FOURIER THEORY ON LIPSCHITZ CURVES

Alan McIntosh and Qian Tao

The aim of this talk is to indicate how the theory of Fourier multipliers in $L_p(\mathbb{R})$ can be adapted when the real line \mathbb{R} is replaced by a Lipschitz curve γ . Details will appear in [6].

(I) Let us start with a resumé of the usual theory concerning $L_{P}(\mathbb{R})$.

(Ia) The Fourier transform

$$\hat{f}(\xi) = \int e^{-ix\xi} f(x) dx$$

$$\mathbb{R}$$

defines a mapping

$$L_1(\mathbb{R}) \xrightarrow{\sim} C_o$$

where C_o denotes the space of continuous functions on $(-\infty,\infty)$ which tend to zero at $\pm\infty$. We consider the inverse Fourier transform

$$\check{w}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\xi} w(\xi) d\xi$$

 L_{p} (R) $\stackrel{\sim}{\leftarrow}$ S

where S is the Schwartz space of rapidly decreasing functions on $(-\infty,\infty)$. Then

(1)
$$\int_{\mathbb{R}} f(x) \ \tilde{w}(x) \ dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\xi) \ w(-\xi) \ d\xi$$

for all $f \in L_1(\mathbb{R})$ and $w \in S$, so it is consistent with the case p = 1 to define

by

$$L_p(\mathbb{R}) \xrightarrow{\sim} S'$$

$$\langle \hat{f}, w_{-} \rangle = 2\pi \int f(x) \check{w}(x) dx , w \in S ,$$

 \mathbb{R}

for $1 , where w₋(<math>\xi$) = w(- ξ) and S' is the space of the tempered distributions. We note that

(2) $\{\tilde{w} \mid w \in S\}$ is dense in $L_p(\mathbb{R})$, $1 \leq p < \infty$, and in $C_o(\mathbb{R})$, from which it is immediate that

(3) $L_{p}(\mathbb{R}) \xrightarrow{\sim} S'$ is one-one.

Of course, the following also holds:

(4) Assuming
$$f \in L_{1}(\mathbb{R})$$
 and $w \in S$, then $f = w$ if and only if $f = \widehat{w}$.
(1b) Next we note some facts concerning the convolution
 $(\phi^{*}f)(x) = \int \phi(x-y) f(y) dy$.
(5) Let $1 \leq p \leq \infty$. If $\phi \in L_{1}(\mathbb{R})$, $f \in L_{2}(\mathbb{R})$, then $\phi^{*} f \in L_{2}(\mathbb{R})$
and $\|\phi^{*} f\|_{p} \leq \|\phi\|_{1} \|f\|_{p}$. If $f \in C_{0}(\mathbb{R})$, then so is $\phi^{*} f$.
Proof: (when $1 \leq p < \infty$). Let $p' = p(p-1)^{-1}$. Then
 $\|\phi^{*} f\|_{p} = i \int |\int \phi(x-y) |dy|^{p/p'} i \int |\phi(x-y)| |f(y)|^{p} dy| dxi^{\frac{1}{p}}$
 $\mathbb{R} \mathbb{R}$
 $\leq i \int |f| |\phi(x-y)| dy|^{p/p'} i \int |\phi(x-y)| |f(y)|^{p} dy| dxi^{\frac{1}{p}}$
 $\mathbb{R} \mathbb{R}$
 $= \|\phi\|_{1} \|f\|_{p}$. //
It is straightforward to show
(6) if ϕ , $f \in L_{1}(\mathbb{R})$, then $(\phi^{*} f)^{*} = \widehat{\phi} \widehat{f}$.
Example: Define ϕ_{λ} for $Im\lambda > 0$ by
 $\phi_{\lambda}(x) = \begin{cases} i e^{i\lambda x} & x > 0 \\ -i e^{i\lambda x} & x < 0 \end{cases}$.
and, for $Im\lambda < 0$, by
 $\phi_{\lambda}(x) = \begin{cases} 0 e^{i\lambda x} & x > 0 \\ -i e^{i\lambda x} & x < 0 \end{bmatrix}$.
Then $\|\phi_{\lambda}\|_{1} = |Im\lambda|^{-1}$, and $\widehat{\phi}_{\lambda}(\xi) = (\xi^{-\lambda})^{-1}$. So, for
 $f \in L_{1}(\mathbb{R})$,
 $(\phi_{\lambda} * f)(x) = \begin{cases} i e^{i\lambda(x-y)} f(y) dy , Im\lambda > 0 \\ y < x \end{cases}$
and
 $(\phi_{\lambda}^{*} f) (\xi) = (\xi^{-\lambda})^{-1} f(\xi)$.
(Ic) Let $1 \leq p < \infty$ - Consider the operator $D = \frac{1}{i} \frac{d}{dx}$
as a closed linear operator in $L_{2}(\mathbb{R})$ with dense domain

where f' denotes the distribution derivative of f .

