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TIHE MINIMAL MARTIN BOUNDARY OF A CARTESIAN PRODUCT OF TRERES
. . 1)
Massimo A. Picardello
and

Peter Sjogren 2)

Abstract. On a tree, the Martin boundary for positive eigenfunctions of the "Laplacian"
or other suitable difference operators is known to coincide with the natural boundary of
the tree. In this survey, operators on é, finite product of trees are considered. Old and
new results are described. In the case when all the trees are homogeneous, we let the
operator be a positive linear combination of the Laplacians in the factor trees. If at least
one of the trees is not Z, the corresponding Martin boundary is nontrivial for all
sufficiently large eigenvalues, and is given as the product of the natural boundaries of the
trees times a hypersurface which depends on the eigenvalue. The situation is similar to
that of a polydisc. There is a pointwise convergence theorem at the boundary. For I™
however, the boundary is a one-point set. To get a nontrivial boundary here, one can

consider instead an operator with drift.

1. Minimal Martin boundaries and ends of graphs: an overview

The purpose of this paper is to outline the ideas connected with the search for a
concrete, geometric realization of the reproducing boundary of positive harmonic
functions for a denumerable Markov chain. For the sake of concreteness, we shall phrase
all the statements in terms of transition operators actihg on some infinite graph (the
graph of the states of the Markov chain). We shall only sketch briefly, in this
introductory overview, the successful attempts in this direction. For a more detailed
outline of the results, the reader is referred to the survey paper [PW3]. One of our aims

is to explain why a naive geometric approach fails to vield the Martin boundary for a
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significant class of graphs: the euclidean lattices.

Denote by P a stochastic nearest—neighbour transition operator on a graph T'

3

and let P act on functions on I' (more precisely, on functions on its set of vertices), by

the rule Ph(x) = } p(x,y)h(y). Moreover, denote by P(n) the n—th iterate of P, and
-y
by p(n)(x,y) , X,y € I' , its entries. For t > 0 and x,;y e ', define the "generalized

Green kernel" Gt(x,y) = } p(n)(x,y)/tn+1, Regarded as an operator, G, is the

n=0
resolvent of P: indeed, (tI—P)Gt = I For t sufficiently large, Gt(x,y) exists finite

t

and Gt(-,y) is a positive t—eigenfunction of P outside of y. By a t-harmonic
function, we shall mean a t-eigenfunction of P. We are interested in the cone 1 of
positive t—harmonic functions : if ’)[t is nonfrivial, then Gt is finite, so we restrict
attention to those values of t such that Gt < w.

Positive eigenfunction of P can be expressed as "Poisson integrals" of positive
Borel measures over a suitable boundary of I'. A boundary M with these properties
was constructed by Martin [Ma] for harmonic functions on bounded domains in R” , and
by [Dol] for denumerable Markov chains (which include our present setting): see [Do2,
Hl, KSK] for references. This construction makes use of the "Martin kernels" K ((xy) =
G, (xy)/ Gi(oy) , where o is a fixed reference vertex. There is a unique
compactification }{t of T on which all the functions Kt(x,-) extend continuously and
separate points; the Martin boundary is now defined by # = '”t = ;{t\F. By abuse of
notation, we denote again by Kt(x,m) the extension of K,(x,-) to M Now every
positive t—eigenfunction of P is of the type Jtﬁu(x) = l‘(Kt(X,-}d/t , for some positive
measure p. In general, p is not unique: for instance, ‘Z’/t,ﬁm = J‘E’t,u for some measure
I 5m , £ >0, if and only if Kt(-,m) is not an extreme point of the base of the
positive cone 7, i.e., the convex set {h>0: Ph=th, h(0) = 1}. The function K, (-,m)
is extremal in this sense if and only if it is a minimal positive t—harmonic function;
when this condition is satisfied, m 1is called a minimal point of K. The subset of
minimal points in M is a Borel set and, for every positive t—eigenfunction h , it carries
a unique measure 1y, > 0 such that ‘Z’/L“h = h. This subset is called the "minimal

Martin boundary" with a slightly inaccurate notation, because in general it is not a
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boundary, not being compact. In this paper, we restrict attention to the minimal Martin
boundary, which, by further abuse of notation, will be again denoted by A .

