HANKEL OPERATORS ON THE PALEY-WIENER SPACE IN Rd

Peng Lizhong

Let $I^d = (-\pi,\pi)^d = \{\xi \in \mathbb{R}^d : -\pi < \xi_j < \pi, i = 1,...,d\}$ and let $\stackrel{\cdot}{x_1^d}$ denote the characteristic function of I^d . Denote the Fourier transform of g by $F(g) = \hat{g}$ and the inverse Fourier transform of f by $F^{-1}(f) = \check{f}$:

(1)
$$\hat{g}(\xi) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} g(x) e^{-i\xi \cdot x} dx$$

and

(2)
$$\check{f}(x) = \frac{1}{(2\pi)^{d/2}} \int_{\mathbb{R}^d} f(\xi) e^{i\xi \cdot x} d\xi$$

The Paley-Wiener Space on $\,I^d$, $\,PW(D^d)$, is defined to be the image of $\,L^2(\,I^d)\,$ under $\,F^{-1}$, i.e.

(3)
$$PW(I^d) = \{F^{-1}(\chi_{I^d}f) : f \in L^2(I^d)\}$$
.

As is well known, f is in PW(I^d) if and only if it is the restriction to \mathbb{R}^d of an entire function of exponential type at most $(\pi + \epsilon, \dots, \pi + \epsilon)$ in \mathbb{C}^d which satisfies $\|\|f\|_2 = \left[\int_{\mathbb{R}^d} |f(x)|^2 dx\right]^{1/2} < \infty$.

Let $\underset{I^d}{P}$ denote the projection defined by $(\underset{I^d}{P}_{I^d}g) = \chi_{I^d}\hat{g}$. The Toeplitz operator on $PW(I^d)$ with symbol b is defined by

(4)
$$T_b(f) = P_I^d(bf)$$
, for $f \in PW(I^d)$.

And the Hankel operator on $PW(I^d)$ with symbol b is defined by

(5)
$$H_b(f) = P_{I^d}(b\overline{f})$$
, for $f \in PW(I^d)$.

Because $PW(I^d)$ is preserved when taking complex conjugates, these two operators on $PW(I^d)$ are unitary equivalent. But as they have properties similar to those of classical Hankel operators (see below), we prefer the name Hankel operators in both cases.

In [7], Rochberg has studied the Hankel operators on PW(I), i.e. the case of one dimension, the results he obtained are as follows:

Let
$$\theta(x) = e^{i\pi x}$$
, ψ_L , $\psi_R \in C_0^{\infty}(\mathbb{R})$, $\sup \psi_L \subset [-4\pi, -\pi/2]$,
 $\psi_L(\xi) = 1$ on $[-3\pi, -\pi]$, $\psi_R(\xi) = \psi_L(-\xi)$, $\psi_C = 1 - \psi_R - J_L$,
 $(P_b)^{\hat{}} = \chi_{(-\infty,0]}^{\hat{}}\hat{b}$, $(P_+b)^{\hat{}} = \chi_{[0,+\infty)}^{\hat{}}\hat{b}$.

THEOREM A (Rochberg [7]) 1. $\|T_b\| \cong \|P_{-}(\bar{\theta}^2 b * \check{\psi}_R)\|_{BMO} + \|P_{+}(\theta^2 b * \check{\psi}_L)\|_{BMO} + \|b * \check{\psi}_c\|_{\infty}$; 2. T_b is compact if and only if $P_{-}(\bar{\theta}^2 b * \check{\psi}_R)$ and $P_{+}(\theta^2 b * \check{\psi}_L)$ are in CMO and $\lim_{\|x\| \to \infty} b * \check{\psi}_c(x) = 0$;

3. $\|T_b\|_{S_p} = \|b\|_{\mathfrak{G}_p} \cong \|P_{-}(\bar{\theta}^2 * \check{\psi}_R)\|_{B_p} + \|P_{+}(\theta^2 b * \check{\psi}_L)\|_{B_p} + \|b * \check{\psi}_c\|_{L^p} ,$ for $| \leq p < \infty$, where S_p are Schatten-von Neumann ideals, B_p are classical Besov spaces $B_p^{1/p,p}(\mathbb{R})$.