 $L^{1}_{\mathrm{p}}\left(\mathbb{R}\right) \;\; = \; \left\{ f \;\; \epsilon \;\; L_{\mathrm{p}}\left(\mathbb{R}\right) \;\; \middle| \;\; f' \;\; \epsilon \;\; L_{\mathrm{p}}\left(\mathbb{R}\right) \; \right\} \;\; ,$

It is straightforward to show

(7) when $Im\lambda \neq 0$, then $(D-\lambda I)^{-1}f = \phi_{\lambda} * f$ for all $f \in L_p(\mathbb{R})$, so $||(D - \lambda I)^{-1}|| \leq |Im\lambda|^{-1}$ and $((D - \lambda I)^{-1}f)^{(\epsilon)} = (\epsilon - \lambda)^{-1}\hat{f}(\epsilon).$ Note in particular that the spectrum $\sigma(D)$ is contained in $\mathbb R$. (Actually $\sigma(D) = \mathbb{R}$.) These results also hold when $L_{\mathbb{P}}(\mathbb{R})$ is replaced by $C_0(\mathbb{R})$ with the norm $||f|| = \sup |f(x)|$. Let $b \in L_{\infty}(-\infty,\infty)$. Then b is an $L_{p}(\mathbb{R})$ - <u>Fourier-multiplier</u> means there exists a bounded linear operator B in $L_p(\mathbb{R})$ such that $(Bf)^{\hat{}} = b\hat{f}$, $f \in L_p \cap L_1(\mathbb{R})$. If $p = \infty$, $L_p(\mathbb{R})$ is replaced by $C_n(\mathbb{R})$. We denote the set of $L_p(\mathbb{R})$ - Fourier multipliers by $M_p(\mathbb{R})$, and, in analogy with (Ic), we write b(D) for B when $b \in M_p(\mathbb{R})$. Let us list some conditions which ensure that a function b belongs to $M_{p}(\mathbb{R})$. By S_{o}^{o} we mean the double sector $S_{\rho}^{\circ} = \{ z \in \mathbb{C} \mid | Im \ z \mid < \rho \mid Rez \mid \}$ and by $H_{\infty}(S_{\mathcal{O}})$ we mean the space of bounded holomorphic functions on S $1 \le p \le \infty \ . \ \text{If} \ \phi \ \epsilon \ L_1 \ (\mathbb{R}) \ \text{then} \ \hat{\phi} \ \epsilon \ M_0 \ (\mathbb{R}) \ \text{and} \ \hat{\phi} \ (D) \ f = \phi \ * \ f \ .$ (i) (ii) $1 \leq p \leq \infty$ · If $b \in H_{\infty}(S^{\circ}_{\rho})$ for some $\rho > 0$, and $\begin{cases} \mid b(\zeta) - b_{0} \mid \leq c \mid \zeta \mid^{S} , \quad \mid \zeta \mid \leq 1 \\ \mid b(\zeta) \mid \leq c \mid \zeta \mid^{-S} , \quad \mid \zeta \mid \geq 1 , \end{cases}$ for some b_0 , c, s > 0, then $b \in M_p(\mathbb{R})$. (iii) p = 2. If $b \in L_{\infty}$, then $b \in M_2(\mathbb{R})$. (iv) $1 . If <math>b \in L_{\infty}$ and, for all a > 0, $\int_{a}^{2a} |db(\xi)| \leq \text{const},$ then $b \in M_{p}(\mathbb{R})$. $1 . If <math>b \in H_{\infty}(S_{\rho})$ for some $\rho > 0$, then $b \in M_{\rho}(\mathbb{R})$. (v) (vi) $1 . If <math>b = X_0$, the characteristic function of an interval J, then $b \in M_{\mathbb{P}}(\mathbb{R})$. (vii) $1 . If <math>b \in L_{\infty}$ and there exists $\phi: \mathbb{R} \sim \{0\} \Rightarrow \mathbb{C}$ and $\sigma > 0$ such that $|\phi(x)| \leq \text{const.} |x|^{-1}$ $|\phi(x+h) - \phi(x)| \leq \text{const.} |h|^{\sigma} |x|^{-(1+\sigma)}, |h| \langle t_2 | x |,$

