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THE MINIMAL MARTIN BOUNDARY OF A CARTESIAN PRODUCT OF TREES 

Massimo A. Picardcllo 1 ) 

and 

Peter Sjogren:l) 

Abstract. On a tree, the Martin boundary for positive eigenfunctions of the II Laplacian II 

or other suitable difference operators is knO\Vll to coincide with the natural boundary of 

the tree. In this survey, operators on a finite product of trees are considered. Old and 

new results are described. In the case when all the trees are homogeneous, we let the 

operator be a positive linear combination of the Laplacians in the factor trees. If at least 

one of the trees is not 71., the corresponding :Martin boundary is nontrivial for all 

sufficiently large eigenvalues, and is given as the product of the natural boundaries of the 

trees times a hyper surface which depends on the eigemalue. The situation is similar to 

that of a polydisc. There is a pointwise convergence theorem at the boundary. For 7I.n 

however, the boundary is a one~oint set. To get a nontrivial boundary here, one can 

consider instead an operator with drift. 

1. Miwmal Martin boundaries and ends of graphs: an overview 

The purpose of this paper is to outline the ideas connected with the search for a 

concrete, geometric realization of the reproducing boundary of positive harmonic 

functions for a denumerable Markov chain. For the sake of concreteness, we shall phrase 

all the statements in terms of transition operators acting on some infinite graph (the 

graph of the states of the :Markov chain). We shall only sketch briefly, in this 

introductory overview, the successful attempts in this direction. For a more detailed 

outline of the results, the reader is referred to the suryey paper [PW3j. One of our aims 

is to explain why a naive geometric approach fails to yield the l\1artin boundary for a 
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significant class of graphs: the euclidean lattices. 

Denote by P a stochastic nearest -neighbour transition operator on a graph r, 

and let P act on functions on r (more precisely, on functions on its set of vertices), by 

the rule Ph(x) = 2 p(x,y)h(y). l\Ioreover, denote by p(n) the ll-th iterate of P, and 

y 

by p(n)(x,y), x,y E r , its entries. For t > 0 and x,y E r, define the "generalized 

Green kernel" Gt(x,y) = 2 p(n)(x,y)/tn+1. Regarded as an operator, G t is the 

n;;::O 

resolvent of P: indeed, (tI-P)G t = 1. For t sufficiently large, Gl'::,y) exists finite 

and Gt(·,y) is a positive t-eigenfunction of P outside of y. By a t-harmonic 

function, we shall mean a t -eigenfunction of P. We are interested in the cone 1(t of 

positive t-harmonic functions: if 1(t is nontrivial, then G t is finite, so we restrict 

attention to those values of t such that Gt < co. 

Positive eigenfunction of P can be expressed as "Poisson integrals" of positive 

Borel measures over a suitable boundary of r. A boundary ,I{ with these properties 

was constructed by Martin [l\Ia] for harmonic functions on bounded domains in [Rn , and 

by [Dol] for denumerable Markov chains (which include our present setting): see [D02, 

HI, K8K] for references. This construction makes use of the "Martin kernels" I\(x,y) = 

Gt(x,y)/Gt(o,y), where 0 is a fixed reference vertex. There is a unique 

compactification Mt of r on which all the functions Kt(x,.) extend continuously and 

separate points; the Martin boundary is now defined by:U = Mt = Mt \r. By abuse of 

notation, we denote again by Kt(x,m) the extension of Kt(x,.) to M. Now every 

positive t-eigenfunction of P is of the type Ybtt1(x) = J)/Kt(x,. )dp, for some positive 

measure J-l. In general, J-l is not unique: for instance, .J~5m = YbtJ-l for some measure 

J-l" 15m , Jt > 0, if and only if K t (· ,m) is not an extreme point of the base of the 

positive cone Xt , i.e., the convex set {h>O: Ph=th, h(O) = I}. The fUIlction K t (· ,m) 

is extremal in this sense if and only if it is a minimal positive t-hannonic function; 

when this condition is satisfied, III is called a minimal point of )(. The subset of 

minimal points in )( is a Borel set and, for every positive t-eigenfunction h, it carries 

a unique measure Jih > 0 such that v%~//h = h. This subset is called the "minimal 

