WANKEL OPERATORS ON THE PALEY-WIENIER SPACE $\mathbb{I N}^{\mathrm{d}} \mathbb{R}^{\mathrm{d}}$

Peng Lizhong

Let $I^{d}=(-\pi, \pi)^{d}=\left\{\xi \in \mathbb{R}^{d}:-\pi<\xi_{j}<\pi, i=1, \ldots, d\right\}$ and let x_{I} denote the characteristic function of I^{d}. Denote the Fourier transform of g by $F(g)=\hat{g}$ and the inverse Fourier transform of f by $F^{-1}(f)=\check{f}:$

$$
\begin{equation*}
\hat{g}(\xi)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} g(x) e^{-i \xi \cdot x} d x \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\check{f}(x)=\frac{1}{(2 \pi)^{d / 2}} \int_{\mathbb{R}^{d}} f(\xi) e^{i \xi \cdot x} d \xi . \tag{2}
\end{equation*}
$$

The Paley-Wiener Space on I^{d}, $P W\left(D^{d}\right)$, is defined to be the image of $L^{2}\left(I^{d}\right)$ under F^{-1}, i.e.

$$
\begin{equation*}
\operatorname{PW}\left(I^{d}\right)=\left\{F^{-1}\left(X_{I^{d}} d^{f}\right): f \in L^{2}\left(I^{d}\right)\right\} . \tag{3}
\end{equation*}
$$

As is well known, f is in $\operatorname{PW}\left(I^{d}\right)$ if and only if it is the restriction to $\mathbb{R}^{\text {d }}$ of an entire function of exponential type at most $(\pi+\epsilon, \ldots, \pi+\epsilon)$ in \mathbb{C}^{d} which satisfies $\|f\|_{2}=\left[\int_{\mathbb{R}^{d}}|f(x)|^{2} d x\right]^{1 / 2}<\infty$.

Let $P_{I^{d}}$ denote the projection defined by $\left(P_{I^{d}} g\right)^{\wedge}=x_{I^{\prime}} \hat{g}^{\hat{g}} . \quad$ The Toeplitz operator on PW(I^{d}) with symbol b is defined by

$$
\begin{equation*}
T_{b}(f)=P_{I^{d}}(b f), \quad \text { for } f \in \operatorname{PW}\left(I^{d}\right) \tag{4}
\end{equation*}
$$

And the Hankel operator on PW (I ${ }^{d}$) with symbol b is defined by

$$
\begin{equation*}
H_{b}(f)=P_{I^{d}}(b \bar{f}), \text { for } f \in \operatorname{PW}\left(I^{d}\right) \tag{5}
\end{equation*}
$$

Because $P W\left(I^{\mathrm{d}}\right)$ is preserved when taking complex conjugates, these two operators on $P W\left(I^{d}\right)$ are unitary equivalent. But as they have properties similar to those of classical Hankel operators (see below), we prefer the name Hankel operators in both cases.

In [7], Rochberg has studied the Hankel operators on PW(I), i.e. the case of one dimension, the results he obtained are as follows:

Let $\theta(x)=e^{i \pi x}, \psi_{L}, \psi_{R} \in C_{0}^{\infty}(\mathbb{R}), \operatorname{supp} \psi_{L} \subset[-4 \pi,-\pi / 2]$, $\psi_{\mathrm{L}}(\xi)=1$ on $[-3 \pi,-\pi], \psi_{\mathrm{R}}(\xi)=\psi_{\mathrm{L}}(-\xi), \quad \psi_{\mathrm{c}}=1-\psi_{\mathrm{R}}-\mathrm{J}_{\mathrm{L}}$, $\left.\left(P_{-} b\right)^{\wedge}=x_{(-\infty, 0]^{\hat{b}}}, \quad\left(P_{+} b\right)^{\wedge}=x_{[0,+\infty}\right)^{\hat{b}}$.