and

(Id)

$$p.v. \int \phi(x) \quad \tilde{w}(x) \quad dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} b(\xi) w(-\xi) d\xi \quad , \quad w \in S$$

$$\mathbb{R}$$

then
$$b(D)f(x) = p.v. \int_{\mathbb{R}} \phi(x-y) f(y) dy$$
, $f \in L_p(\mathbb{R})$.

To prove (ii), apply the Cauchy formula for $b(z) + ib_{o}(z-i)^{-1}$ on the boundary of $S_{\rho/2}^{\rho}$. (c.f. [5] and [4].) Parts (v) and (vi) are both corollaries of (iv) which is due to Marcinkiewicz. See, e.g., [7]. The operators $X_{J}(D)$ are spectral projections for D. Part (vii) is essentially proved in [7]. (c.f.[2].)

Example: If $b(\xi) = sgn(\xi-a)$ for $a \in \mathbb{R}$, then $\phi(x) = (\pi i x)^{-1} \exp(i x a)$, so

$$sgn(D-a) f(x) = \frac{1}{\pi i} p \cdot v \int \frac{1}{x-y} e^{ia(x-y)} f(y) dy$$

and

$$X_{[a,b]}(D)f(x) = \frac{1}{2\pi i} p \cdot v \int \frac{1}{x - y} \{e^{ia(x - y)} - e^{ib(x - y)}\} f(y) dy.$$

(II) Henceforth g denotes a real-valued Lipschitz function with

 $\|g'\|_{\infty} \leq N \langle \infty,$

$$\gamma = \{x + ig(x) \in \mathbb{C} \mid x \in \mathbb{R}\}$$

and

$$\Gamma = \left[z - \zeta \right] z \in \gamma, \zeta \in \gamma \right].$$

Note that

$$\Gamma \subset S_N = \{ z \in \mathbb{C} \mid |Imz| \leq N | Rez | \}$$
.

Our aim is to see what happens when \mathbb{R} is replaced by γ in the results of (I). We work in the spaces $L_P(\gamma)$ for which

$$\|f\|_{P} = \left\{ \int_{\gamma} |f(z)|^{p} |dz| \right\}^{\frac{1}{p}} < \infty$$

(where the integral is with respect to arc-length) and in $C_o(\gamma)$. Let us first consider convolution on γ .

(IIb) If $f \in L_p(\gamma)$ and ϕ is defined on Γ , then $(\phi * f)(z)$ is defined by

$$(\phi * f)(z) = \int_{\gamma} \phi(z-\zeta) f(\zeta) d\zeta$$

whenever the right hand side makes sense. The inequality in (5) is no longer correct, but the proof goes through except for the final equality. So we have, for $1 \le p \le \infty$,

$$\begin{split} \|\phi * f\|_{p} \leq \{\sup_{z \in \gamma} \int_{\gamma} |\phi(z - \zeta)| |d\zeta|\}^{\frac{1}{p'}} \{\sup_{z \in \gamma} \int_{\gamma} |\phi(z - \zeta)| |dz|\}^{\frac{1}{p}} \|f\|_{p} \\ \text{if } \phi(z - .) \quad \text{and} \quad \phi(. - \zeta) \in L_{1}(\gamma) \quad \text{for all } z \quad \text{and} \quad \zeta \in \gamma \ . \\ \textbf{Example:} \quad \text{Define } \phi : S_{N} \neq \mathbb{C} \quad \text{when} \quad Im\lambda > 0 \quad \text{by} \end{split}$$

160

$$\phi_{\lambda}(z) = \begin{cases} i e^{i\lambda z} , & \text{Re } z > 0 \\ 0 , & \text{Re } z \le 0 \end{cases}$$

and, when $\operatorname{Im} \lambda < 0$, by

$$\phi_{\lambda}(z) = \begin{cases} 0 & , \quad \operatorname{Re} \ z \ge 0 \\ -i \ e^{i\lambda z} & , \quad \operatorname{Re} \ z < 0 \end{cases}$$

