EVOLUTION OPERATORS OF PARABOLIC EQUATIONS IN CONTINUOUS FUNCTION SPACE

A. Yagi

1. INTRODUCTION

Let

(P) $\begin{cases} \frac{\partial u}{\partial t} + \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha} u = f(t,x) & \text{in } (0,T] \times \Omega \\ \frac{\partial u}{\partial t} + \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha} u = f(t,x) & \text{in } (0,T] \times \partial \Omega, \quad j = 1, \cdots, m \\ \frac{\partial u}{\partial t} + \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha} u = 0 & \text{on } (0,T] \times \partial \Omega, \quad j = 1, \cdots, m \\ \frac{\partial u}{\partial t} + \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha} u = 0 & \text{on } (0,T] \times \partial \Omega, \quad j = 1, \cdots, m \\ \frac{\partial u}{\partial t} + \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha} u = 0 & \text{on } (0,T] \times \partial \Omega, \quad j = 1, \cdots, m \end{cases}$

be the initial value problem of a parabolic partial differential equation in a (bounded or unbounded) region Ω in \mathbb{R}^n . This Note studies the construction of an evolution operator (fundamental solution) for (P) in the continuous function space $\mathscr{C}(\overline{\Omega})$ on $\overline{\Omega}$. In the $L_p(1 space case$ the construction has been studied by several authors,including Kato et al.[1], Tanabe [4] and Yagi [6]. RecentlyTanabe [8] and his student Park [2] showed existence of theevolution operator for (P) even in a "worse" function space $<math>L^1(\Omega)$ (recall that there is no a priori estimate for elliptic operators in L^1 space). We are then interested to work in another "worse" function space $\mathscr{C}(\overline{\Omega})$.

For $0 \le t \le T$ let A(t) denote the operator

 $\sum_{\substack{\alpha \in \{1,x\} \\ \alpha \in \{2,x\} \\ \alpha \in \{1,x\} \\ \alpha \in \{2,x\} \\ \alpha \in \{1,x\} \\$

(E)
$$\begin{cases} du/dt + A(t)u = f(t), & 0 < t \le T \\ u(0) = u_0 \end{cases}$$

in the space $\mathscr{C}(\overline{\Omega})$. In the present case, however, we have to notice that the domains $\mathscr{D}(A(t))$ of A(t) may be no longer dense in $\mathscr{C}(\overline{\Omega})$ (for example, consider the Dirichelet condition u = 0 on $\partial\Omega$ for second order operators in Ω , clearly the space { $u \in \mathscr{C}(\overline{\Omega})$; u = 0 on $\partial\Omega$ } is not dense in $\mathscr{C}(\overline{\Omega})$).

2. ABSTRACT EVOLUTION EQUATION (E)

Let X be a Banach space. In this section we study the construction of an evolution operator for an abstract evolution equation

(E)
$$\begin{cases} du/dt + A(t)u = f(t), & 0 < t \le T \\ u(0) = u_0 \end{cases}$$

in X. (E) is of parabolic type, this means that each A(t), $0 \le t \le T$, is the generator of an analytic semigroup on X, but the domain $\mathcal{D}(A(t))$ of A(t) is not assumed to be dense in X. f:[0,T] \rightarrow X and $u_0 \in X$ are given, u:[0,T] \rightarrow X is unknown.

In the case where A(t) are densely defined, there is already a large literature on the present problem. Some of

them, especially we are concerned with [6], can be generalized to the case of non dense domain. According to [6] let us make the following hypotheses:

(I) The resolvent sets $\rho(A(t))$ of A(t) contain a sector Σ = { $\lambda \in \mathbb{C}$; $|\arg \lambda| \ge \pi/2 - \delta$ } where $\delta > 0$, and there the resolvents $(\lambda - A(t))^{-1}$ satisfy

