STRONG ERGODICITY AND QUOTIENTS OF EQUIVALENCE RELATIONS

Klaus Schmidt

1. STRONG ERGODICITY

Throughout this note (X, S, μ) will be a standard, nonatomic probability space. Let G be a countable group, and let $(g, x) \rightarrow T_g x$ be a nonsingular, ergodic action of G on (X, S, μ) . A sequence $(B_n) \subset S$ is <u>asymptotically invariant</u> (a.i.) under the action T of G if $\lim_n \mu(B_n \Delta T_g B_n) = 0$ for every $g \in G$, and (B_n) is <u>trivial</u> if $\lim_n \mu(B_n) \cdot (1-\mu(B_n)) = 0$. The action of G on (X, S, μ) is <u>strongly</u> n<u>ergodic</u> if every a.i. sequence is trivial.

The <u>full group</u> [T] of the action T of G on (X, S, μ) is the group of all nonsingular automorphisms V of (X, S, μ) such that $Vx \in T_G x = \{T_g x : g \in G\}$ for μ -a.e. $x \in X$. The following assertion is elementary and implies that strong ergodicity is a property of the full group [T] or, equivalently, a property of the equivalence relation of T (cf. section 2).

1.1 PROPOSITION [6] Let (B_n) be an a.i. sequence for T. Then $\lim_{n} \mu (B_n \Delta VB_n) = 0 \text{ for every } V \in [T].$

1.2 EXAMPLE [6] Let V be a measure preserving, ergodic automorphism of a probability space (X, S, μ) . Rokhlin's lemma implies that there exists, for every $n \ge 1$, a set $C_n \in S$ such that $\mu(C_n) = \frac{1}{2n}$ and

 $C_n \cap V^k C_n = \phi$ for $1 \le k \le 2n-2$. Put $B_n = \bigcup_{k=0}^{n-1} V^k C_n$ and observe that k=0

 $\mu(B_n) = \frac{1}{2}$ and $\mu(B_n \Delta V^k B_n) \le \frac{k}{n}$. In particular, the sequence (B_n) is a.i., and obviously nontrivial.

There exists an analogous version of Rokhlin's lemma for nonsingular, ergodic automorphisms of (X, S, μ) , and one can use it to obtain the following result.

1.3 PROPOSITION [6] Let T be a nonsingular, ergodic action of Z on (X, S, μ) . The T is not strongly ergodic.

The theorem of Connes-Feldman-Weiss [1] implies that, if G is a countable amenable group and T a nonsingular, ergodic action of G on (X, S, μ) , then T is <u>approximately finite</u>, i.e. there exists a single automorphism V of (X, S, μ) such that

$$T_{C} x = \{ V^{K} x : k \in \mathbb{Z} \} \mu - a.e.,$$

i.e. that [T] = [V], where [V] is the full group of the Z-action $(k, x) \rightarrow \bigvee^k x$ on (X, S, μ) . In particular, T is not strongly ergodic by propositions 1.1 and 1.3. In fact the following is true: 1.4 THEOREM [7] A countable group G is amenable if and only if no nonsingular (or no measure preserving) ergodic action T of G on (X, S, μ) is strongly ergodic.

If a group G is not amenable, it must therefore have strongly ergodic actions. There are even groups with the property that all their measure preserving, ergodic action on (X, S, μ) are strongly ergodic. A (countable) group G has Kazhdan's <u>property T</u> if the following is true for every unitary representation U of G on a separable Hilbert space H: if there exists a sequence of unit vectors $(v_n) \subset H$ with $\lim_n n$ $\|U_g v_n - v_n\| = 0$ for every $g \in G$ then there also exists a unit vector v $\in H$ with $U_{\alpha}v = v$ for every $g \in G$. 1.5 THEOREM [2,7] A countable group G has property T if and only if every measure preserving, ergodic action of G on (X, S, μ) is strongly ergodic.