Write z = x + iy and $\lambda = \mu + iv$. When vx > 0, $|\phi_{\lambda}(z)| = \exp(\operatorname{Re}(i\lambda z)) = \exp(-vx-\mu y)$ $\leq \exp(-vx(1-N|\mu/v|))$

which tends to zero exponentially as $|x| \rightarrow \infty$ if $\lambda \in S_N$. Computation gives, for $\lambda \in S_N$,

$$\left\|\phi_{\lambda} * f\right\|_{p} \leq \left| \operatorname{dist}(\lambda , S_{N}) \right|^{-1} \left\|f\right\|_{p} \quad , \quad f \in L_{p}(\gamma) \ .$$

(IIc) Let $1 \leq p < \infty$. Define the closed linear operator D_{γ} with

domain $L_p^1(\gamma)$ dense in $L_p(\gamma)$ as follows.

If $u: \gamma \rightarrow C$ and $z \in \gamma$, define u'(z) by

$$u'(z) = \lim_{\substack{h \to 0\\ z+h \in \gamma}} \left\{ \frac{u(z+h) - u(z)}{h} \right\}$$

provided the limit exists. Let $C_c^l(\gamma)$ be the space of continuous functions u with compact support for which u' exists and is continuous on γ . Then $C_c^l(\gamma)$ is dense in $L_p(\gamma)$. Let

$$L_p^1(\gamma) = \left\{ f \in L_p(\gamma) \mid \exists h \in L_p(\gamma) \Rightarrow \int_{\gamma} f(z) u^1(z) dz = - \int_{\gamma} h(z) u(z) dz \right\}$$
for all $u' \in C_c^1(\gamma)$.

and define D_{γ} by $D_{\gamma}f = i^{-1}h$ for $f \in L_p^1(\gamma)$ and h as above. So $D_{\gamma} = \frac{1}{i} \frac{d}{dz} /_{\gamma}$ in the weak sense.

It is straightforward to show that when $\lambda \in S_N$, then $(D_{\gamma} - \lambda I)^{-1}f = \phi_{\lambda} * f$ for all $f \in L_P(\mathbb{R})$, so

 $\| (D_{\gamma} - \lambda I)^{-1} \| \leq \{ \text{ dist } (\lambda , S_N) \}^{-1}$ and $\sigma(D_{\gamma}) \subset S_N$.

These results also hold when $L_P(I\!\!R)$ is replaced by $\mathcal{C}_o(I\!\!R)$.

Example:

If γ is the curve defined by the function

$$g(x) = \begin{cases} 0, & x \leq 0 \\ \alpha x, & x \geq 0 \end{cases},$$

then $\sigma(D_{\gamma})$ is as shown in the right-hand sketch. In particular, if $\lambda = \mu + i \nu$ where $-\alpha \mu < \nu < 0$, then $\exp(i\lambda z) \in L_p(\gamma)$ and $C_o(\gamma)$, and

 $(D_{\gamma} \ - \ \lambda I) \ e^{i\lambda z} \ = \ 0 \ ,$

which means that such a number λ is a eigenvalue of D_{γ} (acting in $L_P(\gamma)$ or in Co(γ)).

This example shows in particular that $\sigma(D_{\gamma})$ is not necessarily contained in \mathbb{R} , so it is not reasonable to try to define $b(D_{\gamma})$ for $b \in L_{\infty}(-\infty,\infty)$. Of the results listed in (Id), there are however natural ways to define $b(D_{\gamma})$ in the following cases.

(i')
$$1 \le p \le \infty$$
. If $\psi \in L_1(0,\infty)$ where

 $\psi(r) = \sup \{ |\phi(z)| \mid z \in \Gamma, |z| = r \}, \text{ and } \widehat{\phi}(D_{\gamma}) f = \phi * f ,$

then $\widehat{\phi}(D_{\gamma})$ is bounded in $L_{P}(\gamma)$.

(ii')
$$1 \le p \le \infty$$
 • If $b \in H_{\infty}(S_{\rho}^{\circ})$ for some $\rho > N$, and

 $|b(z) - b_o| \le c|z|^s$, $|z| \le 1$ $|b(z)| \le c|z|^{-s}$, $|z| \ge 1$,

for some b_o , c and s > o, then $b(D_{\gamma})$ can be defined as a bounded operator in $L_p(\gamma)$ (or $C_o(\gamma)$) using contour integration on the boundary of S_{γ} , where $N < \sigma < \rho$. (c.f. [5] and [4].)