 $\|(\lambda - A(t))^{-1}\|_{\mathcal{L}(X)} \leq M/(|\lambda| + 1), \quad \lambda \in \Sigma.$ (II) The function $A(\cdot)^{-1}$ is strongly continuously differentiable on [0,T]: $A(\cdot)^{-1} \in \mathcal{G}^{1}([0,T];\mathcal{L}_{g}(X)).$

(III) The derivatives $dA(t)^{-1}/dt$, $0 \le t \le T$, satisfy

 $\|A(t)(\lambda - A(t))^{-1} dA(t)^{-1} / dt\|_{\mathcal{L}(X)} \le N/(|\lambda| + 1)^{\nu}, \quad \lambda \in \Sigma$ with some constants $0 < \nu \le 1$ and $N \ge 0$.

Then we can prove:

THEOREM 2.1 There exists a family U(t,s), $0 \le s \le t \le T$, of bounded linear operators on X which have the properties: a) U(t,s)U(s,r) = U(t,r) for $0 \le r \le s \le t \le T$, U(s,s) = 1 for $0 \le s \le T$; b) U(t,s) is strongly continuous for $0 \le s < t \le$ T with an estimate $\|U(t;s)\|_{\mathcal{L}(X)} \le C_1$; c) the ranges $\Re(U(t,s))$ are contained in $\mathfrak{D}(A(t))$ for all $0 \le s < t \le T$, and A(t)U(t,s) is strongly continuous for $0 \le s < t \le T$ with an estimate $\|A(t)U(t,s)\|_{\mathcal{L}(X)} \le C_2(t-s)^{-1}$; and d) U(t,s) is strongly continuously differentiable in t for $0 \le s < t \le T$.

U(t,s) is called the evolution operator for (E). In fact, an existence and uniqueness result of strict solution u (i.e. $u \in \mathscr{C}^{1}((0,T];X), A(\cdot)u(\cdot) \in \mathscr{C}((0,T];X), and \lim_{t\to 0} A(0)^{-1}(u(t) - \frac{1}{t\to 0})$ $u_{0}) = 0$ in X) for the problem (E) is obtained by using the operator U(t,s).

THEOREM 2.2 For any $f \in \mathscr{G}^{\sigma}([0,T];X), \sigma > 0$, and any $u_0 \in X$, the function u defined by (2.1) $u(t) = U(t,0)u_0 + \int_0^t U(t,\tau)f(\tau)d\tau$, $0 \le t \le T$,

gives a strict solution of (E). Conversely, let u be any strict solution of (E) where $f \in \mathcal{C}([0,T];X)$ and $u_0 \in X$ are arbitrary, and assume that u satisfies a growth condition: $\|u(t)\|_X \leq Ct^{-\gamma}$ near t = 0 with some $\gamma < \nu$; then, necessarily u must be equal to the function given by (2.1) for all $0 \leq t \leq T$.

The spirit of proof of these two theorems is quite similar to that in [6] where the theorems have been proved in the case where $\mathcal{D}(A(t))$ are dense. We have to recover, however, a technical difficulty that the Yosida regularization $n(n + A(t))^{-1}$ of A(t) converges to the identity mapping no longer on the whole space X but only on the closure of $\mathcal{D}(A(t))$, which results from lack of the density of the domains. Full proof will be seen in the forthcoming paper [7].

3. INITIAL VALUE PROBLEM (P)

Let us observe in this Section how to apply the abstract result in the previous Section to the problem (P).