It was shown in [Ca] that, if T is a tree, then M coincides with its natural
boundary, i.e., the set of rays emanating from a reference vertex, endowed with its
natural topology. This results gocs back to [DM] in the particular case of homogeneous
trees and group—invariant transition operators. It was extended in [PW1] to transition
operators on trees which, rather than being nearest—neighbour, allow jumps of bounded
length and satisfy some natural uniformity assumptions (the group—invariant case had
been settled in [De]). By modifying the set of edges suitably, these operators can be
regarded as being nearest—neighbour on a graph which admits a uniformly spanning tree.
For more general graphs T, a geometric realization of X can be given in terms of the
space {1 of ends of T, that is, equivalence classes of rays in T' under the equivalence
relation which identifies rays that are not separated by finite sets of vertices. The space
), with its natural topology, is a boundary of T' and is a continuous image of A , but
it is not always homeomorphic to X . It is called the geometric boundary of TI'. For
instance, the lattice Z" has only one end, with "infinite diameter", but its Martin
boundary may be non—trivial (see below). Other examples of graphs where Q ¢ 4 are
those which admit ends containing two rays such that the probability of hitting a vertex
of the first from a vertex of the second without wandering too far vanishes rapidly
enough as the two vertices move out to infinity (see [PW2] for details). In this case, the
end is said to have poor "transversal conductance" (see [PW3] for references on the
analogy between potential theory on graphs and electrical networks).  Sufficient
conditions for 4 = 0 have be given in [PW2], in terms of diameter and transversal
conductance of ends (see also [PW3]).

We want to understand better why this geometric realization fails for the
euclidean lattice Z" , whose Martin boundary is trivial only if the transition operator
has no drift, but is homeomorphic to the sphere s" otherwise [Hn, NS]. The graph
7" has only one end, and it is the product of n copies of the one—dimensional tree Z,

which has two ends. Therefore the Martin boundary of " , in the nontrivial case, is a
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varicty of higher dimension than the product of the geometric boundaries of the factors.
This remark suggests considering a collection of graphs Pi ,1=1,...,n, with transition

opcrators Pi and forming their cartesian product I , endowed with a transition

n ~ -
operator P defined as a convex combination P =¥ aiPi' Here Pi denotes the
. i=1
natural lift of Pi from 1“i to T: denoting by x = (xl,...,xn) the vertices of T = x l“i,
i
we have pi(x,y) = pi(xj,yj) if X =, for every j =1 and zero otherwise. Thus, if

h(x) = by (x;).h (x ), then P.h(x) = Pihi(xi)'jgihj(xj)' Therefore, if Pih; = th,

then Ph = Yogt;h. In particular, if at least one of the Py's admits a nontrivial Martin
boundary, then so does P, because it has nontrivial positive eigenfunctions. We shall
write Pi rather than f’i. |

It would be interesting to characterize the minimal Martin boundary of (T,P) in
terms of the corresponding boundaries of the factors. It is advisable, however, to limit
attention to the case where I‘i are homogeneous trees and Pi isotropic nearest
neighbour transition operators. In this case, indeed, the Poisson kernels of the factors
are explicitly known [Fu, DM]; see [FP] for further references. The minimal Martin
boundary of the product of homogeneous trees is studied in the forthcoming paper [PS],
in analogy with the approach of [Ka] for symmetric spaces. Also in this setting, the
dimension of X is larger than that of the product of the geometric boundaries.
Moreover, the additional dimensions turn out to be related with the rates of escape of
the random walk in the individual components. This is shown in [PS] by looking at the
asymptotic behaviour of minimal positive t—eigenfunctions along geodesics in the
product: limits of this type give rise to a family of "Poisson kernels", parametrized by
the "angle of escape" (the ratio of the velocities along each component of the given
bi—geodesic). In turn, this approach yields a nontangential Fatou convergence theorem
for positive t—eigenfunctions [PS].

In large part, the present paper is a survey of the results of [PS] on Martin

boundaries. We consider the product I' of a finite collection of homogencous trees T,
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with homogeneity degrees q; (i-e., with 1+q; edges joining at each vertex), endowed
with a convex combination of the isotropic necarest—neighbour transition operators.
However, the presentation is aimed to shed light on the Martin boundary theory of
euclidean lattices.

In fact, notice that our results hold under the only additional assumption that P
be transient. Therefore it is enough to assume that at least one of the P, is transient;
that is, we can allow all but one of the component trees to be isomorphic to Z. In other
words, the graph T' is allowed to be the product of a finite number of trees Ti with
homogeneity degrees q > 1 and of a euclidean lattice Zk. Restricted to Zk , the
transition operator is symmetric, but not necessarily isotropic. Here symmetry is with
respect to sign change in any coordinate, whereas isotropy refers to interchange of
coordinates.