He also gives a characterization of \mathfrak{B}_{p} .

THEOREM B (Rochberg [7]) Suppose that supp $\hat{b} \subset 2I$, $1 \leq p < \infty$, then

$$\|\mathbf{b}\|_{\mathfrak{B}_{\mathbf{p}}}^{\mathbf{p}} \cong \sum_{\mathbf{j} \in \mathbb{Z}} \operatorname{dist}_{\mathbf{j}} \|_{\mathbf{j}}^{\mathbf{y}} \times \mathbf{b}\|_{\mathbf{L}^{\mathbf{p}}}^{\mathbf{p}} ,$$

where $\{\varphi_j\}_{j\in\mathbb{Z}}$ is a partition of unity for 2I with respect to the singular points -2π and 2π , dist_j = the distance from the centre of support set of φ_j to the complement of 2I.

In the end of [7], Rochberg proposed several open questions, e.g. do the S_p criteria in Theorem A and B extend to all positive p ? what are the analogs of above results in \mathbb{R}^d ? what are the basic functional anlytic results for the spaces $\mathfrak{B}_{_{\mathbf{D}}}$?

We study the Hankel operators on $PW(I^d)$, i.e., the case of d-dimension, and answer the questions.

Taking Fourier transform, we get

(6)
$$T_{b}(f)^{}(\xi) = \int_{\mathbb{R}^{d}} \hat{b}(\xi-\nu)\chi_{I^{d}}(\xi)\chi_{I^{d}}(\eta)\hat{f}(\eta)d\eta$$

This turns out to be a paracommutator with symbol b. Fourier kernel $\chi_{Id}(\xi)\chi_{Id}(\eta)$ and index s = t = 0, see Janson and Peetre [3]. But now the Fourier kernel $\chi_{Id}(\xi)\chi_{Id}(\eta)$ does not satisfy the conditions in Janson and Peetre [3], and so it cannot be dealt with in the framework of [3]. We have to look for a new approach.

Note that $T_b = T_{p2b}$, where $(P_2b)^{\hat{}} = \chi_{(21)}^{\hat{}}d^{\hat{}}b^{\hat{}}$. We assume that supp $\hat{b} \in (21)^d$ throughout this paper.

As is well known, there exist two important decompositions in Harmonic analysis: the Whitney decomposition for open set of \mathbb{R}^d_x and the Littlewood-Paley decomposition for \mathbb{R}^d_ξ . When d = 1, the Littlewood-Paley decomposition for \mathbb{R}^1_ξ can be regarded as a Whitney decomposition of the open set \mathbb{R}^1_ξ with boundary $\pm \infty$. We refine this idea and give an appropriate decomposition for I^d such that it possesses the properties of both the Whitney decomposition and the Littlewood-Paley decomposition. Using this decomposition we define a new kind of Besov spaces $\mathbb{B}^{s,q}_p$ for $s \in \mathbb{R}^d$, 0 < p, $q \leq \infty$. It turns out to be quite a success to characterize the Schatten-von Neumann ideal criteria for Hankel operators acting on $\mathbb{PW}(I^d)$.

Let
$$\Lambda_{j} = \emptyset$$
, for $j = 1, 2, ..., \Lambda_{0} = \{\xi \in I : |\xi| \leq \frac{\pi}{4}\}$,
 $\Lambda_{j} = \{\xi \in I : 2^{j-1}\pi \leq \pi - \xi \leq 2^{j}\pi\} \cup \{\xi \in I : 2^{j-1}\pi \leq \xi + \pi \leq 2^{j}\pi\}$, for
 $j = -1, -2, ..., \Lambda_{j} = \Lambda_{j-1} \cup \Lambda_{j} \cup \Lambda_{j+1}$. Thus $I = \bigcup_{j=-\infty}^{0} \Lambda_{j}$.
Let Z_ denote the set $\{0, -1, -2, ...\}$, for $\underline{j} \in \mathbb{Z}_{-}^{d}$,

This gives a decomposition of I^d .