THIEOREM A (Rochberg [7])

1. $\left\|T_{b}\right\| \cong\left\|P_{-}\left(\bar{\theta}^{2} b * \check{\psi}_{R}\right)\right\|_{B M O}+\left\|P_{+}\left(\theta^{2} b * \check{\psi}_{L}\right)\right\|_{B M O}+\left\|b * \psi_{c}\right\|_{\infty} ;$
2. T_{b} is compact if and only if $P_{-}\left(\bar{\theta}^{2} b * \check{\psi}_{R}\right)$ and $P_{+}\left(\theta^{2} b * \check{\psi}_{L}\right)$ are in CMO and $\lim _{|\mathrm{x}| \rightarrow \infty} \mathrm{b} * \check{\psi}_{\mathrm{c}}(\mathrm{x})=0$;
3. $\left\|T_{b}\right\|_{S_{p}}=\|b\|_{\mathscr{G}} \cong\left\|P_{-}\left(\bar{\theta}^{2} * \check{\psi}_{R}\right)\right\|_{B_{p}}+\left\|P_{+}\left(\theta^{2} b * \check{\psi}_{L}\right)\right\|_{B_{p}}+\left\|b * \check{\psi}_{c}\right\|_{L}{ }^{p}$, for $\mid \leq p<\infty$, where S_{p} are Schatten-von Neumann ideals, B_{p} are classical Besov spaces $\mathrm{B}_{\mathrm{p}}^{1 / \mathrm{p}, \mathrm{p}}(\mathbb{R})$.

He also gives a characterization of \mathscr{F}_{p}.

THEOREM B (Rochberg [7]) Suppose that supp $\hat{b} \subset 2 I, 1 \leq p<\infty$, then

$$
\|b\|_{\mathfrak{p}}^{p} \cong \sum_{j \in \mathbb{Z}} \operatorname{dist}_{j}\left\|_{j}^{v} * b\right\|_{L}^{p},
$$

where $\left\{\varphi_{j}\right\}_{j \in \mathbb{Z}}$ is a partition of unity for $2 I$ with respect to the singular points -2π and 2π, dist ${ }_{j}=$ the distance from the centre of support set of φ_{j} to the complement of $2 I$.

In the end of [7], Rochberg proposed several open questions, e.g. do the S_{p} criteria in Theorem A and B extend to all positive p ? what
are the analogs of above results in \mathbb{R}^{d} ? what are the basic functional anlytic results for the spaces ${ }_{0}$ p

We study the Hankel operators on PW(I^{d}), i.e., the case of d-dimension, and answer the questions.

Taking Fourier transform, we get

$$
\begin{equation*}
T_{b}(f) \wedge(\xi)=\int_{\mathbb{R}^{d}} \hat{b}(\xi-v) x_{I^{d}}(\xi) x_{I^{d}}(\eta) \hat{\mathrm{f}}(\eta) \mathrm{d} \eta \tag{6}
\end{equation*}
$$

This turns out to be a paracommutator with symbol b, Fourier kernel $\chi_{I_{d}}(\xi) x_{I^{d}}(\eta)$ and index $s=t=0$, see Janson and Peetre [3]. But now the Fourier kernel $\chi_{I^{d}}(\xi) X_{I^{d}}(\eta)$ does not satisfy the conditions in Janson and Peetre [3], and so it cannot be dealt with in the framework of [3]. We have to look for a new approach.

Note that $T_{b}=T_{P_{2}}$. where $\left(P_{2}\right)^{\wedge}=x_{(2 I)}{ }^{\mathrm{d}} \hat{\mathrm{b}}$. We assume that supp $\hat{b} \subset(2 I)^{d}$ throughout this paper.

As is well known, there exist two important decompositions in Harmonic analysis: the Whitney decomposition for open set of $\mathbb{R}_{\mathrm{x}}^{d}$ and the Littlewood-Paley decomposition for \mathbb{R}_{ξ}^{d}. When $d=1$, the Littlewood-Paley decomposition for \mathbb{R}_{ξ}^{1} can be regarded as a Whitney, decomposition of the open set \mathbb{R}_{ξ}^{1} with boundary $\pm \infty$. We refine this idea and give an appropriate decomposition for I^{d} such that it possesses the properties of both the Whitney decomposition and the Littlewood-Paley decomposition. Using this decomposition we define a new kind of Besov spaces $B_{p}^{s, q}$ for $s \in \mathbb{R}^{d}, 0<p, q \leq \infty$. It turns out to be quite a success to characterize the Schatten-von Neumann ideal criteria for Hankel operators acting on PW($I^{\text {d }}$).