Let Ω be a (possibly unbounded) region in \mathbb{R}^n with the boundary $\partial\Omega$, $\mathbf{x} = (\mathbf{x}_1, \cdots, \mathbf{x}_n) \in \overline{\Omega}$. For each integer $\mathbf{k} \ge 0$, $\mathbb{C}^k(\overline{\Omega})$ (resp. $\mathbb{C}^k(\partial\Omega)$) is the Banach space of all continous bounded functions on $\overline{\Omega}$ (resp. $\partial\Omega$) which have smooth and bounded derivatives on $\overline{\Omega}$ (resp. $\partial\Omega$) up to the order \mathbf{k} ; $\mathbb{C}^0(\overline{\Omega})$ $(\text{resp. } \mathscr{C}^0(\partial\Omega)) \text{ will be abbreviated to } \mathscr{C}(\overline{\Omega}) \text{ (resp. } \mathscr{C}(\partial\Omega)).$

For
$$0 \le t \le T$$
, let

$$A(t,x;D) = \sum_{\substack{\alpha \\ |\alpha| \le 2m}} a_{\alpha}(t,x) D^{\alpha}$$

be differential operators in Ω of order 2m, where $D_1 = i^{-1}\partial/\partial x_1, \cdots, D_n = i^{-1}\partial/\partial x_n$, and $D^{\alpha} = D_1^{\alpha} \cdots D_n^{\alpha}$ for multi index $\alpha = (\alpha_1, \cdots, \alpha_n)$. And let

$$B_{j}(t,x;D) = \sum_{\substack{\beta \mid \leq m_{j}}} b_{j\beta}(t,x)D^{\beta}, \quad j = 1, \cdots, m$$

be boundary differential operators on $\partial \Omega$ of order m, $\leq 2m-1$.

We assume the following conditions: (R1) The boundary $\partial \Omega$ is uniformly regular of class \mathscr{G}^{2m} . (A1) $a_{\alpha} \in \mathscr{G}^{1}([0,T];\mathscr{G}(\overline{\Omega}))$ for $|\alpha| \leq 2m$, moreover $a_{\alpha}(t, \cdot)$ are uniformly continuous on $\overline{\Omega}$ for $|\alpha| = 2m$. (A2) A(t,x;D) are uniformly strongly elliptic, i.e.

$$\begin{split} & \sum_{|\alpha| \leq 2m} a_{\alpha}(t,x)\xi^{\alpha} \geq E|\xi|^{2m} \quad (E > 0) \quad \text{for} \quad \xi \in \mathbb{R}^{n}, \ x \in \overline{\Omega}, \ 0 \leq t \leq T. \\ & |\alpha| \leq 2m \\ & (B1) \quad b_{j\beta} \in \mathscr{G}^{1}([0,T];\mathscr{G}^{2m-m}j(\partial\Omega)) \quad \text{for} \quad |\beta| \leq m_{j}, \ 1 \leq j \leq m; \text{ and} \\ & D^{\gamma}b_{j\beta}(t,\cdot) \quad \text{are uniformly continuous on} \quad \partial\Omega \quad \text{for} \quad |\gamma| = 2m-m_{j}. \\ & (B2) \quad \text{For} \quad |\theta| \geq \pi/2 - \delta \quad (\delta > 0), \ A(t,x;D) - e^{i\theta}D_{y}^{2m} \quad \text{and} \\ & B_{j}(t,x;D) \quad \text{satisfy the complementing condition on a product} \\ & \text{region} \quad \overline{\Omega} \times \mathbb{R}_{y} \quad (\text{specifically see e.g.}[8,p.251]). \end{split}$$

Set

$$\begin{cases} X = \{ f \in \mathscr{C}(\overline{\Omega}) ; \\ x \in \Omega, |x| \to \infty \end{cases} \\ (X = \mathscr{C}(\overline{\Omega}) \quad \text{if } \Omega \quad \text{is a bounded region}) \\ \| f \|_{X} = \| f \|_{\mathscr{C}(\overline{\Omega})}. \end{cases}$$

And define, for each $0 \le t \le T$, a linear operator A(t)acting in X by $\left(\mathcal{D}(A(t)) = \{ u \in \bigcap_{n \le q \le \infty} W_q^{2m}(\Omega); A(t,x;D)u \in X \text{ and} \right)$