Take $\hat{\varphi}_0 \in C_0^{\infty}(\mathbb{R})$ such that $\operatorname{supp} \hat{\varphi}_0 \subset \{\xi : |\xi| \leq \frac{3}{4}\pi\}$, $\hat{\varphi}_0(\xi) \geq C$ on $\{\xi : |\xi| \leq \frac{\pi}{2}\}$, $\hat{\varphi}_0(\xi) = \hat{\varphi}_0(-\xi)$. Let $\hat{\varphi}_j(\xi)$ $= \hat{\varphi}_0(2^{-j}(|\xi| - \pi + \frac{3}{2^{2-j}}\pi))$, for $j = -1, -2, \ldots$, and let $\hat{\varphi}_{\underline{j}}(\xi) = \prod_{i=1}^d \hat{\varphi}_{j_i}(\xi_i)$, for $\underline{j} \in \mathbb{Z}_-^d$, moreover we can also require that $\sum_{\substack{j \in \mathbb{Z}_-^d}} \hat{\varphi}_{\underline{j}}(\xi) \equiv 1$ if $\xi \in \mathbb{I}^d$, i.e., it is a partition of unity for $\underline{j} \in \mathbb{Z}_-^d$ \mathbb{I}^d .

DEFINITION 1 For $1 \leq p \leq \infty$, $s \in \mathbb{R}^d$,

(8)
$$H_{p}^{s}(I^{d}) = \left\{ f \in S'(\mathbb{R}^{d}) : \text{ supp } \hat{f} \subset I^{d} , \|f\|_{H_{p}^{s}}(I^{d}) \right.$$
$$= \| \left(\prod_{i=1}^{d} (\pi - |\xi_{i}|)^{s_{i}} \hat{f}(\xi) \right)^{v} \|_{p} < \infty \right\} .$$

It is obvious that $PW(I^d) = H_2^0(I^d)$.

DEFINITION 2 For $s \in \mathbb{R}^d$, $0 < p,q \le \infty$.

$$(9) \qquad B_{p}^{s,q}(\mathbf{I}^{d}) = \left\{ \mathbf{f} \in S'(\mathbb{R}^{d}) : \text{ supp } \hat{\mathbf{f}} \subset \mathbf{I}^{d} , \|\mathbf{f}\|_{B_{p}^{s,q}(\mathbf{I}^{d})} \right.$$
$$= \left[\sum_{\underline{j} \in \mathbb{Z}^{d}} (2^{s^{*}\underline{j}} \|\mathbf{f} * \varphi_{\underline{j}}\|_{p})^{q} \right]^{1/q} < \infty \right\} .$$

It is obvious that $B_p^{1/p,p}(2I) = \mathfrak{B}_p$ for d = 1, $1 \leq p < \infty$. For $\sigma \in \mathbb{R}^d$, the operator I^σ is defined by

$$(\mathbf{I}^{\sigma} \mathbf{f})^{\hat{}}(\xi) = \prod_{i=1}^{d} (\pi - |\xi_{i}|)^{\sigma_{i}} \hat{\mathbf{f}}(\xi) , \text{ for } \mathbf{f} \in \mathbf{S}'_{\mathbf{I}^{d}}$$
$$= \left\{ \mathbf{f} \in \mathbf{S}'(\mathbb{R}^{d}) : \text{ supp } \hat{\mathbf{f}} \subset \mathbf{I}^{d} \right\} .$$

We obtain the basic functional analytic results for $\mbox{B}_p^{\mbox{s},\,q}(\mbox{I}^d)$ as follows.