I r= ZZk , then it is easy to show that all positive harmonic funétions are
constants, and the Martin boundary is a singleton (for k = 1 or 2, the transition operator
is actually recurrent). Positive t—eigenfunctions exist for t > 1. However, the setting of
the euclidean lattice ZZk is simple enough to allow us to deal with asymmetric operators,
that is, transition operators with drift. These operators are obviously transient, and in
Section 2 we show that their Martin boundary is the sphere Sk_1 , a result originally
obtained in [Hn, NS]. In sections 3 and 4,4 a similar analysis is carried out for products
of trees: this yields the minimal Martin boundary and the integral representation of all
the positive t—eigenfunctions of P. In addition, we consider the "Poisson boundary",
i.e., the subset @ of M which supports the representing measures of the bounded
harmonic functions. The Poisson boundary turns out to be homeomorphic to the
geometric boundary. As a consequence, the bounded P—harmonic functions are jointly
Pi—harmonic.

Finally, in section 5 we examine the connection between the "direction of escape"

n

of a trajectory which goes to infinity along a "ray" in I’ = x T. and the limit
i=1

behaviour of the Poisson kernels along this trajectory.

The main references are [NS] for §2, [Ca, FP, MZ] for §3, and [PS] for §4,5. For
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the sake of clarity, we have often made an effort to cover also the elementary details of
the most relevant topics.

This paper was prepared while the first—named author was visiting the Centre for
Mathematical Analysis at the Australian National University, whose warm hospitality

and prompt cooperation are acknowledged with pleasure.

2. Minimal positive eigenfunctions of transition operators on euclidean lattices

In this section, we determine the Martin boundary of a translation—invariant
transition operator P on ™. 1t is not necessary to assume that P is nearest
neighbour. To avoid trivialities, we assume that the subgroup generated by supp P = {k ‘
e I" : p(0,k) > 0} is the whole 7. We make use of the following Harnack's inequality,
which holds under a hypothesis weaker than translation—invariance : it is enough to
assume that the non—zero transition probabilities be bounded away from zero.
Proposition 1. There ezists a positive constant C  such that, for every positive
s—eigenfunction h of P on I™ and every km e I™ such that p(m,k) > 0, one has
h(k) < C h(m).
Proof. As h is positive, h(m) = S_lPh(m) > s—lp(m,k)h(k) > C'h(k) for some
constant C'. o
The following corollary is well known (see, for instance, [DSW]). In its statement, the
dot-denotes inner product.

Corollary 1. Let P be translation—invariant on I° and let h be ¢ minimal positive

s—eigenfunction of P such that h(0) = 1. Then there ezists ¢ t e R® with
®(t) = § p(0,k)exp(t-k) = s such that h(k) = exp(t-k).

Proof. If veIX with P(0,v) > 0, the proposition shows that the translated function
h(-+v) is dominated by Ch for some C < =. The minimality of h gives h(.+v) =
cvh, which also holds in the case p(0, —v) > 0. But there exists a basis of " asa
module over 7 consisting of elements v; verifying p(O,Vi) >0 or p(0,- vi) >0. If k

has coordinates & in this basis, we see that h(k) = exp(Zaif\ti) for some a, eR. A
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change of basis gives h(k) = exp(t-k) with teR", and it is clear that (l)=s o

The next corollary concerns the existence of nonconstant positive harmonic, i.e.,
1-harmonic, functions on Z". These functions exist if and only if the transition operator

has drift, that is, ¥ k p(0,k) = 0. For simplicity, we restrict attention to the
k

nearest—neighbour setting, where the condition amounts to saying that P is
asymmetric.

Corollary 2. Let P be nearest—neighbour and translation—invariani on I°. If P is
symmelric, then the only positive harmonic functions are the consiants, ®(t) = 1 only
Jor t =0, and the Martin boundary consisis of one point. Otherwise, the hypersurface
D= {®(t) = 1} is non—trivial, and is in one—to—one correspondence with the minimal
Martin boundary for positive functions.