Let $\Delta_{j}=\varnothing$, for $j=1,2, \ldots, \Delta_{0}=\left\{\xi \in I:|\xi| \leq \frac{\pi}{4}\right\}$, $\Delta_{j}=\left\{\xi \in I: 2^{j-1} \pi \leq \pi-\xi \leq 2^{j} \pi\right\} \cup\left\{\xi \in I: 2^{j-1} \pi \leq \xi+\pi \leq 2^{j} \pi\right\}$, for $j=-1,-2, \ldots, \quad \bar{\Delta}_{j}=\Delta_{j-1} \cup \Delta_{j} \cup \Delta_{j+1}$. Thus $I=\bigcup_{j=-\infty}^{0} \Delta_{j}$.

Let Z_{-}denote the $\operatorname{set}\{0,-1,-2, \ldots\}$, for $\underline{j} \in \mathbb{Z}_{-}^{d}$, $\Delta_{\underline{\mathbf{j}}}=\Delta_{\mathbf{j}_{1}} \times \ldots \times \Delta_{\mathbf{j}_{\mathrm{d}}}, \quad \bar{\Lambda}_{\underline{j}}=\bar{\Lambda}_{\mathrm{j}_{1}} \times \ldots \times \bar{\Lambda}_{\mathrm{j}_{\mathrm{d}}}$, then we have

$$
\begin{equation*}
I^{d}=U_{j=\mathbb{Z}_{-}^{d}} \Delta_{j} \tag{7}
\end{equation*}
$$

This gives a decomposition of I^{d}.
Take $\hat{\varphi}_{O} \in C_{0}^{\infty}(\mathbb{R})$ such that supp $\hat{\varphi}_{O} \subset\left\{\xi:|\xi| \leq \frac{3}{4} \pi\right\}, \quad \hat{\varphi}_{O}(\xi) \geq C$ on $\left\{\xi:|\xi| \leq \frac{\pi}{2}\right\}, \hat{\varphi}_{0}(\xi)=\hat{\varphi}_{0}(-\xi) \cdot$ Let $\hat{\varphi}_{j}(\xi)$
$=\hat{\varphi}_{0}\left(2^{-j}\left(|\xi|-\pi+\frac{3}{2^{2-j}} \pi\right)\right)$, for $j=-1,-2, \ldots$, and let
$\hat{\varphi}_{\underline{j}}(\xi)=\prod_{i=1}^{d} \hat{\varphi}_{j_{i}}\left(\xi_{i}\right)$ for $\underline{j} \in \mathbb{Z}_{-}^{d}$, moreover we can also require that
$\sum_{\underline{j} \in \mathbb{Z}_{-}^{d}} \hat{\varphi}_{\underline{j}}(\xi) \equiv 1$ if $\xi \in I^{d}$, ie., it is a partition of unity for I^{d} 。

DEFINITION 1 For $1 \leq p \leq \infty, s \in \mathbb{R}^{d}$,

$$
\begin{align*}
H_{p}^{S}\left(I^{d}\right) & =\left\{f \in S^{\prime}\left(\mathbb{R}^{d}\right): \operatorname{supp} \hat{f} \subset I^{d},\|f\|_{H_{p}^{S}}\left(I^{d}\right)\right. \tag{8}\\
& \left.=\left\|\left[\prod_{i=1}^{d}\left(\pi-\left|\xi_{i}\right|\right)^{s} i_{\hat{f}}(\xi)\right]^{v}\right\|_{p}<\infty\right\}
\end{align*}
$$

It is obvious that $P W\left(I^{d}\right)=H_{2}^{0}\left(I^{d}\right)$.
DEFINITION 2 For $s \in \mathbb{R}^{d}, 0<p, q \leq \infty$.

$$
\begin{align*}
B_{p}^{s, q}\left(I^{d}\right) & =\left\{f \in S^{\prime}\left(\mathbb{R}^{d}\right): \operatorname{supp} \hat{f} \subset I^{d}, \quad\|f\|_{B_{p}^{s, q}}\left(I^{d}\right)\right. \tag{9}\\
& =\left[\sum _ { \underline { j } \in \mathbb { Z } ^ { d } } \left(2^{\left.\left.\left.s \cdot \underline{j}_{\| f} * \varphi_{\underline{j}} \|_{p}\right)^{q}\right]^{1 / q}<\infty\right\} .} .\right.\right.
\end{align*}
$$