Martin boundary" with a slightly inaccurate notatioll, because in general it is not a 
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boundary, Dot being compact. In this paper, we restrict attention to the minimal lVlartin 

boundary, which, by further abuse of notation, will be again denoted by ),{ , 

It was shown in [Cal that, if r is a tree, then ),( coincides with its natural 

bounda.ry, i.e" the set of rays emanating from a reference vertex, endowed with its 

nat UTal topology, This results goes back to [D?\l] in the particular case of homogeneous 

trees and group-invariant transition operators, It was extended in [P\Vl] to transition 

operators OIl trees which, rather than being nearest-ncighbour, alJO\y jumps of bounded 

length and satisfy some natural uniformity assumptions (the group-invariant case had 

been settled in [De]), By modifying the set of edges suitably, these operators can be 

rega,rded as being nearest-neighbour on a graph which admits a uniformly spanning tree. 

For more general graphs r, a geometric realization of JI can be gjyen in terms of the 

space n of ends of r, that is, equivalence classes of rays in r under the equivalence 

relation which identifies rays that are not separated by finite sets of vertices, The space 

n , with its natural topology, is a boundary of r and is a continuous image of )( , but 

it is not always homeomorphic to ),{, It is called the geometric boundary of r, For 

instance, the lattice 71n has only one end, with "infinite diameter") but its ]\1arOn 

boundary may be non-trivial (see below). Other examples of graphs where n ~ ,I{ are 

thof'e which admit ends containing two rays such that the probability of hitting a vertex 

of the first from a vertex of the second without wandering too far vanishes rapidly 

enough as the two vertices move out to infinity (see [P'vV2] for details), In this case, the 

end is said to haye poor "transversal conductance" [P'vV3] for references on the 

analogy between potential theory on graphs and electrical networks), Sufficient 

conditions for ),( = n have be in [PW2], in terms of diameter and transversal 

conductance of ends (see also [PW3]), 

We want to understand better why this geometric realization fails for the 

euclidean lattice 71n 1 whose Martin boundary is trivial only if the transition operator 

has no but is homeomorphic to the sphere Sn-1 othenvise , The graph 

has only one cnd, and it is the product of n copies of the one-dimensional tree 71, 

which has two enos, Therefore the Martin boundary of un , in tlie nontrivial case, is a 
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variety of higher dimension than the product of the geometric boundaries of the factors. 

This remark suggests considering a collection of graphs fj' i = 1, ... ,11, with transitioll 

operators l'. and forming tlleir cartesian product f, endowed with a transitiOll 
1 

operator p 
n 

defined as a convex combination P = I cd' .. Here 
i=l ] ] 

P. 
1 

denotes the 

natural lift of Pi from fj to f: denoting by x = (xI, ... ,xn) tlle vertices of f = >:- fi' 
1 

we have Pj(x,y) = Pj(xi,y) if Xj = Yj for every j;", i and zero otherwjse. Thus, if 

h(x) = hl(x1) ... h (x ), then P.h(x) = P.h.(x.). I1 h.(x.). Therefore, if P.h. = t.b .. n n' J 1] I .. J J 1 1 I J' 
J "" 1 

then Ph = LQitjh. In particular, if at least one of the Pi's admits a nontrivial Martin 

boundary, then so does P, because it has nontrivial positive eigenfunctions. We shall 

write P. rather than Pi' 

It would be interesting to characterize the minimal Martin boundary of (r,p) in 

terms of the corresponding boundaries of the factors. It is advisable, howe'ver, to limit 

attention to the case where f. 
! 

are homogeneous trees and P. 
I 

isotropic nearest 

neighbour transition operators. In this case, indeed, the Poisson kernels of the factors 

are explicitly known lFu, DM]; see [FPJ for further references. The minimal I\Iartin 

boundary of the product of homogeneous trees is studied in the forthcoming paper [PS], 

in analogy with the approach of [Ka] for symmetric spaces. Also in this setting, the 

dimension of )( is larger than that of the product of the geometric boundaries. 