(v')
$$1 . If $b \in H_{\infty}(S^{\circ}_{\rho})$ for some $\rho > N$, then $b(D_{\gamma})$
can be defined as a bounded operator in $L_{p}(\gamma)$.
This can be achieved when $p = 2$ using quadratic estimates.
$$\int_{0}^{\infty} || tD_{\gamma}(I + t^{2}D_{\gamma}^{2})^{-1}f ||^{2} t^{-1}dt \leq const.||f||^{2} , f \in L_{2}(\gamma)$$$$

(c.f.[5]), or using singular integrals as in [3]. Both methods depend on the type of estimates first proved in [1]. The methods can be adapted to work when $p \neq 2$. See [4] and [3].

(III) To proceed further we make an additional assumption, namely that the function g defining γ satisfies

$$\sup |g(x)| \leq M < \infty$$
.

Then

 $\Gamma \subset \{z \in S_N \mid | \text{Im } z \mid \leq M \}.$

The functions ϕ_λ defined in (IIb) now satisfy an additional estimate, namely

 $|\phi_{\lambda}(z)| = \exp(-\nu x - \mu y) \leq \exp(|\mu|M) \exp(-\nu x)$

when $\nu x > 0$. We find that, whenever $\nu = Im\lambda \neq 0$,

162

$$\|\phi_{\lambda}^{*} f\|_{p} \leq |v|^{-1} \exp(2|\mu|M) \sqrt{1+N^{2}} \|f\|_{p}.$$

So $\sigma(D_{\gamma}) \subset \mathbb{R}$. (Actually $\sigma(D_{\gamma}) = \mathbb{R}$) and we now have the possibility of defining Fourier multipliers. Let us start with Fourier transforms.

(IIIa) Define, for $-\infty < \alpha < \infty$, E_{α} to be the space of measurable functions w on $(-\infty,\infty)$ for which

$$\|w\|_{E_{\alpha}} = \left\{ \int_{-\infty}^{\infty} e^{2\alpha/\xi} \left| w(\xi) \right|^{2} d\xi \right\}^{\frac{1}{2}} < \infty \ ,$$

and

$$E_{\alpha}^{2} = \{ w \in E_{\alpha} \mid w', w'' \in E_{\alpha} \}.$$

(The space $\bigcup_{\alpha > M} E$ was used in [3].)

The Fourier transform

$$\hat{f}(\xi) = \int_{\alpha} e^{-iZ\xi} \hat{f}(z) dz$$

defines a mapping

$$L_1(\gamma) \xrightarrow{\sim} E_-$$

provided $\beta > M$. It can be shown that the material in (Ia) goes through provided S is replaced by E_{β}^2 and S' by $(E_{\beta}^2)'$.

To be precise consider the inverse Fourier transform

$$\widetilde{\mathbf{w}}(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{iZ\xi} \mathbf{w}(\xi) d\xi$$

as a mapping

$$_{\rm up}(\gamma) \xleftarrow{} {\rm E}_{\beta}^2$$

again with $\beta > M$. Then

$$\int_{\gamma} f(z) \ \breve{w}(z) \ dz = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\xi) \ w \ (-\xi) \ d\xi$$

for all f \in L1 (γ) and w \in \mathbb{E}_{β}^2 , so it is consistent with the case p = 1 to define

 $L_{p}(\gamma) \xrightarrow{\sim} (E_{\beta}^{2})'$

by

$$\langle \hat{f}, W_{-} \rangle = 2\pi \int_{\widetilde{T}} f(z) \widetilde{W}(z) dz , W \in \mathbb{E}_{\beta}^{2}$$

for $1 . Again we can show that the mapping <math>Lp(\gamma) \longrightarrow (E_{\beta}^2)'$ is one-one, and that, whenever $f \in L_1(\gamma)$ and $w \in E_{\beta}^2$, then $\hat{f} = w$ if and only if $f = \check{w}$, but first we need some density results, in particular that $\{\check{w} \mid w \in E_{\beta}^2\}$ is dense in $L_p(\gamma)$ for $1 \le p < \infty$ and in $C_o(\gamma)$. When $1 , this follows from the results of [3], but we need density in <math>L_1(\gamma)$. (Actually we need it in $L_1 \cap L_p(\gamma)$. To see this, proceed as follows. Let

