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STRONG ERGODXCITY AND QUOTIENTS OF EQUIV~CE ~LATIONS 

Klaus Schmidt 

1. STRONG ERGODICITY 

Throughout this note (X,S,~1 will be a standard, nonatomic 

probability space. Let G be a countable group, and let (g,x) ~ T x 
g 

be a nonsingular, ergodic action of G on (X,S,~). A sequence (En) C S 

is asymptoticall~ invariant (a.i.) under the action T of G if 

lim Il (E tiT B l 0 for every g e G, 
n n g n 

and (S) 
n 

is trivial if 

lim ~(Bn) .(l-~(Bn)l O. The action of G on (X,S,~l is strongly 
n 

ergodic if every a.i. sequence is trivial. 

The full ~ [TJ of the action T of G on (X,S,~1 is the 

group of all nonsingular automorphisms V of (X,S,~) such that 

Vx E TGx lTgX g E Gl for ~-a.e. x E X. The following assertion 

is elementary and implies <that strong ergodicity is a property of the 

full group [T] or, equivalently, a property of the equivalence relation 

of T (cf. section 2). 

1.1 PROPOSITION [6] Let (En) be an a,io sequence for To Then 

lim fL (Bn"VBnl 
n 

o for every V E [T], 

1.2 EXaMPLE [6] Let V be a measure preserving, ergodic automorphism 

of a probability space (X,S,fL). Rokhlin's lemma implies that there 

exists, for every 

k 
r. V C 

n 
$ for 

n ~ 1, a set e 5 

1 ::;; k ::;; 2n-2. Put 

such that i! (C n ) L 
2n 

and 

B 
n 

n-1 
u vkc 

n k=O 
and observe that 



J.l (Bn) .!. 
2 

and 
k k 

J.l (B !J.V B ) S -
n n n 

a.i., and obviously nontrivial. 
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In particular, the sequence 

There exists an analogous version of Rokhlin's lemma for 

(Bn) is 

nonsingular, ergodic automorphisms of (X,S,J.l), and one can use it to 

obtain the following result. 

1.3 PROPOSITION [6] Let T be a nonsingular, ergodic action of Z 

on (X,S,J.l). The T is not strongly ergodic. 

The theorem of Connes-Feldman-Weiss [1] implies that, if G is a 

countable amenable group and T a nonsingular, ergodic action of G 

on (X,S,J.l), then T is approximately finite, i.e. there exists a 

single automorphism V of (X,S,J.l) such that 

k 
TGX = IV x k E Z) J.l-a.e., 

i.e. that [T] [V], where [V] is the full group of the Z-action 

(k,x) -+..;x on (X,S,J.l) . In particular, T is not strongly ergodic 

by propositions 1.1 and 1.3. In fact the following is true: 

1.4 THEOREM [7] A countable group G is amenable if and only if no 

nonsingular (or no measure preserving) ergodic action T of G on 

(X,S,J.l) is strongly ergodic. 

If a group G is not amenable, it must therefore have strongly 

ergodic actions. There are even groups with the property that all their 

measure preserving, ergodic action on (X,S,J.l) are strongly ergodic. A 

(countable) group G has Kazhdan's property! if the following is true 

for every unitary representation U of G on a separable Hilbert space 

H: if there exists a sequence of unit vectors (vn ) c H with lim 
n 

IUgVn-Vn" o for every g E G then there also exists a unit vector v 

E H with U v 
g 

v for every g E G. 
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1.5 THEOREM [2,7] A countable group G has property T if and only 

if every measure preserving, ergodic action of G on (X,S,~) is 

strongly ergodic. 

The groups SL(n,Z), n ;;, 3, have property T, but SL(2,Z) and 

the free groups Fn' n ~ 2 are neither amenable, nor do they have 

property T. These groups will thus have both strongly ergodic and not 

strongly ergodic actions. 

2 2 
1.6 EXAMPLE [6,7] Let G SL(2,Z), X R IE, and let G act on 

X by linear automorphisms. This action is ergodic with respect to the 

Lebesgue measure ~ on X, and by looking at the dual action of G on 

Z2 one can check that it is strongly ergodic [6]. Consider the cocycle 

a G x X -+ Z defined by 

a( ( ~ -~),.) ~ 0 

and 

a((~ ~~),x) ~ r: for x Is,t) with Oss, 

otherwise 

and 
1 
?S,t<l 

Then the act.ion S of G on the infinite measure space X x!i, given 

by S (x,n) (gx,n+a(g,x», g E G, nEZ, x E X, 
g 

is ergodic (cf. [6]). 