Proof. Let e, be the standard basis vectors of " I p(O,el) = p(O,——ei) =D, then
n

d(t)=27 p; cosh(t;) ; therefore h(t) =1 implies t = 0. Observe, however, that the
i=1

hypersurface {®(t) = s} is non—trivial for s > 1, and is in bijective correspondence

with the minimal Martin boundary for positive s—harmonic functions. u]

The bijection between M and 9 is a homeomorphism, if & is endowed with
the relative topology of R™. To see this, however, it is necessary to "glue" 9 to " in
an appropriate way (up to homeomorphism), and to show that the Martin kernels extend
continuously. We will not discuss the continuous extension of the Martin kernels,
because they are difficult to compute (see section 5 below for more comments), and refer
the reader to [Hn, NS] for further details. However, we state here the theorem of [Hn]
and [NS] that determines the homeomorphic image of & which compactifies 7", in a
natural topology. This statement is the prototype of the theorems that we will discuss
for products of trees in the sequel. We adopt the following notation: B is the unit ball
in R", o= OB is the unit sphere, and 7:R"-B is defined by 7(x) = x/(1+]x]).

Observe that, in the relative topology of R" , the set Z = T(Zn) u ¢ is compact: ¢ is
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the natural geometric boundary of 7(I"). The topology of Z induccs a compact,
topology on the set " v ; thereby we regard o as a boundary for I".
Theorem 1 [Hennequin; Ney—Spitzer]. The Martin boundary (for positive harmonic
functions) of a {iranslation—invariani iransition operator with drift. on I s
honwomm‘phié to the "natural' boundary . Undcr this homeomorphism, each s in &
corresponds to the unique point u in the hypersurfoce D= {4 : (t) = 1} such that
grad ®(u) is aligned with s.

Thus, if we let y, g&o to infinity in I" in such a way that T(yn)—»s,
then K(x,y ) - exp (u-x). In other words, exp(u-x) is the Poisson kernel which arises
from "trajectories to infinity" with asymptotic direction s. The condition that relates

u to s is an extremality condition, which will be fully understood in Section 5.

3. The Laplace operator on a homogencous tree: Poisson kernels and oricycles

In this section, we recall some results on harmonic functions on homogeneous
trees. The main reference is [FP]; for oricycles on treeé, see [Ca] and [BFP].

Denote by T the homogeneous tree of degree q, and by P the isotropic nearest
neighbour transition operator, that is, p(x,y) = 1/(gq+1) if x and y are neighbours.
P, or, more precisely, the operator A = P—1, is called the "Laplace operator" on T. Its
Green and Martin kernels are easily computed; for our needs, however, it is enough to
consider the Poisson kernels, which are given by the formula

K(x,w) = qh(x,w)
where w is a ray starting at o in T, and the "oricycle index" h(x,w) is defined as
follows. The ray w induces an orientation on the edges. For the edges along w, the
positive orientation is the outward direction (with respect to o), and for the others, the
positive orientation points towards w. Consider now the path from o to a vertex x,

and give each of its edges the weight +1 if it is run through along the positive

orientation and —1 otherwise. Then h(x,w) is defined as the sum of the weights in the
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path from o to x. The level sets of K(-,w), i.c., the sets {xeT: h(x,w) = constant}
are the "oricycles tangent to Q at w". The oricycle {h(x,w) = k} is denoted by
Hk(w). We have denoted by 2 the space of rays emanating from o , with its natural
topology ([C]). The boundary § is glued to T as the set of points at infinity: indeed,
we recall that Yy € T converges to we Q if the distance from o to the branching

vertex w —— between the ray w and the path from o to Yo — diverges as n - w.

For every complex number t , the power I‘\’%+t = I{%+t(x,w) satisfies
PI\Z1+t = 7(‘@)1{%*t with 9(t) = o cosh(t log q), where o = 2./q;/(q;+1) is the spectral
radius of P in 52(T). Clearly, K‘2l+t is positive if and only if Imt is a multiple of
2x/log q. Therefore the functions K%*t(x,w), t e R, are generalized Poisson kernels. On

the other hand, all Poisson kernels are of this type: the Martin boundary is Q for every

eigenvalue 7(t),t eR [Ca, MZ]. These are all the eigenvalues larger than or equal to o,
1+ 1t
2

and therefore exactly those with positive eigenfunctions. Observe that K and K

I

t > 0, belong to the same eigenspace, with eigenvalue +{t) = 4(~t). However, the

former is minimal, whereas the latter is not.
1+g
2

Proposition 2. For 1> 0, K (-,w) is a minimal 9(t)—eigenfunction of P. On the
1t ,
other hand, K is not minimal; ils integml decomposition is
it
K (xw= JQ (x w) dpy (w),

where Iy is a positive Borel measure on §).