 $B_{j}(t,x;D)u = 0$ on $\partial\Omega$ for $1 \le j \le m$, $\left(A(t)u = A(t,x;D)u - \lambda_0 u \right).$ Then it is verified that: **THEOREM 3.1** A(t), $0 \le t \le T$, satisfy the Hypotheses (1), (II) and (III) in Section 2 (we shall assume if necessary that the constant λ_0 is sufficiently positive). Proof In fact, (I) has been already verified by Stewart [3]. To verify (II) and (III) we use a priori estimates in $L^{\mathbf{p}}_{loc}$ space for $1 < \mathbf{p} < \infty$. For $\mathbf{x} \in \overline{\Omega}$ and $\mathbf{r} > 0$, $\Omega(\mathbf{x}, \mathbf{r}) =$ $\{y \in \Omega; |y - x| < r\}$. For $0 \le j \le 2m$, $\|\cdot\|_{j,p,\omega}$ is the usual norm of the Sobolev space $W_{p}^{j}(\omega)$ on $\omega \subset \Omega$. LEMMA 3.2 For any 1 there are two positive constants C_p and R_p such that, if $|\arg \lambda| \ge \pi/2 - \delta$ and $|\lambda|$ $\geq C_{p}$ and if $r \geq R_{p}$, then $(3.1) \sum_{j=0}^{2m} |\lambda|^{1-j/2m} \sup_{x \in \overline{\Omega}} |u|_{j,p,\Omega(x,r)}$ $\leq C_{p} \{ \sup_{x \in \overline{\Omega}} \| (\lambda - A(t,x;D)) u \|_{0,p,\Omega(x,r)} +$ $\sum_{j=1}^{m} |\lambda|^{1-m} j^{2m} \sup_{x \in \overline{\Omega}} \|g_j\|_{0,p,\Omega(x,r)} + \sum_{j=1}^{m} \sup_{x \in \overline{\Omega}} \|g_j\|_{2m-m} |g_j|_{2m-m} |g_j|_{2m-m}$ for all $u \in W_p^{2m}(\Omega)$, here $g_j (1 \le j \le m)$ are arbitrary functions in $W_p^{2m-m}j(\Omega)$ provided $g_j = B_j(t,x;D)u$ on $\partial\Omega$. We take some $n/2m , and assume that <math>\lambda_0 \ge C_p$. Let $f \in \mathscr{C}(\overline{\Omega})$ be a function with compact support; since $f \in$ $L^{p}(\Omega)$, $A(t)^{-1}f$ belongs to $W_{p}^{2m}(\Omega)$ and satisfies $(A(t,x;D) - \lambda_0)A(t)^{-1}f = f$ in Ω , and (3.2) $B_j(t,x;D)A(t)^{-1}f = 0$ on $\partial\Omega$, $1 \le j \le m$. (3.3) Then, by using the a priori estimates in $L^p(\Omega)$, it is shown from (A1) and (B1) that $A(\cdot)^{-1}f$ is, as a $W_p^{2m}(\Omega)$ -valued

