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INEQUALITIES FOR MEASURES OF SUM SETS 

Gavin Brown 

1. INTRODUCTION 

Suppose that E, F are Borel subsets of the middle thirds Cantor set 

with positive Cantor measure ~' then their sum 

E + F = {X + y : X E E, y E F) 

has positive Lebesgue measure. In fact Bill Moran and I showed in [4] 

that 

a = log3/log4 (1) 

(here the sets lie on the circle T and A. is Haar measure) . 

The value of a in (1) is best possible and it is precise metric 

results of this type that will concern us here. (Weaker conclusions of 

more general applicability are discussed in [3]) . At·tention will be 

restricted to sums of two sets - although (1) has recently been extended 

to the case where 11 is replaced by the Bernoulli convolu'cion wi·th 

constant ratio of dissection m + 1. For the latter we mus·t use m 

summands and a becomes log(m+1)/m log2. See [5]. 

D.M. Oberlin, [10], recently gave a related result, 

A. (E+F) 2: A. (E) [Ill (F), ~ = 1- (log2/log3), (2) 

and I have now established the following: for s,t ~ 1, 

A. (E-1-F) J!(E)1/sll(F)1/t, -1 ·-1 
log3/log2, 3(s+t) 8; 2: s +t "' ( 1) ' 

A. (E+F) lc (E) 1/sll (F) 1/t' 
-] -1 

2: s ·+(log2/log3)t 1; (2) ' 

A. (E+F) v (E) 1/slt (F) 1/t' -1 
+ (log2/log3) t 

-1 
log4/log3; 2: s (3)' 
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where v is the distribution of the random number in whose base 4 

expansion the digits 0,1,2 appear with equal probability and 3 is 

totally suppressed, and n is the distribution of the random number in 

whose base 4 expansion the digits 0,1 appear with equal probability and 

2,3 are suppressed. 

All these results are best possible and are proved by reduction to 

inequalities for real numbers. In fact, for 0 ~ x ~ 1, 

1 + X + 
2 (1+xs)1/s( 1+xt)1/t, -1 -1 

= log3/log2, 3(s+t) 8; X ~ s +t ~ (1)" 

2 (1+xs+x2s)1/s( 1+xt)1/t, -1 -1 
1 + X + X ~ s +(log2/log3)t = 1; (2)" 

2 3 (1+xs+x2s)1/s( 1+xt)1/t, -1 -1 
1 + X + X + X ~ s +(log2/log3)t 

= log4/log3. (3)" 

One has a feeling that a result like (1) ought to be old and well-

known. Results like (1)", (2)", (3)" ought perhaps to be old; well-

known, and easy! Certainly the proofs (which will appear in [2], [3] .) 

use only elementary calculus, but the results are by no means immediate 

and appear to fall outside the known bestiary of inequalities (see e.g. 

[1], [8]). 

2. DREAM 

The inequalities follow an obvious pattern so, rather than use ad 

hoc techniques for each one, we might hope to find a universal method. 

Better still we might even hope to exploit the group structure to prove 

the like of (1)', (2)', (3)' directly and deduce numerical inequalities 

such as (1)", (2)", (3)". Such a beautiful dream seems less implausible 

when we read Oberlin's paper, [10]. 

A little background is necessary. The proof of (1) used the 

approximation of E,F by intervals whose end-points are triadic 
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rationals; the proof for these intervals being achieved by induction. 

The key inductive step turned out to be the inequality 

for 0 s x, y s 1, a = log3/log4. This had been proved by Woodall, 

[11], following Hall's response, [7], to a problem in combinatorial 

geometry which Moran and I had posed. 

Oberlin makes the beautifully simple observation that (4) is for 

+ Z(3) the natural analogue of the inequality, for f,g E C (T), 

where, as before, ~ is Haar measure, ~ middle-thirds Cantor measure; 

where s = log4/log3 and 

Ug(t) = max{f(t-s)g(s) :sET}. 

Now one sees that it is more illuminating· to derive (1) from the 

(4) 

(5) 

(6) 

sharper result (5) because ·the inductive step corresponds to itera·tion 

of (4) which can be vie>•Jed as a version of (5) for a finite group. 

The dream I :mentioned corresponds to a further piece of ingenuity 

in ~10]. This is Oberlin's treatment of the following special case of 

(2)' 

l (E+K) 2 l(E)P, p = 1- (log2/log3), (7) 

where K is the entire middle thirds Cantor subset of T. (Actually [10] 

handles the general case of integer ratio of dissection m. Provided 

the value of fl is modified there is no essen·tial difference in the 

discussion) . Oberlin notes t.hat the natural version of (7) for Z (3) 

(which is obviously true) i·terates to give a version for ·the infinite 

produc·t n z (3) . 'I'his last result can be used to force an inequality 

for Z(3) which is the natural version of the following: 
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~ as before, (8) 

+ 
where f e C (T) and xK is the indicator function of K. Now the version 

of (8) for Z(3) iterates to prove (8) tout court. Thus (7) lifts from 

Z (3), where it is obvious, <to T where it is not. 

