega})$; in the same way as above it is seen that
(3.7) $\|\mathrm{D}(\lambda, t) \mathrm{f}\|_{\mathscr{G}(\bar{\Omega})}$
$\leq C_{p}\left\{\underset{x \in \sup }{ }\|D(\lambda, t) f\|_{2 m, p, \Omega\left(x, R_{p}\right)^{\mu}}^{\left\{\sup _{x \in \Omega}\|D(\lambda, t) f\|_{0, p, \Omega\left(x, R_{p}\right)}\right\}^{1-\mu} .}\right.$ with $\mu=n / 2 m p$. But, since $\left(\lambda+\lambda_{0}-A(t, x ; D)\right) D(\lambda, t) f=\left(A(t, x ; D)-\lambda_{0}\right) d A(t)^{-1} / d t f$ in Ω and (3.4), and since
$B_{j}(t, x ; D) D(\lambda, t) f=-B_{j}(t, x ; D) d A(t)^{-1} / d t f \quad$ on $\quad \partial \Omega, 1 \leq j \leq m$ and (3.5), it follows by using (3.1) that
$\sum_{j=0}^{2 m}|\lambda|^{1-j / 2 m_{\sup }\|\in(\lambda, t) f\|_{j, p}}{ }_{x \in \Omega\left(x, R_{p}\right)}$

$$
\begin{aligned}
& \leq C_{p}\left\{\sup _{x \in \Omega}\left\|A(t)^{-1} f\right\|_{2 m, p, \Omega\left(x, R_{p}\right)}+\right. \\
& \sum_{1 \leq j \leq m, m_{j} \neq 0}|\lambda|^{1-m_{j} / 2 m}{\underset{x u p}{x \in \Omega}} \quad \operatorname{suf}^{(t)^{-1} f \|_{m_{j}}, p, \Omega\left(x, R_{p}\right)^{\}}}
\end{aligned}
$$

(note that $B_{j}(t, x ; D)=b_{j 0}(t, x) \equiv 1$ if $m_{j}=0$). Therefore from (3.6)

$$
\leq C_{p}|\lambda|^{1-v_{B}}\|f\|_{\mathscr{C}(\bar{\Omega})}
$$

where $v_{B}=\operatorname{Min}\left\{m_{j}>0 ; 1 \leq j \leq m\right\} / 2 m$. We therefore conclude (from (3.7)) that

$$
\|D(\lambda, t) f\|_{\mathscr{C}(\bar{\Omega})} \leq C_{p}|\lambda|^{\mu-V_{B}\|f\|_{\mathscr{C}(\bar{\Omega})} .}
$$

The density of functions with compact support provides thus

$$
\|D(\lambda, t)\|_{\mathscr{L}(x)} \leq C_{p}|\lambda|^{\mu-v_{B}},
$$

hence (III) (remember that p was arbitrarily taken in $n / 2 m$ $<p<\infty)$ 。

4. PROOF OF LEMMÁ 3.2

Lemma 3.2 is a slight modification of the ordinary a prior estimates in L^{p} space. Under (R1), (A1-2) and (B1-2) it is known (see e.g. [8, Lemma 17.6] that:

Theorem 4.1 For any $1<p<\infty$ there is a positive constant C_{p} such that, if $|\arg \lambda| \geq \pi / 2-\delta$ and $|\lambda| \geq C_{p}$, then

$$
\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m}\left\|g_{j}\right\|_{0, p, \Omega}+\sum_{j=1}^{m}\left\|g_{j}\right\|_{2 m-m}, p, \Omega^{\}}
$$

for all $u \in W_{p}^{2 m}(\Omega)$, where $g_{j} \in W_{p}^{2 m-m_{j}(\Omega)}$ with the condition that $g_{j}=B_{j}(t, x ; D) u$ on $\partial \Omega, 1 \leq j \leq m$.

Let ψ be a function in $\mathscr{C}_{0}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp} \psi \subset\{|x|<2\}$ and $\psi \equiv 1$ on $\{|x| \leq 1\}$. For any $x_{0} \in \bar{\Omega}$ and $r \geq 1$, we set $\psi_{0}(x)=\psi\left(\left(x-x_{0}\right) / r\right)$ and apply (4.1) to $\psi_{0} u$. Since $(\lambda-A(t, x ; D))\left(\psi_{0}^{u}\right)=\psi_{0}(\lambda-A(t ; x ; D)) u$

$$
+\sum_{|\alpha| \leq 2 m} \sum_{0 \neq \gamma \leq \alpha}\binom{\alpha}{\gamma} a_{\alpha}(t, x) D^{\alpha} \psi_{0} D^{\alpha-\gamma} u \quad \text { in } \Omega,
$$

it follows that

$$
\begin{aligned}
\|(\lambda & -A(t, x ; D))\left(\psi_{0} u\right) \|_{0, p, \Omega} \\
& \leq C_{p}\left\{\|(\lambda-A(t, x ; D)) u\|_{0, p, \Omega\left(x_{0}, 2 r\right)}+\frac{1}{r}\|u\|_{2 m-1, p, \Omega\left(x_{0}, 2 r\right)}\right\}
\end{aligned}
$$