The groups $SL(n, \mathbb{Z})$, $n \ge 3$, have property T, but $SL(2, \mathbb{Z})$ and the free groups F_n , $n \ge 2$ are neither amenable, nor do they have property T. These groups will thus have both strongly ergodic and not strongly ergodic actions.

1.6 EXAMPLE [6,7] Let $G = SL(2,\mathbb{Z})$, $X = \mathbb{R}^2/\mathbb{Z}^2$, and let G act on X by linear automorphisms. This action is ergodic with respect to the Lebesgue measure μ on X, and by looking at the dual action of G on \mathbb{Z}^2 one can check that it is strongly ergodic [6]. Consider the cocycle a : $G \times X \to \mathbb{Z}$ defined by

 $a\left(\left(\begin{array}{cc} 0 & -1\\ 1 & 1\end{array}\right), \cdot\right) = 0$

and

 $a\left(\begin{pmatrix}0 & -1\\1 & 0\end{pmatrix}, x\right) = \begin{cases} -1 & \text{for } x = (s,t) \text{ with } 0 \le s, t \le \frac{1}{2} \text{ and } \frac{1}{2} \le s, t \le 1\\ 1 & \text{otherwise} \end{cases}$

Then the action S of G on the infinite measure space $X \times Z$, given by $S_g(x,n) = (gx, n+a(g,x))$, $g \in G$, $n \in Z$, $x \in X$, is ergodic (cf. [6]). Now consider the action T of G on $Y = R^3/Z^3 = X \times R/Z$ defined by $T_{\alpha}(x,t) = (gx, t+\alpha a(g,x) \pmod{1})$,

where $x \in X$ and $t \in \mathbb{R}/\mathbb{Z}$, and where $\alpha \in \mathbb{R}\setminus\mathbb{Q}$. Since the Z-action $(n,t) \to t + n\alpha \pmod{1}$ on \mathbb{R}/\mathbb{Z} is not strongly ergodic, there exists a sequence (D_n) of Borel sets in \mathbb{R}/\mathbb{Z} with $\lambda(D_n) = \frac{1}{2}$ for all n and $\lambda(D_n \Delta \alpha + D_n) \to 0$, where λ denotes Lebesgue measure on \mathbb{R}/\mathbb{Z} . Put $B_n = X \times D_n$ and observe that (B_n) is a.i. under T, and that (B_n)

.30,2

is nontrivial. Hence T is ergodic, but not strongly ergodic with respect to $\mu \times \lambda$. Furthermore the map ϕ : X × R/Z with ϕ (x,t) = t is measure preserving, and

(1.1)
$$\phi(\mathbf{T}_{\mathbf{G}}\mathbf{y}) = \mathbf{S}_{\mathbf{z}}\phi(\mathbf{y})$$

for $\mu \times \lambda$ - a.e. $y \in Y = X \times \mathbb{R}/\mathbb{Z}$, where $S_{\mathbb{Z}}$ denotes the Z-action (n,t) \rightarrow t + n α (mod 1) on \mathbb{R}/\mathbb{Z} . 1.7 EXAMPLE [6] Let G be a countable group. Then G has a nonsingular, ergodic action T on (X,S, μ) with the property that the

nonsingular, ergodic action T on (X,\mathcal{S},μ) with the property that the action

$$S_{q}(x,t) = (T_{q}x,t + c(q,x))$$

of G on $X \times \mathbf{R}$ is ergodic, where $c(g, x) = \log \frac{d\mu T_q}{d\mu}(x)$. Hence the action T' of G on $X \times \mathbf{R}^2/\mathbf{Z}^2$, given by

 $T'_{\alpha}(x, (s,t)) = (T_{\alpha}x, s+c(g,x) \pmod{1}, t+\alpha c(g,x) \pmod{1}),$

where $(s,t) \in \mathbb{R}^2/\mathbb{Z}^2$ and $\alpha \in \mathbb{R}\setminus Q$, is ergodic. A slight refinement of proposition 1.3 and the argument in example 1.6 shows that T' is not strongly ergodic. We conclude the following proposition. 1.8 PROPOSITION [6] Let G be a countable group. Then G has a nonsingular, ergodic action on (X, S, μ) which is not strongly ergodic.