Moreover, the additional dimensions turn out to be related with the rates of escape of 

the random walk in the individual components. This is shown in [PS] by looking at t.he 

asymptotic behaviour of minimal positive t-eigenfunctions along geodesics in the 

product: limits of this type give rise to a family of "Poisson kernels", parametrized by 

the "angle of escape" (the ratio of the velocities along each component of the given 

bi-geodesic). In turn, this approach yields a. nontangential Fatou convergence theorem 

for positive t-eigenfunctions [PSj. 

In large part, the present paper is a survey of the results of [PSj on lI.Iartin 

boundaries. We consider the product r of a finite collection of homogeneous trees Ti' 
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with homogeneity degrees Gi (Le., with 1 +qj edges joining at each vertex), endowed 

with a convex combination of the isotropic nearest-neighbour transition operators. 

However, the presentation is aimed to shed light on the 1\la1'tin boundary theory of 

euclidean lattices. 

In fact, notice that our results hold under the only additional assumption that P 

be transient. Therefore it is enough to assume that at least one of the Pi is transient; 

that is, we can allow all but one of the component trees to be isomorphic to 71. In other 

words, the graph r is allowed to be the product of a finite number of trees T. with 
I 

homogeneity degrees qj > 1 and of a euclidean lattice 71k. Restricted to 71k , the 

transition operator is symmetric, but not necessarily isotropic. Here symmetry is with 

respect to sign change in any coordinate, whereas isotropy refers to interchange of 

coordinates. 

If r = Ilk, then it is easy to show that all positive harmonic functions are 

constants, and the Martin boundary is a singleton (for k = 1 or 2, the transition operator 

is actually recurrent). Positive t~igenfunctions exist for t > 1. However, the setting of 

the euclidean lattice 7l.k is simple enough to allow us to deal with asymmetric operators, 

that is, transition operators with drift. These operators are obviously transient, and in 

Section 2 we show that their Martin boundary is the sphere Sk-l , a result originally 

obtained in [Hn, NSj. In sections 3 and 4, a similar analysis is carried out for products 

of trees: this yields tbe minimal Martin boundary and the integral representation of all 

the of P. In we consider the "Poisson 

Le., the subset .2 of )( which supports the representing measures of the bounded 

harmonic functions. The Poisson boundary turns out to be homeomorphic to the 

geometric boundary. As a consequence, the bounded P-harmonlc functions are jointly 

Pi-harmonic. 

Finally, in section 5 we examine the connection between the "direction of escape" 

n 
of a trajectory which goes to infini ty along a 

behaviour of the Poisson kernels along this trajectory. 

in r == x 
1=1 

T: 
I 

and the limit 

Themaill references are [NS] for §2, [Ca,FP,MZ] for §3, and [PS] for §4,5. For 
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the sake of clarity, we have often made an effort to cover also the elementary details of 

the most relevant topics. 

This paper was prepared while the first-named author was visiting the Centre for 

Mathematical Analysis at the Australian National University, whose warm hospitality 

and prompt cooperation are acknowledged with pleasure. 

2. Minimal positive eigern1ID.ctions of transition operators on euclidean lattices 

In thls section, we determine the Martin boundary of a translation-invariant 

transition operator P on In. It is not necessary to assume that P is nearest 

neighbour. To avoid trivialities, we assume that the subgroup generated by supp P E {k. 

E 7!.n : p(O,k) > O} is the whole 7l.n. We make use of the following Harnack's inequality, 

which holds under a hypothesis weaker than translation-invariance : it is enough to 

assume that the non-zero transition probabilities be bounded away from zero. 

Proposition 1. There exists a positive constant C such that, for every positive 

s-eigenfunction h of P on 7ln and every k,m E 7l.n such that p(m,k) > 0, one has 

h(k) < C h(m). 

Proof. As h is positive, h(m) = s-lPh(m) <!: s-lp(m,k)h(k) > C'h(k) for some 

constant C'. o 

The following corollary is well known (see, for instance, [DSWJ). In its statement, the 

dot denotes inner product. 

Corollary 1. Let P be translation-invariant on 7l.n and let h be a minimal positive 

s-eigenfunction of P S1tch that h(O) = 1. Then there exists atE lRil with 

~(t) = ~ p(O,k)exp(t·k) = 8 such that h(k) = exp(t·k). 