That argument appears to make essential use of the fact that K can 

be identified in a canonical way with an infinite product, and there is 

no apparent way to use (2)' for Z(3) to generate (2)' itself. The fact 

that (1)' is best possible shows there can be no simple universal method 

of transfer. The point is that the analogue of (1)' for Z(3) holds 

without the restriction 3(s+t) s 8, and that result cannot transfer to 

T. 

Before we consider what must be done to prove (1)', (2)', (3)', let 

me describe some more inequalities which were suggested by 

considerations of this type. 

3. DIVERSION 

Larry Shepp (who visited UNSW on a Sydney County Council project) 

and I have shown the< following (see [6]): 

THEOREM (Brown and Shepp) 

( ; ) -1 
~ Suppose that ~ > p ~ s ~ q ~ 1 and let t -

If f,g e Lp(R) n Lq(R) are nonnegative 

-1 -1 -1 
P + q -s 

Unless f or g is null, e~uality holds only when p q s = t and 

then we have 
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for all f,g e Lp(R). 

(ii) Suppose that s-1 + t-1 1, s > 1, t > 1. If f,g are continuous 

with compact support then 

Jsuplf(x-y)g(y) ldx ~ llfllsllgllt ~ 
y 

supflf(x-y)g(y) ldy 
X 

Equality holds if and only if f or g is null. 

Of course the right hand part of the inequality in (ii) is well-

known and the right hand part of the inequality in (i) is the integral 

version of a famous inequality due to Young, [12] . (See also [8] p.199 

et seq.). When the middle terms are deleted then we have a known 

result about repeated means given by Jessen, [9]. The remaining 

assertions are, to the best of our knowledge, novel. 

Our proof of the theorem depends upon a useful convexity property 

of the p-norm. In its simplest form this is the following lemma. 

LEMMA 

respectively. Then 

The point of the lemma is that logllflls need not be convex as a 

function of s, so it is not clear how to describe the behaviour of 

logllfllt as a function of s. Thus the graph of logllflls + logUgllt need 

not be cup-shaped as a function of s, but we are able to show that it 

has no caps. 

4. REALITY 

It remains to make some general comments about the proofs of 

(1) '' (2) '' (3)'. We are to be concerned with inequalities of the type 



for suitable choices of ~,~,v,s,t. 

(!J. j -norm of f) . 
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+ (f,g E C (G)) 

(The s:s_n:nbol 11 f 11 denotes the 
s,~ 

(g) 

It tu:cns out that t.he lerru'tla quot.ed in t .. he previous section admits 

st.reng'chen.ing so that i·t can be brought to bear upon the present 

situa·tion~ In ·th-:3 first place conjugacy can be replaced by an affine 

relationship of ·the form, 

··~ 1 
as - + 

i 
lf a,b fixed, i 

The equations linlcLng s,t:. in (1) ', (2) ', (3)' can all be recas·t in the 

10) 

f01:1n of (10). Secondly the normc' of f, g can be taken ;;lith respect to 

arbi·tra:cy fixed probabili·ties ~, v ~ Accordingly 'che lenm1a applies to 

shovf ·that voe need only check 1) ', (2)' and (3)' in the appropriat.e 

limiting oases. (For the exarnples discussed her::e 'itJe need check ( 1) r 

only \oJhen s = L02 6., .. , ·t = L6420 ... ; (2)' for s = 1, t = 2.7095 ... , 

and s = 'XJr ·t = 1; and (3) !i' only for s 1, t = 2.4094 ... , and 

s = L5850 ... , ·t = L) 

·l~'iJe proceed. 'co establish ·the na·tural versions of ( 9) for G Z (3) or 

Z ( 4) c:s appx·opriate, and for "ch-2 sp-2cial choice of f j) g(j) = xj. 

This corresponds to proving 1) , (2)", (3)~1 in the limit cases outlined 

above, and is an exercise in differential calculus. We extend ·to 

general f,g. Next: t-Je ~;;sta.blish a lift.in.g property for ( 9) . This may 

on G. 

In this way we use an induc'cive limit such as T = lim Z (3n) to climb 

through finite· subgroups to establish 'che full results. (The various 

details are given in [2], [3]). 
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All the measures considered here have been Cantor measures 1rJith a 

fixed ratio of dissection. Observe, however, that the methods we have 

sketched are more flexible. The impor'cant point is that s, t should 

remain fixed in the last part of t.he argument. Thus \.;e may obtain 

inequalities for ra·ther general classes of measures, !A - ® J.!n' !ln on 
n=1 

Z(an)' by considering ~-adic expansions for a (a ) 
n 

By ·the same 

token it becomes interes·ting ·to es'cablish (9) for various choices of 

A,J.!,V and G = Z(a) 
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