function, continuously differentiable on [0,T] and the
derivative
$$dA(t)^{-1}/dtf$$
 is specified by
 $(3.4)(A(t,x;D) - \lambda_0)dA(t)^{-1}/dtf = -\sum_{|\alpha| \le 2m} \partial_{\alpha}(t,x)/\partial tD^{\alpha}A(t)^{-1}f$ in Ω
 $||\alpha|| \le 2m^{\alpha} (t,x)/\partial tD^{\beta}A(t)^{-1}f$ on $\partial \Omega$.
 $||\beta|| \le m_j$
This then shows by the Sobolev imbedding theorem $(W_p^{2m}(\Omega) \subset \mathbb{S}(\overline{\Omega}))$ that $A(\cdot)^{-1}f \in \mathbb{S}^1([0,T];X)$. Take an arbitrary point
 $x_0 \in \overline{\Omega}$, and let $\phi_0(x) = \phi(x-x_0)$ be a function such that $\phi \in \mathbb{S}_0^{\infty}(\mathbb{R}^n)$ with $\sup p \phi \subset (|x| < \mathbb{R}_p)$ and $\phi(0) = 1$. Then
 $|(dA(t)^{-1}/dtf)(x_0)| \le (\|\phi_0 A(t)^{-1}/dtf\|_{0,p,\Omega})^{1-\mu}$
with $\mu = n/2mp$, so that
 $\le C_p(\|dA(t)^{-1}/dtf\|_{2m,p,\Omega}(x_0,\mathbb{R}_p))^{\mu}(\|dA(t)^{-1}/dtf\|_{0,p,\Omega}(x_0,\mathbb{R}_p))^{1-\mu}$.
We here use the local a priori estimate (3.1) with $\lambda = \lambda_0$,
then it follows from (3.4) and (3.5) that
 $\le C_p \sup \|A(t)^{-1}f\|_{2m,p,\Omega}(x,\mathbb{R}_p) \le C_p \sup \|f\|_{0,p,\Omega}(x,\mathbb{R}_p)$
We use again (3.1), then (3.2) and (3.3) yield
(3.6) $\sup \|A(t)^{-1}f\|_{2m,p,\Omega}(x,\mathbb{R}_p) \le C_p \sup \|f\|_{0,p,\Omega}(x,\mathbb{R}_p)$

Hence we have proved that

 $\|dA(t)^{-1}/dtf\|_{\mathscr{G}(\overline{\Omega})} \leq C_p \|f\|_{\mathscr{G}(\overline{\Omega})},$ the constant C_p being independent of f. (II) then follows easily from the fact that functions in $\mathscr{C}(\overline{\Omega})$ with compact support are dense in X.

Verification of (III) is now an easy analogue to the

 L^p case (cf. [5] or [6]). For $|\arg \lambda| \ge \pi/2 - \delta$ and $0 \le t$ \leq T, we denote the operator A(t)(λ - A(t))⁻¹dA(t)⁻¹/dt by D(λ ,t). Let $f \in \mathscr{C}(\overline{\Omega})$ be again with compact support; D(λ ,t)f is a function in $W_p^{2m}(\Omega) \subset \mathscr{C}(\overline{\Omega})$; in the same way as above it is seen that $(3.7) \| D(\lambda, t) f \|_{\mathscr{Q}(\overline{O})}$ $\leq C_{p} \{ \sup_{\mathbf{x} \in \Omega} \| \mathbb{D}(\lambda, t) f \|_{2m, p, \Omega(\mathbf{x}, \mathbf{R}_{p})} \}^{\mu} \{ \sup_{\mathbf{x} \in \Omega} \| \mathbb{D}(\lambda, t) f \|_{0, p, \Omega(\mathbf{x}, \mathbf{R}_{p})} \}^{1-\mu}$ with $\mu = n/2mp$. But, since $(\lambda + \lambda_0 - A(t,x;D))D(\lambda,t)f = (A(t,x;D) - \lambda_0)dA(t)^{-1}/dtf$ in Ω and (3.4), and since $B_{i}(t,x;D)D(\lambda,t)f = -B_{i}(t,x;D)dA(t)^{-1}/dtf \text{ on } \partial\Omega, 1 \le j \le m$ and (3.5), it follows by using (3.1) that $\sum_{j=0}^{2m} \frac{|\lambda|^{1-j/2m} \sup_{x \in \overline{\Omega}} \|D(\lambda,t)f\|_{j,p,\Omega(x,R_p)}}{\sum_{x \in \overline{\Omega}} |\lambda|^{1-j/2m} \sum_{x \in \overline{\Omega}} \|D(\lambda,t)f\|_{j,p,\Omega(x,R_p)}}$ $\leq C_{p} \left\{ \sup_{x \in \overline{\Omega}} \|A(t)^{-1} f\|_{2m, p, \Omega(x, R_{p})} \right\}$ $\sum_{1 \leq j \leq m, m, \neq 0} |\lambda|^{1-m_j/2m} \sup_{x \in \overline{\Omega}} |A(t)^{-1} f\|_{m_j, p, \Omega(x, R_p)}$ (note that $B_i(t,x;D) = b_{i0}(t,x) \equiv 1$ if $m_i = 0$). Therefore (3.6)from $\leq C_{p} |\lambda|^{1-\nu} B \|f\|_{\mathcal{B}(\overline{\Omega})},$ where $v_{\mathbf{R}} = \text{Min}\{m_{j}>0; 1 \le j \le m\}/2m$. We therefore conclude (3.7)) that (from $\|D(\lambda,t)f\|_{\mathscr{Q}(\overline{\Omega})} \leq C_{n}|\lambda|^{\mu} - v_{B} \|f\|_{\mathscr{Q}(\overline{\Omega})}.$ The density of functions with compact support provides thus $\|D(\lambda,t)\|_{\mathscr{L}(\mathbf{X})} \leq C_{p}|\lambda|^{\mu} - {}^{\nu}B,$ hence (III) (remember that p was arbitrarily taken in n/2m < p < ∞).