2. APPROXIMATELY FINITE QUOTIENTS OF EQUIVALENCE RELATIONS

Let T be a nonsingular, ergodic action of a countable group G on (X, S, μ) . Then the set (2.1) $R = R_T = \{(x, T_g x) : x \in X, g \in G\} \subset X \times X$ is a Borel equivalence relation (i.e. a Borel set and an equivalence relation). For every $x \in X$ we denote by

(2.2) $R(x) = \{x' \in X : (x, x') \in R\}$

the equivalence class of x, and we write

$$R(A) = \bigcup R(x)$$

for the saturation of a set $A \in S$. Then $R(A) \in S$ (cf. [3]), and

(2.4) $\mu(R(A)) = 0$ if and only if $\mu(A) = 0$. In general, a Borel equivalence relation $R \subset X \times X$ is said to be <u>discrete</u> if R(x) is countable for every $x \in X$. If R is discrete then $R(A) \in S$ for every $A \in S$ (cf. [3]), and R is called <u>nonsingular</u> if it satisfies (2.4). From now on the term <u>equivalence</u> <u>relation</u> will always denote a discrete, nonsingular, Borel equivalence relation. An equivalence relation R on (X, S, μ) is <u>ergodic</u> if $\mu(R(A)) \in \{0,1\}$ for every $A \in S$.

If R is an equivalence relation on (X, S, μ) there exists a nonsingular action T of a countable group G on (X, S, μ) such that $R = R_{T}$ (cf. (2.1) and [3]). This allows us to define the <u>Radon-Nikodym</u>

derivative of R by setting $\frac{d\mu(x)}{d\mu(x')} = \frac{d\mu T_q}{d\mu}(x')$ whenever $(x,x') \in R$, g \in G, and $T_q x = x$. The relation R <u>preserves μ </u> if T_q preserves μ , and R is ergodic if and only if T_q is ergodic. We write [R] for the <u>full group</u> of R, i.e. for the group of nonsingular automorphisms V of (X, S, μ) with $(Vx, x) \in R$ for μ -a.e. $x \in X$, and note that $[R_T] = [T]$ whenever T is a nonsingular action of a countable group G on (X, S, μ) . Finally we call an equivalence relation R on (X, S, μ) <u>approximately finite</u> if there exists a nonsingular Z-action S on (X, S, μ) with [R] = [S].

Proposition 1.1 shows that strong ergodicity is a well defined concept for equivalence relations, and equation (1.1) can be expressed by saying that

$$\phi^{(2)}(R_{T}) \subset \mathbb{R}^{2}/\mathbb{Z}^{2}$$

is approximately finite, where $\phi^{(2)} = \phi \times \phi$. This is a special case of the following general assertion.

2.1 THEOREM [5] Let R be an ergodic equivalence relation on (X, S, μ) . The following statements are equivalent.

- (1) R is not strongly ergodic;
- (2) there exists an approximately finite equivalence relation R' on a standard, nonatomic probability space (Y, T, v) and a nonsingular map $\phi : X \to Y$ such that $\phi^{(2)}(R) = R'$, where $\phi^{(2)} = \phi \times \phi$.

The equivalence relation R' is a 'quotient relation' of R the following sense:

2.2 DEFINITION Let R and R' be ergodic equivalence relations on standard, nonatomic probability spaces (X, S, μ) and (Y, T, ν) , and let ϕ : $X \rightarrow Y$ be a nonsingular map such that $\phi(R(x)) = R'(\phi(x))$ for μ -a.e. $x \in X$. Then R' is said to be a <u>quotient relation</u> of R, and the subrelation