THEOREM 1

(i) $B_p^{s,q}(I^d)$ is a quasi-Banach space if $s \in \mathbb{R}^d$, $0 < p,q \le \infty$ (Banach space if $1 \le p,q \le \infty$), and the quasi-norms $\|f\|_p^{\varphi}$ with $B_p^{s,q}(I^d)$

different choices $\{\varphi_i\}$ are equivalent.

$$\begin{array}{lll} (\text{ii}) & B_2^{(1/2,\ldots,1/2),2}(\mathrm{I}^d) = \mathrm{H}_2^{(1/2,\ldots,1/2)}(\mathrm{I}^d) \\ (\text{iii}) & S_{\mathrm{I}^d} \subset \mathrm{B}_p^{\mathrm{s},\mathrm{q}}(\mathrm{I}^d) \subset \mathrm{S}_{\mathrm{I}^d}^{\mathrm{i}} \\ (\text{iv}) & \mathrm{I}_f \quad \mathrm{p},\mathrm{q} < \infty \ , \ S_{\mathrm{I}^d}^{\mathrm{i}} \text{ is dense in } \mathrm{B}_p^{\mathrm{s},\mathrm{q}}(\mathrm{I}^d) \ . \\ (\mathrm{v}) & \mathrm{B}_p^{\mathrm{s},\mathrm{q}_0}(\mathrm{I}^d) \subset \mathrm{B}_p^{\mathrm{s},\mathrm{q}_1}(\mathrm{I}^d) \ , \ \text{if } \mathrm{q}_0 \leq \mathrm{q}_1 \ . \\ (\mathrm{vi}) & \forall \sigma \in \mathbb{R}^d \ , \ \mathrm{I}^\sigma \ \text{maps } \mathrm{B}_p^{\mathrm{s},\mathrm{q}}(\mathrm{I}^d) \ \text{isomorphically onto } \mathrm{B}_p^{\mathrm{s}-\sigma,\mathrm{q}}(\mathrm{I}^d) \ . \end{array}$$

THEOREM 2 Let $s \in \mathbb{R}^d$, $1 \leq p,q < \infty$, then

(10)
$$\left[B_p^{s,q}(\mathbf{I}^d) \right]' = B_p^{-s,q'}(\mathbf{I}^d)$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, $\frac{1}{q} + \frac{1}{q'} = 1$.

$$\begin{split} & \text{THEOREM 3} \quad Let \quad \text{s}^0, \text{s}^1 \in \mathbb{R}^d \quad, \quad 1 \leq \text{p}_0, \text{p}_1, \text{q}_0, \text{q}_1 \leq \infty \quad, \quad 0 < \theta < 1 \;, \\ & \text{s}^{\texttt{*}} = (1 - \theta) \text{s}_1^0 + \theta \text{s}^1 \quad (\text{i.e. } \text{s}_1^{\texttt{*}} = (1 - \theta) \text{s}_1^0 + \theta \text{s}_1^1 \;, \; \dots \;, \; \text{s}_d^{\texttt{*}} = 1 - \theta) \text{s}_d^0 + \theta \text{s}_d^1), \\ & \frac{1}{p^{\texttt{*}}} = \frac{1 - \theta}{p_0} \quad + \frac{\theta}{p_1} \;, \\ & \frac{1}{q^{\texttt{*}}} = \frac{1 - \theta}{q_0} \quad + \frac{\theta}{q_1} \;. \end{split}$$

Then

(11)
$$\begin{bmatrix} s^{0}, q_{0} \\ B_{p_{0}} (I^{d}), B_{p_{1}} \\ B_{p_{1}} (I^{d}) \end{bmatrix}_{[\theta]} = B_{p^{*}}^{s^{*}, q^{*}} (I^{d}) .$$

Extending the definition of $\, T^{}_{\rm b}$, we consider $\, T^{\rm s,t}_{\rm b} \,$ defined by

(12)
$$(T_{b}^{s,t}f)^{(\xi)} = \int \hat{b}(\xi-\eta) \prod_{i=1}^{d} (\pi-|\xi_{i}|)^{s_{i}} \prod_{i=1}^{d} (\pi-|\eta_{i}|)^{t_{i}} \chi_{Id}(\xi) \chi_{Id}(\eta) \hat{f}(\eta) d\eta$$

where $x, t \in \mathbb{R}^d$. We obtain a characterization of the Schatten-von Neumann ideal S_p of $T_b^{s,t}$ in terms of $b \in B_p^{s+t+(1/p,\ldots,1/p),p}((2I)^d)$.