4. PROOF OF LEMMA 3.2

Lemma 3.2 is a slight modification of the ordinary a priori estimates in L^p space. Under (R1), (A1-2) and (B1-2) it is known (see e.g. [8,Lemma 17.6] that: Theorem 4.1 For any 1 there is a positive constant $<math>C_p$ such that, if $|\arg \lambda| \ge \pi/2 - \delta$ and $|\lambda| \ge C_p$, then $(4.1) \sum_{j=1}^{2m} |\lambda|^{1-j/2m} \|u\|_{j,p,\Omega} \le C_p \{\|(\lambda - A(t,x;D))u\|_{0,p,\Omega} + \sum_{j=1}^{m} |\lambda|^{1-m} j^{/2m} \|g_j\|_{0,p,\Omega} + \sum_{j=1}^{m} \|g_j\|_{2m-m_j,p,\Omega} \}$ for all $u \in W_p^{2m}(\Omega)$, where $g_j \in W_p^{2m-m} j(\Omega)$ with the condition that $g_j = B_j(t,x;D)u$ on $\partial\Omega$, $1 \le j \le m$.

Let ψ be a function in $\mathscr{C}_0^{\infty}(\mathbb{R}^n)$ with $\operatorname{supp} \psi \subset \{|x| < 2\}$ and $\psi \equiv 1$ on $\{|x| \le 1\}$. For any $x_0 \in \overline{\Omega}$ and $r \ge 1$, we set $\psi_0(x) = \psi((x-x_0)/r)$ and apply (4.1) to $\psi_0 u$. Since $(\lambda - A(t,x;D))(\psi_0 u) = \psi_0(\lambda - A(t,x;D))u$

$$\sum_{|\alpha| \le 2m} \sum_{0 \ne \gamma \le \alpha} {\alpha \choose \gamma} a_{\alpha}(t, x) D^{\alpha} \psi_0 D^{\alpha - \gamma} u \quad \text{in } \Omega,$$

it follows that

$$\| (\lambda - A(t,x;D))(\psi_0 u) \|_{0,p,\Omega} \le C_p(\| (\lambda - A(t,x;D)) u \|_{0,p,\Omega}(x_0,2r) + \frac{1}{r} \| u \|_{2m-1,p,\Omega}(x_0,2r) \}.$$

On the other hand, if we put

$$\begin{split} \mathbf{h}_{j} &= \psi_{0}\mathbf{g}_{j} + \sum_{\substack{|\beta| \leq m_{j} \\ p}} \sum_{\substack{0 \neq \gamma \leq \beta}} \binom{\beta}{\gamma} \mathbf{b}_{j\beta}(\mathbf{t},\mathbf{x}) \mathbf{D}^{\gamma} \psi_{0} \mathbf{D}^{\beta-\gamma} \mathbf{u} \text{, for } 1 \leq j \leq m, \end{split}$$
then $\mathbf{h}_{j} \in W_{p}^{2m-m} \mathbf{j}(\Omega) \text{, } \mathbf{h}_{j} = \mathbf{B}_{j}(\mathbf{t},\mathbf{x};\mathbf{D})(\psi_{0}\mathbf{u}) \text{ on } \partial\Omega \text{ and } \mathbf{h}_{j}$ satisfies for $0 \leq k \leq 2m - m_{j}$ the estimate