 $R^{\phi} = \{ (x, x') \in R : \phi (x) = \phi (x') \} \subset R$

is called the <u>kernel</u> of the quotient map $\phi^{(2)} : R \to R'$. The quotient R' of R and the quotient map $\phi^{(2)}$ will both be called <u>proper</u> if

$$S^{\mathbb{R}^{\varphi}} = \{ \mathbb{B} \in S : \mathbb{V}\mathbb{B} = \mathbb{B} \text{ for every } \mathbb{V} \in [\mathbb{R}^{\varphi}] \}$$

 $(2.5) \qquad = \phi^{-1}(T) \pmod{\mu}$

2.3 THEOREM [5] Let R be an ergodic equivalence relation on (X, S, μ) which is neither strongly ergodic nor amenable. Then the map

 ϕ : X \rightarrow Y in theorem 2.1 (2) is uncountable-to-one, and μ -a.e. equivalence class of R^{ϕ} is infinite. Furthermore R' can be chosen to be a proper quotient of R.

3. SOME EXAMPLES OF QUOTIENT RELATIONS AND THEIR INFORMATION COCYCLES 3.1 EXAMPLE Consider the action T of G = SL(2,Z) on $Y = R^3/Z^3$ defined in example 1.6, and denote by T' the action of G on $X = R^2/Z^2$ by linear automorphisms. The first coordinate projection $\psi : Y = X \times R/Z \rightarrow X$ satisfies that

$$\Psi \cdot T = T' \cdot \Psi$$

for every $g \in G$. Hence $\psi(R_T(x)) = \psi(T_G x) = T'_G \psi(x) = R_T'(\psi(x)) \quad \mu \times \lambda$ a.e., and ψ is uncountable-to-one. However,

$$R^{\Psi} = \{(y, y) : y \in Y\},\$$

so that R_{π} , is not a proper quotient of R_{π} .

3.2 EXAMPLE Let $X = \mathbb{Z}_{4'}^{N} Y = \mathbb{Z}_{2'}^{N}$ when $\mathbb{Z}_{k} = \mathbb{Z}/k\mathbb{Z} = \{0, 1, \dots, k-1\}$, and let S and T denote the Borel fields in X and Y, respectively. We write μ and ν for the Haar measures on X and Yand define a measure preserving map ϕ : $X \to Y$ by setting $\phi(x)_{n} = 2x_{n}$ (mod 2), $n \ge 0$, for every $x = (x_{0}, x_{1'}, \dots) \in X$. Put (3.1) $R = \{(x, x') \in X \times X : x_{i} \neq x'_{i} \text{ for only finitely many } i \ge 0\}$ (3.2) $R' = \{(y, y') \in Y \times Y : Y_{i} \neq y_{i} \text{ for only finitely many } i \ge 0\}$, and note that R and R' are measure preserving, ergodic relations on

 (X, S, μ) and (Y, T, ν) , respectively, and that $\phi^{(2)}(R) = R'$. It is easy to see that R' is a proper quotient of R.

A proper quotient of a finite measure preserving, ergodic equivalence relation need not be measure preserving, as the following examples show.

3.3 EXAMPLE Let $X = \mathbb{Z}_{3}^{\mathbb{N}}$, $Y = \mathbb{Z}_{2}^{\mathbb{N}}$ and denote by S and T the Borel fields on X and Y, and by μ the Haar measure on X. Define ϕ : X \rightarrow Y by

$$\phi(\mathbf{x})_{n} = \begin{cases} 0 & \text{if } \mathbf{x}_{n} \in \{0,1\} \\ & n & , n \ge 0 \\ 1 & \text{if } \mathbf{x}_{n} = 2 \end{cases}$$

for every $x = (x_0, x_1, ...) \in X$ and put $v = \mu \phi^{-1}$. Then $v = \prod_{k \ge 0} \sigma_k$, where $\sigma_k(0) = \frac{2}{3}$ and $\sigma_k(1) = \frac{1}{3}$. If R and R' are the equivalence relations defined exactly as in (3.1) and (3.2), then $\phi^{(2)}(R) = R'$, and R' is a proper quotient of R. Note that R is measure preserving, but R' has no σ -finite invariant measure $v' \sim v$. 3.4 EXAMPLE Let $X = \mathbf{Z}_2^{\mathbf{Z}}$, $Y = \mathbf{Z}_2^{\mathbf{N}}$ and denote by S and T the Borel fields of X and Y. Let μ and v be the Haar measures on X and Y, and define a measure preserving map $\phi : X \to Y$ by setting $\phi(x)_n = x_n, n \ge 0$, for every $x = (x_k) \in X$. Let