Proof. For every t e (, the operator .%’t defined in the statement, called the "Poisson
transform", maps M(Q) to the 4(t)—eigenspace of P.' If t isreal, &, is bijective,
and one can consider the operator I = .ﬁft—l H_  M(Q) » M(Q) (see [MZFP]).
Clearly, It(éw) = p s the measure of the statement. We must show that B >0 if
and only if t > 0. By a result of [MZ] (see also [FP, Coroll.IV.1.2]), ¥, Is an integral
kernel operator, with kernel nt(w,w') = (l—fl(t,))q_2t q(l—2t)N(w,w')’ where 0(t) =
(q_q21,)/(q_q—21,) , and N(w,w') is the distance between o and the branching vertex

of therays w, o'. Thus K is positive ifand only if 6(t) <1 ,i.e,for t>0. o
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The next result, originally proved in [BFP], characterizes the group of isometries
of T which preserve the oricycle H, (w) for some (hence all) k. We denote by
Aut(T) the group of all isometries of T.

Proposition 3. Denote by B the subgroup of Aut(T) preserving Hk(w) »and by B

the subgroup of Aut(T) fizing all the vertices in the ray w at dislance =n from o.

Then B= u Bn'
n=0

Proof. We first show that Bn cB forevery n. Fix x in T and b in B o We want

to show that h(b-x,w) = h(x,w). Denote by n +(x) the number of edges with positive

orientation in the path from o to x, and define n_(x) similarly. Since B, increases

with n, we can assume that n > n +(x). Among the points left fixed by B, the one’
which has shortest distance to x is the n—th vertex " of w, and d(x,e™) =n -
n+(x) +1n _(x) =1n —h(x,w). Since the same thing is true with b-x instead of x, we

conclude that h(x,w) = h(b-x, w).

Now take b e B. Let x e T and choose y e w with d(y,0) > max(d(x,0),
d(b-x,0)). Among all the points of the oricycle y belongs to, y will then be closest to
x and to b-x. Hence, b-y =y, so that beuBn. o

We conclude this section with a simple observation on the action of isometries on
sequences going to infinity in a homogeneous tree.

Proposition 4. If Yyt we 0, then there exists isomelries T which fit o and map
Y, to a vertes of the ray w . The sequence T, Mmay be chosen so that T, converges
(pointwise on T) to the trivial isometry.

Proof: As before, we denote by Wy the branching vertex between the path from o to
y, and the ray w. As Yp W, w, > w too, by the way the topology of Tu @ is
defined. Then it is enough to choose 7, SO that it satisfies the following two conditions.
First, 7, interchanges the path from wy to y, with the segment of w which begins
at W, and goes forward a number of steps equal to d(wn,yn). Second, . fixes every
vertex that preéedes Wy in the ordering induced by w. Observe that the rn's do not

fix w, but their limit does. n)
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4. The Minimal Martin boundary of a product of trees

We shall now consider the cartesian product T' of n trees Ti , homogeneous of
degree q;- As remarked in the introduction, all but one of the qi's may be 1. If all
the qi's are 1,then T =I", whose Martin boundary has been studied in Section 2.
We consider the transition operator on T' defined, as in Section 1, as a convex

combination ¥ OziPi of the Laplace operators on ‘the factors. All the results are taken
from [PS].
n
If I'= .xl Ti and q) = qj for some k,j, then there exist isometries switching
1=

Tk and Tj' The transition operator is invariant under these isometries if and only if

0y = 0. We restrict attention to the subgroup Aut«(T) c Aut(T') without switches:
n

Auty(T) = x Aut(T).
i=1

Proposition 5. Choose a reference vertez o in T and suppose that the Green kernel

Gs(x,y) is finite for all x,y. Forevery e Aut«(T) and x,y €T, one has:
i) Ky(x,7y) = K (7%, y)/ K7 o)

ii) if o€ Aut«(T') fizes o, KS('rar'lo,'ro) =1.

More generally, this result holds for all transient operators on an infinite graph T
which are invariant under the group of isometries Aut(T), provided we replace
Auty(T) by Aut(T) in the statement.