It is obvious that $B_{p}^{1 / p, p}(2 I)=\mathscr{F}_{p}$ for $d=1,1 \leq p<\infty$. For $\sigma \in \mathbb{R}^{d}$, the operator I^{σ} is defined by

$$
\begin{aligned}
\left(I^{\sigma_{f}}\right)^{\wedge}(\xi) & =\prod_{i=1}^{d}\left(\pi-\left|\xi_{i}\right|\right)^{\sigma_{i}} \hat{f}(\xi), \quad \text { for } f \in \mathbb{S}_{I^{d}}^{\prime} \\
& =\left\{f \in S^{\prime}\left(\mathbb{R}^{d}\right): \operatorname{supp} \hat{f} \subset I^{d}\right\} .
\end{aligned}
$$

We obtain the basic functional analytic results for $B_{p}^{s, q}\left(I^{d}\right)$ as follows.

THEOREM 1

(i) $B_{p}^{s, q}\left(I^{d}\right)$ is a quasi-Banach space if $s \in \mathbb{R}^{d}, 0<p, q \leq \infty$ (Banach space if $1 \leq p, q \leq \infty)$, and the quasi-norms $\|f\|_{B_{p}^{\varphi}, q}^{s}\left(I^{d}\right)$ with different choices $\left\{\varphi_{\underline{j}}\right\}$ are equivalent.
(ii) $B_{2}^{(1 / 2, \ldots, 1 / 2), 2}\left(I^{d}\right)=H_{2}^{(1 / 2, \ldots, 1 / 2)}\left(I^{d}\right)$.
(iii) $S_{I^{d}} \subset B_{p}^{s, q}\left(I^{d}\right) \subset S_{I^{d}}$.
(iv) If $\mathrm{p}, \mathrm{q}<\infty, \mathrm{S}_{\mathrm{I}^{d}}$ is dense in $\mathrm{B}_{\mathrm{p}}^{\mathrm{s}, \mathrm{q}}\left(\mathrm{I}^{d}\right)$.
(v) $B_{p}^{s, q_{0}}\left(I^{d}\right) \subset B_{p}^{s, q_{1}}\left(I^{d}\right)$, if $q_{0} \leq q_{1}$.
(vi) $\forall \sigma \in \mathbb{R}^{\mathrm{d}}, \mathrm{I}^{\sigma}$ maps $\mathrm{B}_{\mathrm{p}}^{\mathrm{s}, \mathrm{q}}\left(\mathrm{I}^{\mathrm{d}}\right)$ isomorphically onto $\mathrm{B}_{\mathrm{p}}^{\mathrm{s}-\sigma, \mathrm{q}}\left(\mathrm{I}^{\mathrm{d}}\right)$.

THEORIFII 2 Let $s \in \mathbb{R}^{d}, 1 \leq p, q<\infty$, then

$$
\begin{equation*}
\left[B_{p}^{s, q}\left(I^{d}\right)\right]^{\prime}=B_{p}^{-s, q^{0}}\left(I^{d}\right) \tag{10}
\end{equation*}
$$

where $\frac{1}{p}+\frac{1}{p^{\prime}}=1, \frac{1}{q}+\frac{1}{q^{\prime}}=1$.
THEORIEs 3 Let $s^{0}, s^{1} \in \mathbb{R}^{d}, 1 \leq p_{0}, p_{1}, q_{0}, q_{1} \leq \infty, 0<\theta<1$,

$$
\begin{aligned}
& \left.s^{*}=(1-\theta) s_{1}^{0}+\theta s^{1}\left(\text { i.e. } s_{1}^{*}=(1-\theta) s_{1}^{0}+\theta s_{1}^{1}, \ldots, s_{d}^{*}=1-\theta\right) s_{d}^{0}+\theta s_{d}^{1}\right) \\
& \frac{1}{p^{*}}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} . \\
& \frac{1}{q^{*}}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\left[B_{p_{0}}^{s^{0}, q_{0}}\left(I^{d}\right), B_{p_{1}}^{s^{1}, p_{1}}\left(I^{d}\right)\right]_{[\theta]}=B_{p *}^{s *}, q^{*}\left(I^{d}\right) \tag{11}
\end{equation*}
$$

Extending the definition of T_{b}, we consider $T_{b}^{s, t}$ defined by
(12) $\left.\left(T_{b}^{s, t}\right)^{\wedge}(\xi)=\int \hat{b}(\xi-\eta) \prod_{i=1}^{d}\left(\pi-\left|\xi_{i}\right|\right)^{s}{ }_{i=1}^{d}\left(\pi-\left|\eta_{i}\right|\right)^{t}\right) x_{I_{d}}(\xi) x_{I}(\eta) \hat{f}(\eta) d \eta$ where $x, t \in \mathbb{R}^{d}$. We obtain a characterization of the Schatten-von Neumann ideal S_{p} of $T_{b}^{S, t}$ in terms of $b \in B_{p}^{s+t+(1 / p, \ldots, 1 / p), p}\left((2 I)^{d}\right)$.