Now consider the action 'X of G on Y R3/z3 X x R!Z defined by 

ix,t) (gx, t+aa(g,x) (mod 1», 

where x E X and t E R!Z, and where a e R\Q. Since the Z-action 

(n,t) ~ t + nit (mod 1) on R!Z is not strongly ergodic, there exists a 

sequence (D ) 
n 

of Borel sets in R!Z with ~ (Dn) 1 
:2 

for all n 

~ (DnAa+Dn) -> 0, where i\ denotes Lebesgue measure on RIll:. Put 

x x Dn and observe that (Bnl is a.i. under T, and 

and 

IBn' 
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is nontrivial. Hence T is ergodic, but not strongly ergodic with 

respect to ~ x A. Furthermore the map. X x R/Z with • (x,t) - t 

is measure preserving, and 

(1.1) • (TGy) = Sz' (y) 

for ~ x A - a.e. y e Y = X x R/Z, where Sz denotes the Z-action 

(n,t) ~ t + nu (mod 1) on R/Z. 

1.7 EXAMPLE [6] Let G be a countable group. Then G has a 

nonsingular, ergodic action T on (X,S,~) with the property that the 

action 

S (x,t) = (T x,t + c(g,x» g g . 

of G on X x R is ergodic, where 
~T 

c(g,x) = log ~( ) ~ x. 

action T' of G on X x R2/z2, given by 

Hence the 

T' (x, (s,t» = (T x, s+c(g,x) (mod 1), t+uc(g,x) (mod 1», 
g g 

where (s,t) e R2/z2 and u e R\Q, is ergodic. A slight refinement of 

proposition 1.3 and the argument in example 1.6 shows that T' is not 

strongly ergodic. We conclude the following proposition. 

1.B PROPOSITION [6] Let G be a countable group. Then G has a 

nonsingular, ergodic action on (X,S,~) which is not strongly 

ergodic. 

2. APPROXIMATELY FINITE QUOTIENTS OF EQUIVALENCE RELATIONS 

Let T be a nonsingular, ergodic action of a countable group G 

on (X,S,~). Then the set 

(2.1) R = R {(x,T x) 
T g 

X e X, g e G} c X x X 

is a Borel equivalence relation (i.e. a Borel set and an equivalence 

relation). For every x e X we denote by 
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(2.2) R(x) - (X'EX (x, X') E Rl 

the equivalence class of x, and we write 

(2.3) R(A) - u R(x) 
xeA 

for the saturation of a set A E S. Then R(A) E S (cf. [3])! and 

(2.4) ~(R(A») - 0 if and only if ~(A) - O. 

In general, a Bor~l equivalence relation ReX x X is said to be 

discrete if R(x) is countable for every x E X. If R is discrete 

then R(A) E S for every A E S (cf. [3]), and R is called 

nonsinqular if it satisfies (2.4). From now on the term equivalence 

relation will always denote a discrete, nonsingular, Borel equivalence 

relation. An ~quivalence relation R on (X,S,~) is.ergodic if 

~(R(A» E {O,l} for every A E S. 

If R is an equivalence relation on (X,S,~) there exists a 

nonsingular action T of a countable group G on (X,S,~) such that 

R - ~ (cf. (2.1) and [3]). This allows us to define the Radon-Nikodym 

derivative of R by setting 
~T 

2!!...!.&. = ~(x') 
~(x') ~ 

whenever (x, x') E R, g 

E G, and TgX x. The relation R preserves ~ if TG preserves ~, 

and R is ergodic if and only if TG is ergodic. We write [R] for the 

~ ~ of R, i.e. for the group of nonsingular automorphisms V 

of (X,S,~) with (Vx,x) E R for ~-a.e. x E X, and note that 

[RT] [T) whenever T is a nonsingular action of a countable group G 

on (X,S,~). Finally we call an equivalence relation R on (X,S,~) 

approximately ~ if there exists a nonsingular Z-action 5 on 

(X,S,~) with [R] [5]. 
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Proposition 1.1 shows that strong ergodicity is a well defined 

concept for equivalence relations, and equation (1.1) can be expressed 

by saying that 

'" (2) (RT ) c R? /'1.2 

is approximately finite, <There '" (2) ~ x~. This is a special case of 

the following general assertion. 

2.1 THEOREM [5J Let R be an ergodic equivalence relation on 

(X,S,~). The following statements are equivalent. 