On the other hand, if we put
$h_{j}=\psi_{0} g_{j}+\sum_{|\beta| \leq m_{j}} \sum_{0 \neq \gamma \leq \beta}\binom{\beta}{\gamma} b_{j B}(t, x) D^{\gamma_{i}} \psi_{0} D^{\beta-\gamma_{u}}$, for $1 \leq j \leq m$, then $h_{j} \in W_{p}^{2 m-m_{j}(\Omega)}, h_{j}=B_{j}(t, x ; D)\left(\psi_{0} u\right) \quad$ on $\partial \Omega$ and h_{j} satisfies for $0 \leq k \leq 2 m-m_{j}$ the estimate

$$
\left\|h_{j}\right\|_{k, p, \Omega} \leq C_{p}\left\{\left\|g_{j}\right\|_{k, p, \Omega\left(x_{0}, 2 r\right)}+\frac{1}{r}\|u\|_{m_{j}}+k-1, p, \Omega\left(x_{0}, 2 r\right)\right\}
$$

Hence it turns out that

$$
\begin{aligned}
& \sum_{j=0}^{2 m}|\lambda|^{1-j / 2 m_{\|}}\|u\|_{j, p, \Omega\left(x_{0}, r\right)} \leq \sum_{j=0}^{2 m}|\lambda|^{1-j / 2 m_{\|}\left\|\psi_{0} u\right\|_{j, p}, \Omega} \\
& \leq C_{p}\left\{\|(\lambda-A(t, x ; D)) u\|_{0, p, \Omega\left(x_{0}, 2 r\right)}^{m}\right. \\
& +\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m_{i}}\left\|g_{j}\right\|_{0, p, \Omega\left(x_{0}, 2 r\right)}+\sum_{j=1}^{m}\left\|g_{j}\right\|_{2 m-m}, p, \Omega\left(x_{0}, 2 r\right)^{\}} \\
& +C_{p} / r\left\{\sum_{j=1}^{m}|\lambda|^{1-m_{j} / 2 m_{n}\|u\|_{m}-1, p, \Omega\left(x_{0}, 2 r\right)}+\|u\|_{2 m-1, p, \Omega\left(x_{0}, 2 r\right)^{\}}} .\right.
\end{aligned}
$$

To complete the proof it now suffices to notice a fact that for an integer N, which is independent of $x_{0} \in \bar{\Omega}$ and $r \geq$ $1, \Omega\left(x_{0}, 2 r\right)$ can be covered by N number of $\Omega\left(x_{i}, r\right), x_{i} \in \bar{\Omega}$, $1 \leq \mathrm{i} \leq \mathrm{N}$, and therefore

$$
\|v\|_{j, p, \Omega\left(x_{0}, 2 r\right)} \leq N \sup _{x \in \bar{\Omega}}\|v\|_{j, p, \Omega(x, r)}, \quad v \in W_{p}^{j}(\Omega)
$$

hold for all $0 \leq j \leq 2 m$.

REFERENCES

[1] T.Kato and H.Tanabe. On the abstract evolution equation, Osaka Math. J. 14 (1962), 107-133.
[2] D.Park, Initial-boundary value problem for parabolic equation in L^{1}, Proc. Japan Acad. 62 Ser.A (1986), 178180.
[3] H.B.Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 229-310.
[4] H.Tanabe, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 145-166.
[5] M.Watanabe, A remark on fractional powers of linear operators in Banach spaces, Proc. Japan Acad. 53 (1977), 4-7.
[6] A.Yagi, On the abstract linear evolution equations in

Banach spaces, J. Math. Soc. Japan 28 (1976), 290-303.
[7] A.Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, to appear.
[8] H.Tanabe, Functional Analysis, II, Jikkyo Shuppan Publishing Company, Tokyo, 1981 (in Jananese).

Department of Mathematics
Osaka University
Toyonaka, Osaka 560
Japan