Proof. As P is invariant under Aut.(T) , one has GS(TX, Ty) = Gs(x, y)  for any
7 e Aut,(T). “

) K ) = Gyr xy)/G (7 loy)

= KS(T"lx,y)-GS(o,y)/ Gy(roy) = K( T'lx,y)/KS( 7loy).
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ii) KS(TJT_lo,TO) = Gs(ar_lo,o)/GS(r—lo,o) =1

-1
because ¢ "o=o0. o

n
From now on, the statements are meant only for T' = x Ti' We denote by Q
’ i=1

n
the space of rays: = x Qi. Vertices in T' are denoted by x= (xl,...,xn), with
i=1

x; € Ti' Similarly, rays in © are denoted by w = (wl,...,wn). The space T u Qis
endowed with the product topology: x converges to w if X~ w for every i. The
subgroup  Aut«(I') is normal and of finite index in Aut(T'), the quotient being
isomorphic to the group of permutations of the factors with the same degree q;
Therefore, in the generic case, Aut«(I') = Aut(T'). The group Aut(T)

is endowed with the topology of pointwise convergence on T'. The subgroup of Auty(T)
which fixes o € I' is denote by K. Then Proposition 5 yields the following

consequence.

Corollary. Assume that (yj) is a sequence in T such that Ks( -,yj) converges
pointwise to a function f. If Tj€ Aut4(T) and v TE J, then Ks(x,rjyj) - f( r'lx)
as j-w, foreach xeT.

Proof. Making use of Proposition 5.i, we obtain

_ -1 -1 -1
KS(XaTij) = KS(Tj x’yj)/KS(Tj Oan) - f(r "x),
since *rj'1x= rx for large j and Ks(O,yj) =1. o

We are now ready to apply the Martin method and determine the minimal
boundary. Take an unbounded sequence (yj) in T' for which KS(-,yj) converges
pointwise to a minimal positive eigenfunction f of P. We shall compute f.

Writing ¥y = (yj,l"“’ yj,n)’ we may assume that the sequence (yj,i)j is
unbounded for 1 <i<m and bounded for m < i=<n, where m=1. Passing to a
subsequence, we can then assume that Vi has a limit W € Qi for i =m and that Yii
=Y; is constant for i > m. Now write I' = I'" x I'" with
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m "
T'= x Ti and "= x T,
1 m+1 !

and analogously Q@ = Q'x Q". Then o' = (wl,...,wm) e and y" = (ym+1,..., yn) €
.
The first step in the application of the Martin method is to assume the existence
of the limit (not the minimality yet), and to reduce the problem to the setting of
cuclidean lattices.

Proposition 6. Let Ks("yj) -1 as described above. With the assumptions and the

wotation just introduced, it follows that f is constant along the oricycles

in T,
Proof. We fix a component T, of T' with i=<m and prove that f(x) does not

change if we move the coordinate x; within an oricycle Hk.(wi)' By Proposition 4 and
1

the corollary to Proposition 5, we may assume that Yii converges "radially" to w, in
the sense that each Vi is on the ray w. Let T for each j be an isometry of T;
whose restriction to W is a shift in the positive direction and which satisfies rjo = yj,i'

Let feB, where B is defined with respect to Ti' Because of Proposition 3, f
€B, for large m, in particular for some ‘m of the form m = d(o, yj,i)’ But for this
m wehave B = 7 B0 rj'l, so that g = rjarj'l with ge B, c # Now extend gt B,
and ¢ to isometries of T by keeping the i' coordinates fixed, i' »= i. Then
Proposition 5 gives

=1 -1 =l .) = f(x). u]
f(fx) = l}m Ks(rjorj x,rjo) l}m KS(X,YJ) (x)

Finally, we assume that the limit is minimal and we compute it. Recall that, on
the i—th component, %) = ZJQ—i'cosh(L]ogqi)/(qi—H) [see Section 3).
Theorem 2. Assume that the limit function of Proposilion 6 is a minimal positive

eigenfunction. Then m=n and

n §+ti
fx)= T K '(x,w)
i=1 b
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for somg (tl,..., tn) € IR_I:_ satisfying ‘I)(tl,..., tn) =)o 'yi(tj) =3.
Proof. We first assume m = n. Then the limit { depends only on the oricycle indices

ki , and we can realize it as a function f(kl,...,k ) on I". As the reference vertex o

n
belongs to the oricycle with index zero in each component, we have f£(0,...,0) = 1.

Moreover, for each vertex x; in T, ,say x;, eH (wi) » the unique neighbour of x; in
i

the direction of positive orientation- (with respect to wi) belongs to the oricycle

Hy +1(wi) , while all the other neighbours (the predecessors of x;) belong to the
1

oricycle of index ki—-l. Therefore,

sf(ky o k) = Pi(ky ek ) =
1

n
= L 05(0g0 oy b )obf e Ry L p)) (01).