(1) R is not strongly ergodic; 

(2) there exists an approximately finite equivalence relation R' on a 

standard, nonatomic probability space (Y, '1', v) and a 

nonsingular map $ x .... Y such that oj> (2) (R) R', where oj> (2) 

'" x oj>. 

The equivalence relation R' is a 'quotient relation' of R the 

following sense: 

2.2 DEFINITION Let Rand R' be ergodic equivalence relations on 

standard, nonatomic probability spaces (X,S,~) and (Y,'T,v), and let 

$ X .... Y be a nonsingular map such that $(R(x» R' ($ (xl) for ~-

a.e. x E X. Then R' is said to be a quotient relation of R, and the 

subrelation 

R' { (x, x') E R <I> (xl = <I> (x' ) l c R 

is called the kernel of the quotient map ~ (2) R .... R'. The quotient 

R' of R 

(2.5) 

and the quotient map $ (2) will both be called Broper 

R$ 
S IB E S 

",-1('1) 

VB = B for every V E [R'I>] I 

(mod ,,> 

'''' ~J.. 

2.3 THEOREM [5] Let R be an ergodic equivalence relation on 

(X, S, 1') which is neither strongly ergodic nor amenable. Then the map 
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~ x ~ Y in theorem 2.1 (2) is uncountable-to-one, and ~-a.e. 

equivalence class of R· is infinite. Furthermore R' can be chosen 

to be a proper quotient of R. 

3. SOME EXAMPLES OF QUOTIENT RELATIONS AND THEIR INFORMATION COCYCLES 

3.1 EXAMPLE Consider the action T of G SL(2,Z) on Y = R3 /z3 

defined in example 1.6, and denote by T' the action of G on 

X R2/z2 by linear automorphisms. The first coordinate projection 

W Y X x R!Z ~ X satisfies that 

1j/.T 
g 

T' .1jf 
g 

for every g e G. Hence W(RT(x» v (TGX) TGW(X) RT , (V(x» 11 x .. -

a . e., and VI is uncQuntable-to-one. However, 

I (y, y) y " Yl, 

so that RTf is not a proper quotient of RT • 

3.2 EXAMPLE Let X y N 
Z2' when Z!kZ IO.l •... ,k-ll, 

and let S and ~ denote the Borel fields in X and Y, 

respectively. We write ~ and v for the Haar measures on X and Y 

and define a measure preserving map i!J X ~ Y by aett:ing cj) (x) 2x 
n n 

(mod 2), n ~ 0, for every x = (xO'xl , ... J E X. Put 

(3.1) R ! (x, x' I E J{ X X Xi ¢ xi for only finitely many i ~ O} 

(3.2) R' {(y,y') IE Yx Y Yi ¢ for only finitely many i ~ 0), 

and note that Rand R' are measure preserving, ergodic relations on 

(X,S"d and (Y,'T,v), respectively, and that t\l (2)(RI = R'. It is 

easy to see that R' is a proper quotient of R. 
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A proper quotient of a finite measure preserving, ergodic 

equivalence relation need not be measure preserving, as the following 

examples sho~i. 

3.3 EXAMPLE Let x iii iii 
Z3' Y = :lI2 and denote by Sand 'T the Borel 

fields on X and Y, and by ~ the Haar measure on X. Define 

, X .... Y by 

for every x 

~ (x) 
n c if if 

(xO'Xl , ••• ) E X 

Xn E {Ogll 
n 2: 0 , 

x 2 
n 

and put 
-1 

v = Il$ Then v = n O"k' 
k2:0 

where Ok (0) £ 
3 

and ok (1) 1 
3' If R and R' are the equivalence 

relations defined exactly as in (3.1) and (3.2), then '" (2) (R) R', 

and R' is a proper quotient of R. Note that R is measure 

preserving, but R' has no a-finite invariant measure v' - v. 

3.4 EXAMPLE Let X 
Z 

Z2' Y 
N 

Z2 and denote by Sand 'T the 

Borel fields of X and Y. Let It and " be the Haar measures on X 

and Y, and define a measure preserving map ~ x .... Y by setting 

~(X)n lin' n 2: 0, for every x (xk ) E X. Let 

R {(x,x') E X x X there exist integers N 2: 0, k e Z, with 

(3.3) Xn x~+k for all In I ~ Nl, 

and put 

R' { (y, y') E Y X Y there exist integers N 2: 0 and k e Z, with 

(3.4) N + k 2: 0 and x 
n x~+k for all n > Nl. 