THEOREM 4 Suppose that $0<p \leq \infty$, s,t $\in \mathbb{R}^{d}$ with $s_{i}, t_{i}>\max (-1 / 2,-1 / p)$. Then $T_{b}^{s, t} \in S_{p}$ if and only if $b \in B_{p}^{s+t+(1 / p, \ldots, 1 p), p}\left((2 I)^{d}\right)$, and

$$
\begin{equation*}
\left\|T_{b}^{s, t}\right\|_{S_{p}} \cong\|b\|_{p}^{s+t+(1 / p, \ldots, 1 / p)} p_{p}\left((2 I)^{d}\right) \tag{13}
\end{equation*}
$$

To prove it, for $1 \leq p \leq \infty$ we follow the procedure of Janson and Peetre [3], for $0<p<1$ we follow the procedure of Peng [5].

Note that if $p=\infty$. Theorem 4 does not contain the result of $T_{b}=T_{b}^{0,0}$. We have the following direct result.

Let $\hat{\psi}_{0}=\hat{\varphi}_{0}, \quad \hat{\psi}_{1}(\xi)=x_{(2 I)}(\xi)-\hat{\psi}_{0}(\xi)$. Then $\mathrm{b}=\mathrm{b}_{1}+\mathrm{b}_{0}$, where $\mathrm{b}_{0}=\mathrm{b} * \psi_{0}, \quad \mathrm{~b}_{1}=\mathrm{b} * \psi_{1}$.

THEOREM 5 If $\mathrm{b}_{1} \in B M O, \mathrm{~b}_{0} \in \mathrm{~L}_{\infty}$. Then $\mathrm{T}_{\mathrm{b}} \in \mathrm{S}_{\infty}$ and

$$
\begin{equation*}
\left\|T_{b}\right\| \leq C\left(\left\|b_{1}\right\|_{\text {BMO }}+\left\|b_{O}\right\|_{L}\right) \tag{14}
\end{equation*}
$$

For the converse result, we get it only for $d=1$.

THEOREI 6 If $d=1, T_{b}$ is bounded on $P W(I)$, then $B_{1} \in B M O$, $\mathrm{b}_{0} \in \mathrm{~L}_{\infty}$ and

$$
\begin{equation*}
\left\|b_{1}\right\|_{B M O}+\left\|b_{0}\right\|_{L} \leq C\left\|T_{b}\right\| \tag{15}
\end{equation*}
$$

Acknowledgement

I would like to thank the Centre for Mathematical Analysis, the Australian National University, for its financial support and additional travel support.

REFERIENCES

[1] Bergh, J. and Löfström, J., Interpolation spaces, Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
[2] Higgins, J.R., Five short stories about the cardinal series. Bull. Amere. Math. Soc. 12(1985), 45-90.
[3] Janson, S. and Peetre, J., Paracommutators-Boundedness and Schatten-von Neumann properties, Report of Dep. of Math., Stockholm, 15(1985).
[4] Peetre, J., New thoughts on Besov Spaces, Duke Uni. Press, Durham, 1976.
[5] Peng, L.ZH., Paracommutators of Schatten-von Neumann class $\mathrm{S}_{\mathrm{p}}, 0<\mathrm{p}<1$, to appear in Scand. Mat.
[6] Peng, L.Zh., Multilinear singular integrals of Schatten-von Neumann class S_{p}, to appear in Approximation Theory and its Applications.
[7] Rochberg, R., Toeplitz and Hankel Operators on the Paley-Wiener Space, Integral Equations and Operator Theory, 10(1987), 186-235.
[8] Triebel, H., Theory of functions spaces, Birkhauser Verlag, 1983.

Department of Mathematics
Peking University
Beijing
CHINA