Thus f is a minimal positive eigenfunction for a (nearest—neighbour) transition operator

with drift in 7", By Corollary 1 of Section 2, f(kppenky) = T exp(tk,), with
1

®(t;,..,t ) =s. We observed in Section 3 that an exponential function of the oricycle
index on a homogeneous tree is a power of the Poisson kernel: This completes the proof
in the case m = n.

In the general case, split x as (x',x") e I' x I'". Then the limit is constant on

oricycles in I', and we write f(x'x") = f(kl,..., ko x"). We also decompose P as

m n
P=73 O‘iPi + ¥ aiPi =P + P".
1 m+1

Now one has, with k = (kl"“’ km),

m;x") +

m
Pi(k;x") = ¥ a.[q.f(kl,...,k.——l,...,k
(2t i
(2)

+ 8k e kit ek x)] /() + Pl = sf(kx").
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Let g be the i—th canonical basis vector. As f and P"fx> 0,
af(ktesx") = (q;+1)P'f(k;x") = sf(l;x").

one has

Thus Harnack's inequality (Proposition 1)
m tk. 1+t

holds for f(.;x") , and f(kx") =TI q. ' ' f(0;x") = MK,  (x.,w)f(0;x").

= i ™1

It follows that f(0;-) is a positive eigenfunction of P". As such, it must be

minimal, since f is a minimal positive eigenfunction of P. But P" is defined on the

product of n-m trees. By induction in n, we conclude that

for some oW" = (wm+1"“’ w) e Q"

(Observe, by the way, that no indication is necessary when m =n - 1, because in

that case Proposition 2 applies to f(0;x")). But since y" is constant in I'", f(0;x")
cannot depend on " , and we have a contradiction.

The only thing which is left to prove is that &(t) = s, and this is immediately

checked. The theorem is proved. o

Thus the minimal Martin boundary for the eigenvalue s is contained in O x 9

where ) = x Q, and & is the hypersurface {t‘.e[Rn:tizO for i=1,

> ceooll,
i

&(t;,..,t,) = s}. We have not shown yet that the minimal boundary coincides with this

set: we must still prove that all the generalized Poisson kernels
37t

K(x,w;t) =I}Ki ](xi,wi) are minimal. Anyway, we already have the integral
i

representation that we were looking for:
Theorem 3. Ewvery positive eigenfunction of P in T with eigenvalue s is of the iype
= K(x,wit) dpy (wt)
Jolg .
s
for same positive measure by

Here one can choose Hy carried by the set of extreme points of £ x .@S Then
Iy will be unique. Observe that Theorem 3 yields the correct range of eigenvalues s for
which there exist positive eigenfunctions: the condition is

s= 9(0,...,0) = Y o 0},
1
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where o, is the spectral radius of P, in 52(Ti). Notice that @(0,...,0) is the spectral
radius of P in €2(P), because the P, commute.

We now show that all the generalized Poisson kernels are minimal.
Theorem 4. Al the generalized Poisson kernels K(x,w) are minimal positive
etgenfunctions (with eigenvalue s = ®(t)). Therefore the minimal Martin boundary is M
= x .@S. The joint positive eigenfunctions of the operators Pi , with eigenvalues
s, = fy(ti) , are represented by positive measures on M carried by Ox{t}, with
t= (tl,...,tn).
Proof. Observe first that, if K(-,w;t) is not minimal, then K(-,w';t) cannot be
minimal for any o' = w, because the action of some 7 e Jc Auty(T) transforms one
kernel into the other, by the corollary to Proposition 5. On the other hand, if K(x,wit)
is not minimal and s = ®(t) , then Theorem 3 yields a unique positive measure v,
carried by the set of minimal points in  x .@S , such that K(x,wt) =
J K(x,&u)dy(&,u). By the remark at the beginning of the proof, v does not charge § x

{t}. However, K(x,w;t) splits as a product and is therefore a joint eigenfunction of the

Py's. The action of P, gives

WKt = [ 9(w)K(xgu)du(gu).
Qx.‘ZS

By the uniqueness of v , we have 7(u;)dv(&u) = 1(t;)dv({u). In other words, v is
carried by Qx{t}, a contradiction. This argument proves also the statement about the

joint eigenfunctions of the P.'s. u]