Then Rand R' are ergodic equivalence relations, R is measure 

preserving, and R' has no a-finite, invariant measure v, - v. 
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3.5 DEFINITION Let R be all. ergodic equivalence relation on (x,s,~), 

and let (y,~,vl be a standard probability space, R' all. equivalence 

relation on I'll, ~,,,), and. X .... Y a measure preserving map with 

4> (R(x» = R' ($ (xl) l1-a.e. (here we are not assuming (Y,~,"l to be 

nonatomic, although this is the most interesting case). For every 

(x,x'l EO R, put 

J!x,x') 
dv!", (xl) 

log dv (<I> (x' ) ) 

(note that v = ~$-1). Then J is a cocycle, i.e. 

J(x.x') + Jlx',x") Jlx,x") 

for (x,x'l and (x' ,x") e R, and J = JR,R' is called the 

information coeyole of the pair (R,R') (cf. [8]). 

3.6 EXAMPLES (1) In example 3.2, R' '" O. 

(2) In example 3.3, 

k * {n ;" 0 x '" 2 n 

J R,R' (x,x' l 2-k , where 

and x~ 21 - • In ;" 0 x 
11. 

2 and x' oF 2J 
11. 

(3) In example 3.4, R' (x,x') 2k, where k e Z is chosen as in 

(3.3) . 

If the equivalence relation R is measure preserving the 

information cocycle can be useful in determining the size of the 

nE.rmalizer 

NR(R'il) {V E [R] V[R$ ]V-1 [R$] I 

of RY in R. 

3.7 THEOF£M [4] In the notation of definition 2.2, let R' be a 

proper quotient or R. Then 

(R$) l [ROl, 
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where 

RO ! (x, x') e R J R,R' (x,x') 0) 

and where [NR(R$») is the full group of NR(R~) (although NR(R$) is 

uncountable, its orbits are countable, and hence the full group is well 

defined) . 

4. PRODUCTS OF EQUIVALENCE RELATIONS 

Theorem 2.1 raises the problem whether the approximately finite 

equivalence relation R' can be written as a direct summand of R, 

i.e. whether there exists an equivalence relation R" on a standard 

probability space (Y' ,T ,v' ) and an isomorphism '" X -+ Y x Y' such 

that VI (2) (R) R' x R". Since R' is approxima'tely finite and hence 

isomorphic to R' x R' on Y x Y, we see that R' is a summand of R 

if and only if there exists an isomorphism V' x -> X x Y such that 

\If' (2) (R) R x R'. 

4.1 DEFINITION [5] An ergodic equivalence relation R on (X,S,~) is 

stable if there exists a nonatomic standard probability space (Y,~,v), 

a measure preserving, ergodic, approximately finite equivalence relation 

R' on (Y,$,v), and an isomorphism V x -> X x Y such that 

(2) 
'" (R) R x R'. 

4.2 DEFINITION [5] Let R be an ergodic equivalence relation on 

(X,S,~l. A sequence (V n) c [Rl is called asymptotically central 

(a.c.l if 

lim fI (VnB4B) 

n 
o for every B E S, 

lim I-' (Ix 
n 

VnWx * WVnxl)=O for every WE [R], 



and 

dJ.<V n 
Emd;"" 

n 
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1 in measure. 

An a.c. sequence (Vn ) is trivial if 

lim ~(VnBnABn) 0 
n 

for every a.i. sequence (Bn,n ~ 1) in S. 

4.3 THEOREM [5] Let R be an ergodic equivalence relation on 

(X,S,~). Then R is stable if and only if [R] contains a nontrivial 

a.c. sequence. 

Stability is a much stronger condition than the existence of 

nontrivial a.i. sequences, as the following proposition shows. We begin 

with iii definition. A countable group G is inner amenable if there 

exists a sequence of unit vector (v ) c 12 (G) with 
n 

lim v 
n 

o in the weak topology 
n 

and 

lim IIAd v - v 1\ 
g n n 

o for every g e G , 
n 

when Ad denotes the adjoint representation (Ad vI (h) 
g 

G on l (G). 

-1 
v(g hg) of 

4.4 PROPOSITION [5) Let G be a countable group which is not inner 

amenable, and let T be a measure preserving, free, ergodic action of 

G on (X, S, /.l). Then RT is not stable. 

4.6 PROBLEM R. Zimmer [9J has given examples of measure preserving, 

ergodic equivalence relat.ions which are not isomorphic to any product 
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R1 x R2 , where R1 and R2 and both ergodic. Are there any examples 

of ergodic equivalence relations without (nontrivial) proper quotients? 
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