$$\begin{split} &h_n\left(\zeta\right) = \begin{cases} \exp\left(-(\zeta/n)^{\alpha}\right) &, \ \text{Re } \zeta > 0 \\ \exp\left(-(-\zeta/n)^{\alpha}\right) &, \ \text{Re } \zeta < 0 \end{cases} \\ &\text{where } \alpha \text{ is a little larger than 1, and define } h_n\left(D_{\gamma}\right) \text{ as in (ii').} \\ &\text{For } f \in L_P\left(\gamma\right) \text{ or } C_O\left(\gamma\right), \\ &\text{let } f_n = h_n\left(D_{\gamma}\right) f \text{ and } f_{n,m}\left(z\right) = (1 + z^2/m^2)^{-1} f_n\left(z\right). \\ &\text{Then } \hat{f}_{n,m} \in \mathbb{E}_{\beta}^{\alpha} \text{ , and } f_n \neq f \text{ and } f_{n,m} \neq f_n \text{ in the appropriate} \\ &\text{topologies.} \end{cases} \\ &\text{A different argument will be presented in [6].} \\ &\text{Let } fe \ L_{\infty}\left(-\infty,\infty\right) \text{ . Then } b \text{ is an } L_P\left(\gamma\right) - \underline{\text{Fourier multiplier}} \text{ means} \\ &\text{there exists a bounded linear operator } b(D_{\gamma}) \text{ in } L_P\left(\gamma\right) \text{ such that} \\ &\left(b(D_{\gamma}, f)^{\gamma} = b\hat{f} &, f \in L_P \cap L_A\left(\gamma\right). \\ &\text{If } p = \infty, \ L_P\left(\gamma\right) \text{ is replaced by } C_O\left(\gamma\right). \\ &\text{The set of } L_P\left(\gamma\right) - \text{Fourier multipliers is denoted by } M_P\left(\gamma\right). \\ &\text{Theorem: Let } 1 \leq p \leq \infty. \text{ Suppose } w \in \overline{L}_{0}^{\alpha} \text{ and the support of } w \text{ is contained in } [-L, L]. \\ & \|\widetilde{W}\|_{L_P\left(\gamma\right)} \leq C \sqrt{12 + M^2} \exp\left(2ML\right) \|\widetilde{W}\|_{L_P\left(\gamma\right)} \\ &\text{for some universal constant } c \text{ .} \\ &\text{Proof: Let } \theta \text{ be a } C^2 \text{ function with support in } [-2,2] \text{ such that} \\ & o(\xi) = 1 \quad \text{if } |\xi| \leq 1 \text{ , and let } o_L(\xi) = o(\xi/L). \\ &\text{satisfies } |\delta_L(z)| \leq f_L(|z|) \text{ for all } z \text{ such that } |Im z| \leq M \text{ ,} \\ &\text{where } \|f_L\|_{z} \leq C \exp(2LM) \text{ .} \\ \\ &\text{Now } w = o_L w, \text{ so} \\ & \widetilde{w}(z) = \left\{ \widetilde{\phi}_L(z-x)^{\vee}w(x) \, dx \text{ , } z \in \gamma \text{ ,} \\ &\text{Reduction } \\ \end{array} \right\}$$

and

(IIId)

$$\widetilde{W}(X) = \int_{\gamma} \widetilde{\Theta}_L(X-Z) \widetilde{W}(Z) dZ , \quad X \in \mathbb{R} .$$

On proceeding as in (Ib) we obtain the required estimates.

164

Corollary: If
$$b \in M_p(\mathbb{R})$$
 and $sppt(b) c[-L,L]$, then $b \in M_p(\gamma)$.
More generally we can show that if $b(\xi) exp(2\beta|\xi|) \in M_p(\mathbb{R})$ for some $\beta > M$, then $b \in M_p(\gamma)$. Using this, we obtain the following results.
(iii') $p = 2$. If $|b(\xi)| \le c \exp(-2\beta|\xi|)$, then $b \in M_2(\gamma)$.
(iv') $1 \le p \le \infty$. If $|b(\xi)| \le c \exp(-2\beta|\xi|)$ and, for all $a > 0$.
$$\int_a^{2\pi} |dg(\xi)| \le c \operatorname{const.},$$
where $g(\xi) = b(\xi) \exp(2\beta|\xi|)$, then $b \in M_p(\gamma)$.