Remark.  Consider the minimum eigenvalue ¢ for which there exist positive
eigenfunctions of P , that is, the spectral radius of P in [2(1‘). Then o= 9(0,...,0) =
z 005, and .@’U consists only of the origin. Thus every positive o—eigenfunction of P

is a joint o;—eigenfunction of the P,'s.
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We conclude this section by determining the Poisson boundary of T, i.e., the support of
the reproducing measure I of the harmonic function 1. Denote by dey  the
“normalized measure on Qi which is invariant under the stability subgroup A of o in

Aut(T;) (see [FP] for more details). Then J K(x;,w;)dp, = 1. Hence
1

dyy = e dw ® 6: , where r = %(1,1,...,1), because K(x,wr) = 1I Ki(xi,wi). Therefore:
i i

Theorem 5. For every bounded P—harmonic function h there ezists ¢ e L™(Q), with

lel, = Ihl_, such that
h(x) = JQK(x,a&r)¢(w)dw1...dwn.

Thus the Poisson boundary Ox{r} is a proper subset of M. In particular, bounded

harmonic functions are jointly harmonic with respect to Pi'

5. Asymptotic behaviour of Poisson kernels and rate of escape along trajectories to
infinity.
This section is a report of results of [PS]. We omit the details, and present only
the ideas. We are interested in finding a connection between the asymptotic behaviour

of Martin and Poisson kernels on trajectories moving to infinity along a "multiray" in

n
I'=x T, and the "asymptotic direction" of the trajectory. The existence of a
i=1 R

. connection is suggested by the results for euclidean lattices (see the comments after
Theorem 1).

Let s > ©(0,...,0). We would like to determine the limit behaviour of the Martin
kernels Ks(x,yj) as ¥i~ we ). However, this is a difficult task. Indeed, the Martin
kernels are difficult to compute. They do not split as products (otherwise they could not
be harmonic except at one point only), and their construction relies on the delicate
combinatorics of path composition in cartesian products. We know that any limit of
Ks(x,yj), for a sequence ; tending to the boundary, must be either of type x -
K(x,w;t) for some we Q, te .@S or an integral of such functions. Our explicit formula

for K(x,w; t) can be used to obtain results about the asymptotic behaviour of Poisson
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integrals. This we shall now describe.

A point w= (wl,..,, wn) e 0 determines a multiray in T, also denoted w and
defined as the product of the rays w, in T,. Associating a point x = (xl,..., xn) in
this multiray with the n—<uple (|xi|)111, we get a bijection between the multiray and lNg.
As x tends to = within the multiray, the direction of the vector (|x;|) elNg cR”
(called the direction of x) will be important.

Clearly, any finite measure p on the Martin boundary € x ZS has a Poisson

integral

K u(x) = J K(x,wt)dp(wt).

There is a canonical measure dwdt on 2 x 7. Here dw= dw;...dw, was introduced
at the end of the last section, and dt is the area measurein 2. If fe Ll(dwdt), we
can define its Poisson integral as K. = K (fdwdt). The corresponding normalized
Poisson integral is Jafsf(x) = K f(x) / K 1(x), where 1 denotes the constant function on
0 x .@S.

Comparing with the situation in the bidisc [S], we expect pointwise convergence
%Sf(x) -+ {(w, ,tO) as x- wy e () and the direction of x approaches grad <I>(t0). Here
we assume that ty € ZS is not on the boundary of this manifold with boundary. As will
be shown in [PS], this convergence indeed holds if f is-continuous in 2 x 4. This
means that the functions (w;t) » K(x,wt)/K Sl(x), which are defined in 2 x 2. and
positive with integrals 1, tend to a unit mass at (wo,to) as x tends to w and the
direction of x tends to grad ®(ty). In particular, the map (wt) - K(x,wt) roughly
speaking takes its largest valuesin Q x 2. when w is close to x and t is such that
grad @(t) is nearly proportional to (Ixil)rll.

For fell (dudt), there is a Fatou theorem ([PS]) saying that stf(x) - f(wg,tg)

for a.a. (“JO’tO)" Here it is required that x approach the boundary within a "tube"
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associated with (wO,tO): there must exist a C > 0 such that xe T is for some r > 0

at distance at most C from the point of the multiray W corresponding to

([1'6<I>(t0)/ ‘%iDIilzl € INE . Here the brackets denote the integer part. The proof of this

theorem goes via a weak type (1,1) estimate for the corresponding maximal function.
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