 $R = \{(x, x') \in X \times X : \text{ there exist integers } N \ge 0, k \in \mathbb{Z}, \text{ with}$ $(3.3) \qquad \qquad x_n = x'_{n+k} \text{ for all } |n| \ge N\},$

and put

 $R' = \{(y, y') \in Y \times Y : \text{ there exist integers } N \ge 0 \text{ and } k \in \mathbb{Z}, \text{ with}$ $(3.4) \qquad N + k \ge 0 \text{ and } x_n = x'_{n+k} \text{ for all } n > N\}.$

Then R and R' are ergodic equivalence relations, R is measure preserving, and R' has no $\sigma\text{-finite},$ invariant measure $\nu\,'\,\sim\,\nu\,.$

3.5 DEFINITION Let R be an ergodic equivalence relation on (X, S, μ) , and let (Y, T, ν) be a standard probability space, R' an equivalence relation on (Y, T, ν) , and $\phi : X \to Y$ a measure preserving map with $\phi(R(x)) = R'(\phi(x)) \mu$ -a.e. (here we are not assuming (Y, T, ν) to be nonatomic, although this is the most interesting case). For every $(x, x') \in R$, put

$$J(x, x') = \log \frac{dv(\phi(x))}{dv(\phi(x'))}$$

(note that $v = \mu \phi^{-1}$). Then J is a cocycle, i.e. J(x, x') + J(x', x'') = J(x, x'')

for (x, x') and $(x', x'') \in \mathbb{R}$, and $J = J_{\mathbb{R},\mathbb{R}'}$ is called the <u>information cocycle</u> of the pair (\mathbb{R},\mathbb{R}') (cf. [8]). 3.6 EXAMPLES (1) In example 3.2, $J_{\mathbb{R},\mathbb{R}'} = 0$.

(2) In example 3.3, $J_{R,R'}(x,x') = 2^{-k}$, where

 $k = \# \{n \ge 0 : x_n \ne 2 \text{ and } x'_n = 2\} - \# \{n \ge 0 : x_n = 2 \text{ and } x'_n \ne 2\}$ (3) In example 3.4, $J_{R,R'}(x,x') = 2^k$, where $k \in \mathbb{Z}$ is chosen as in
(3.3).

If the equivalence relation R is measure preserving the information cocycle can be useful in determining the size of the normalizer

$$N_{R}(R^{\phi}) = \{ V \in [R] : V[R^{\phi}] V^{-1} = [R^{\phi}] \}$$

of R[¢] in R.

3.7 THEOREM [4] In the notation of definition 2.2, let R' be a proper quotient of R. Then

$$[N_{R}(R^{\phi})] = [R_{0}],$$

where

 $R_0 = \{(x, x') \in R : J_{R, R'}(x, x') = 0\}$

and where $[N_R(R^{\phi})]$ is the full group of $N_R(R^{\phi})$ (although $N_R(R^{\phi})$ is uncountable, its orbits are countable, and hence the full group is well defined).

4. PRODUCTS OF EQUIVALENCE RELATIONS

Theorem 2.1 raises the problem whether the approximately finite equivalence relation R' can be written as a direct summand of R, i.e. whether there exists an equivalence relation R" on a standard probability space (Y', T', v') and an isomorphism $\psi : X \to Y \times Y'$ such that $\psi^{(2)}(R) = R' \times R^{"}$. Since R' is approximately finite and hence isomorphic to R' \times R' on Y \times Y, we see that R' is a summand of R if and only if there exists an isomorphism $\psi' : X \to X \times Y$ such that $\psi'^{(2)}(R) = R \times R'$.