 $\|h_{j}\|_{k,p,\Omega} \leq C_{p} \{\|g_{j}\|_{k,p,\Omega(x_{0},2r)} + \frac{1}{r}\|u\|_{m_{j}+k-1,p,\Omega(x_{0},2r)}\}.$ Hence it turns out that

$$\begin{split} &\sum_{j=0}^{2m} |\lambda|^{1-j/2m} \|u\|_{j,p,\Omega(x_0,r)} \leq &\sum_{j=0}^{2m} |\lambda|^{1-j/2m} \|\psi_0 u\|_{j,p,\Omega} \\ &\leq & C_p \{ \|(\lambda - A(t,x;D)) u\|_{0,p,\Omega(x_0,2r)} \\ &+ &\sum_{j=1}^{m} |\lambda|^{1-m} j^{/2m} \|g_j\|_{0,p,\Omega(x_0,2r)} + &\sum_{j=1}^{m} \|g_j\|_{2m-m_j,p,\Omega(x_0,2r)} \} \\ &+ & C_p / r \{ \sum_{j=1}^{m} |\lambda|^{1-m} j^{/2m} \|u\|_{m_j} - 1, p, \Omega(x_0,2r) + \|u\|_{2m-1,p,\Omega(x_0,2r)} \} \\ &+ & C_p / r \{ \sum_{j=1}^{m} |\lambda|^{1-m_j/2m} \|u\|_{m_j} - 1, p, \Omega(x_0,2r) + \|u\|_{2m-1,p,\Omega(x_0,2r)} \} \\ &\text{To complete the proof it now suffices to notice a fact that} \\ &\text{for an integer N, which is independent of } x_0 \in \overline{\Omega} \text{ and } r \geq \\ &1, \Omega(x_0, 2r) \text{ can be covered by N number of } \Omega(x_i, r), x_i \in \overline{\Omega}, \\ &1 \leq i \leq N, \text{ and therefore} \end{split}$$

$$\begin{split} \|v\|_{j,p,\Omega(x_0,2r)} &\leq N \sup_{x\in\Omega} \|v\|_{j,p,\Omega(x,r)} , \quad v \in \mathbb{W}_p^j(\Omega) \\ \text{hold for all } 0 \leq j \leq 2m. \end{split}$$

REFERENCES

- [1] T.Kato and H.Tanabe, On the abstract evolution equation, Osaka Math. J. 14 (1962), 107-133.
- [2] D.Park, Initial-boundary value problem for parabolic equation in L^{1} , Proc. Japan Acad. 62 Ser.A (1986), 178-180.
- [3] H.B.Stewart, Generation of analytic semigroups by strongly elliptic operators under general boundary conditions, Trans. Amer. Math. Soc. 259 (1980), 229-310.
- [4] H.Tanabe, Remarks on the equations of evolution in a Banach space, Osaka Math. J. 12 (1960), 145-166.
- [5] M.Watanabe, A remark on fractional powers of linear operators in Banach spaces, Proc. Japan Acad. 53 (1977), 4-7.
- [6] A.Yagi, On the abstract linear evolution equations in

Banach spaces, J. Math. Soc. Japan 28 (1976), 290-303.

- [7] A.Yagi, Parabolic evolution equations in which the coefficients are the generators of infinitely differentiable semigroups, to appear.
- [8] H.Tanabe, Functional Analysis, II, Jikkyo Shuppan Publishing Company, Tokyo, 1981 (in Jananese).

Department of Mathematics Osaka University Toyonaka, Osaka 560 Japan