THEOREM 4 Suppose that
$$0 \le p \le \infty$$
, s,t $\in \mathbb{R}^{d}$ with
s_i,t_i > max(-1/2,-1/p). Then $T_{b}^{s,t} \in S_{p}$ if and only if
 $b \in B_{p}^{s+t+(1/p,\ldots,1p),p}((2I)^{d})$, and

(13)
$$\|T_{b}^{s,t}\|_{S} \cong \|b\|_{p}^{s+t+(1/p,\ldots,1/p),p}((2I)^{d})$$

To prove it, for $1 \le p \le \infty$ we follow the procedure of Janson and Peetre [3], for $0 \le p \le 1$ we follow the procedure of Peng [5].

Note that if $p = \infty$, Theorem 4 does not contain the result of $T_b = T_b^{0,0}$. We have the following direct result.

Let $\hat{\psi}_0 = \hat{\varphi}_0$, $\hat{\psi}_1(\xi) = \chi_{(2I)d}(\xi) - \hat{\psi}_0(\xi)$. Then $b = b_1 + b_0$, where $b_0 = b * \psi_0$, $b_1 = b * \psi_1$.

THEOREM 5 If $b_1 \in BMO$, $b_0 \in L_{\infty}$. Then $T_b \in S_{\infty}$ and

(14)
$$\|\mathbf{T}_{\mathbf{b}}\| \leq C(\|\mathbf{b}_1\|_{BMO} + \|\mathbf{b}_0\|_{L^{\infty}}) .$$

For the converse result, we get it only for d = 1.

THEOREM 6 If d = 1 , $T^{}_{\rm b}$ is bounded on PW(I) , then ${\rm B}^{}_1 \in {\rm BMO}$, ${\rm b}^{}_0 \in {\rm L}^{}_\infty$ and

(15)
$$\|\mathbf{b}_1\|_{\mathrm{BMO}} + \|\mathbf{b}_0\|_{\mathrm{L}^{\infty}} \leq C \|\mathbf{T}_b\| .$$

Acknowledgement

I would like to thank the Centre for Mathematical Analysis, the Australian National University, for its financial support and additional travel support.

REFERENCES

- Bergh, J. and Löfström, J., Interpolation spaces, Grundlehren Math. Wiss. 223, Springer-Verlag, Berlin-Heidelberg-New York, 1976.
- [2] Higgins, J.R., Five short stories about the cardinal series. Bull. Amere. Math. Soc. 12(1985), 45-90.
- [3] Janson, S. and Peetre, J., Paracommutators-Boundedness and Schatten-von Neumann properties, Report of Dep. of Math., Stockholm, 15(1985).
- [4] Peetre, J., New thoughts on Besov Spaces, Duke Uni. Press, Durham, 1976.
- [5] Peng, L.ZH., Paracommutators of Schatten-von Neumann class $S_p, 0 \le p \le 1$, to appear in Scand. Mat.
- [6] Peng, L.Zh., Multilinear singular integrals of Schatten-von Neumann class S_p, to appear in Approximation Theory and its Applications.
- [7] Rochberg, R., Toeplitz and Hankel Operators on the Paley-Wiener Space, Integral Equations and Operator Theory, 10(1987), 186-235.
- [8] Triebel, H., Theory of functions spaces, Birkhauser Verlag, 1983.

Department of Mathematics Peking University Beijing CHINA