4.1 DEFINITION [5] An ergodic equivalence relation R on (X, S, μ) is <u>stable</u> if there exists a nonatomic standard probability space (Y, T, ν) , a measure preserving, ergodic, approximately finite equivalence relation R' on (Y, S, ν) , and an isomorphism $\psi : X \to X \times Y$ such that

$$\psi^{(2)}(R) = R \times R'$$
.

4.2 DEFINITION [5] Let R be an ergodic equivalence relation on (X, S, μ) . A sequence $(V_n) \subset [R]$ is called <u>asymptotically central</u> (a.c.) if

 $\lim_{n} \mu (V_{n} B \Delta B) = 0 \quad \text{for every } B \in S,$ $\lim_{n} \mu (\{x : V_{n} W x \neq W V_{n} x\}) = 0 \quad \text{for every } W \in [R],$ n

and

$$\lim_{n} \frac{d\mu V_n}{d\mu} = 1 \quad \text{in measure.}$$

An a.c. sequence (V) is trivial if

$$\lim_{n} \mu \left(\nabla_{\mathbf{B}} \Delta \mathbf{B}_{n} \right) = 0$$

for every a.i. sequence $(B_n, n \ge 1)$ in S.

4.3 THEOREM [5] Let R be an ergodic equivalence relation on (X, S, μ) . Then R is stable if and only if [R] contains a nontrivial a.c. sequence.

Stability is a much stronger condition than the existence of nontrivial a.i. sequences, as the following proposition shows. We begin with a definition. A countable group G is <u>inner amenable</u> if there exists a sequence of unit vector $(v_n) \subset k^2(G)$ with

 $\lim_{n} v_{n} = 0 \quad \text{in the weak topology}$

and

 $\lim \|Ad_{q}v - v_{n}\| = 0 \text{ for every } g \in G,$

when Ad denotes the adjoint representation $(Ad_gv)(h) = v(g^{-1}hg)$ of G on $l^2(G)$.

4.4 PROPOSITION [5] Let G be a countable group which is not inner amenable, and let T be a measure preserving, free, ergodic action of G on (X, S, μ) . Then R_{π} is not stable.

4.6 PROBLEM R. Zimmer [9] has given examples of measure preserving, ergodic equivalence relations which are not isomorphic to any product

 $R_1 \times R_2$, where R_1 and R_2 and both ergodic. Are there any examples of ergodic equivalence relations without (nontrivial) proper quotients?

REFERENCES

- [1] A. Connes, J. Feldman and B. Weiss, An amenable equivalence relation is generated by a single transformation, *Ergod. Th. & Dynam. Sys.* 1 (1981), 431-450.
- [2] A. Connes and B. Weiss, Property T and almost invariant sequences, Israel Math. J. 37 (1980), 209-210.
- [3] J. Feldman and C.C. Moore, Ergodic equivalence relations, cohomology and von Neumann algebras I. Trans. Amer. Math. Soc. 234 (1977), 289-324.
- [4] J. Feldman, C. Sutherland, and R.J. Zimmer (in preparation).
- [5] V.F.R. Jones and K. Schmidt, Asymptotically invariant sequences and approximate finiteness, Amer. J. Math. 109 (1987), 91-114.
- [6] K. Schmidt, Asymptotically invariant sequences and an action of SL(2,Z) on the 2-sphere, Israel J. Math. 37 (1980), 193-208.
- [7] K. Schmidt, Amenability, Kazhdan's property T, strong ergodicity, and invariant means for ergodic group actions, Ergod. Th. & Dynam. Sys. 1 (1981), 223-236.
- [8] K. Schmidt, Some solved and unsolved problems concerning orbit equivalence of countable group actions, In: Ergodic Theory and related topics II, Ed. H. Michel, Teubner, Leipzig 1987.
- [9] R.J. Zimmer, Ergodic actions of semisimple groups and product relations, Annals of Mathematics 118 (1983), 9-19.

Mathematics Institute University of Warwick Coventry CV4 7AL U.K.