- (vi') $1 . If <math>b = X_I$, the characteristic function of an interval J, then $b \in M_P(\gamma)$.
- (vii') $1 . If <math>b \in M_2(\gamma)$ and there exists $\phi: \Gamma \sim \{0\} \rightarrow \mathbb{C}$ and $\sigma > 0$ such that $|\phi(z)| \leq const. |z|^{-1}$

$$|\phi(z + h) - \phi(z)| \leq const. |h|^{\sigma} |z|^{-(1+\sigma)} , \quad |h| \leq \frac{1}{2} |z|$$

and

$$p.v. \int_{\gamma-\zeta} \phi(z) \widetilde{w}(z) dz = \frac{1}{2\pi} \int_{-\infty}^{\infty} b(\xi) w(-\xi) d\xi , \quad w \in E_{\beta}^{2} ,$$

for all $\zeta \in \gamma$ (where $\gamma - \zeta = \{z - \zeta \mid z \in \gamma\}$), then b $\in M_P(\gamma)$ and

$$b(D_{\gamma})f(z) = p..v. \int_{\gamma} \phi(z-\zeta)f(\zeta) d\zeta , \quad f \in L_{P}(\gamma)$$

Part (vi') is a consequence of the preceding theorem when J is a bounded interval, of (v') when $J = (-\infty, 0]$ or $[0,\infty)$, and of a combination of the two when J is an unbounded interval. The operators $X_J(D_\gamma)$ are spectral projections for D_γ . An alternative approach to (vi') if via the L_P-boundedness of sgn $(D_\gamma - a)$ for $a \in \mathbb{R}$. Use (vii') to write

$$\begin{split} & \text{sgn } (D_{\gamma}^{-}a) \, f(z) \, = \, \frac{1}{\pi i} \quad \text{p.v.} \, \int_{\gamma}^{\gamma} \, \frac{1}{z - \zeta} \, e^{i \, a \, (z - r)} \, f(\zeta) \, d\zeta \, . \\ & \text{i.e.} \quad \text{sgn } (D_{\gamma}^{-}a) \, = \, G_a^{-} \, \text{sgn } (D_{\gamma}^{-}) \, G_{-a}^{-} \\ & \text{where } G_a^{-} \, \text{denotes multiplication by } \exp(iaz) \, . \ \text{Now} \\ & \| G_a^{-} f \|_{P}^{-} \, \leq \, \exp(|a|M) \, \| f \|_{P}^{-} \, , \quad f \in L_P^{-}(\gamma) \, , \\ & \text{so} \\ & \| \text{sgn } (D_{\gamma}^{-}a) \, \| \leq \, \exp(2|a|M) \, \| \text{sgn}(D_{\gamma}^{-}) \, \| \, , \end{split}$$

and sgn (D_{γ}) is bounded by (v'). Indeed sgn (D_{γ}) is the Cauchy operator, the boundedness of which was first shown in [1].

REFERENCES

- Coifman R.R., McIntosh A. and Meyer Y., "L'intégral de Cauchy définit un operateur borné sur L² pour les courbes lipschitziennes", Annals of Mathematics, <u>116</u> (1982), 361-387.
- Coifman R.R. and Meyer Y., "Au-delà des opérateurs pseudo-différentiels", astérisque 57, société mathématique de France, 1978.
- Coifman R.R. and Meyer Y., "Fourier analysis of multilinear convolutions, Calderón's theorem, and analysis on Lipschitz curves", Lecture Notes in Mathematics, 779 Springer-Verlag, Berlin, 1980.
- 4. Cowling M, McIntosh A, and Yagi A. "Banach space operators with an $H_\infty\text{-functional calculus", in preparation.$
- 5. McIntosh, Alan, "Operators which have an H_{∞} -functional calculus", Miniconference on Operator Theory and Partial Differential Equations, 1986, Proceedings of the Centre for Mathematical Analysis, ANU, Canberra, 14 (1986).
- McIntosh, Alan and Qian Tao, "Fourier multipliers on Lipschitz curves", in preparation.
- 7. Stein, Elias M., "Singular Integrals and Differentiability Properties of Functions", P.U.P., Princeton, 1970.

School of Mathematics, Physics and Computing Macquarie University, Ryde NSW 2114 Australia