Proof. If v E 71k with p(O,v) > 0, the proposition shows that the translated function 

h( . +v) is dominated by Ch for some C < "'. The minimality of h gives h(. +v) = 

c h, which also holds in the case p(O, -v) > O. But there exists a basis of 7ln as a v 

module over 7l. consisting of elements Vi verifying p(O,vi ) > 0 or p(O,- Vi) > O. If k 

has coordinates 1),. in this basis, we see that h(k) = exp(Ia.I\.) for some a· E lit A 
1 1 I 1 
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cbange of basis gives h(k) = exp(t.k) with t E IRn, and it is clear that il>(t) = s. 0 

The next corollary concerns the existence of nonconstant positiYe harmonic, 

I-harmonic, functions on 7P. These functions exist if and only if the transition operator 

has drift, that is, 2: k p(O,k) .. 0. For simplicity, we restrict attention to the 
k 

nearest-neighbour setting, where the condition amounts to saying that P is 

asymmetric. 

Corollary 2. Let P be nearest-neighbour and translation-invariant on 71n. I] P is 

symmetric, then the only positive harmonic functions are the constants, iP(t) = 1 only 

JOT t = 0, and the Martin boundory consists oj one point. Otherwise, the hypersurface 

IiJ = {iP(t) = I} is non-trivial, and is in one-to-one correspondence with the minimal 

Martin boundary Jor positive junctions. 

ProaL Let ej be the standard basis vectors of 71n . If '" Pi' then 
n 

iP(t) = 2 2: p. cosh(t.) ; therefore h(t) = 1 implies t = 0. Observe, however, that the 
i=l 1 1 

hyper surface {iP(t) = s} is non-trivial for s > 1 , and is in bijective correspondence 

with the minimall\Iartin boundary for positive s-harmonic functions. 0 

The bijection between ){ and IiJ is a homeomorphi~m, if g; is endowed with 

the relative topology of [Rn. To see this, however, it is necessary to "glue" IiJ to 7£n in 

an aUDroDnate way (up to homeomorphism), and to 8ho\'i; that the Martin kernels extend 

continuously, We will not discuss the continuous extension of the Martin kernels, 

because they are difficult to compute (see section 5 below for more conUl1ents), and refer 

the reader to [Hn, NS] for further details. However, we state here the theorem of [En] 

and [NSj that determines the homeomorphic image of g} which compactifies 7ln , in a 

natural This statement is the prototype of the theorems that we will discuss 

for of trees in the sequel. We the notation: B is the unit ball 

in 1R1l, dI' = DB is the unit sphere, and r: IRn->B is defined r(x) = x/(l+llxll). 

Observe that, in the relative topology of [Rn , the set Z = r(lln) u d is compact: d is 
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the natural geometric boundary of r(71n). The topology of Z induces a compact 

topology on the set 7llJ u &'; thereby we regard &' as a boundar)' for 7111 • 

Theorem 1 [Hennequin; Key-Spitzer]. The Madill boundary (Jar positive harmonic 

fundions) oj a translation-invariant transition operator with drift on 7111 IS 

homeomorphic to Ihe "naturaf' boundary d. Under this homeOm07])hisJn, each s in &' 

cOTnsponds to the unique point u in the hypcrs1Lrjo.ce EJ = {t : 1>(t) = I} such that 

grad <I> ( u) is aligned with s. 

Thus, if we let y go to infinity in n 7l.n in such a way that r(yn)..., S , 

then K(x,yn) -+ eAll (u·x). In other words, exp(u·x) is the Poisson kernel which arises 

from "trajectories to infinity" with asymptotic direction s. The condition that relates 

u to s is an e.>..'tremajity condition, which will be fully understood in Section 5. 

3. The Laplace operator on a homogeneous tree: Poisson kernels and oricydes 

In this section, we recall some results on harmonic functions on homogeneous 

trees. The main reference is [FP]; for oricyc1es on trees, see [Cal and [BFP]. 

Denote by T the homogeneous tree of degree q , and by P the isotropic nearest 

neighbour transition operator, that is, p(x,y) = l/(q+l) if x and yare neighbours. 

P, or, more precisely, the operator f'J. E P-l, is called the "Laplace operator" on T. Its 

Green and Martin kernels are easily computed; for our needs, however, it is enough to 

consider the Poisson kernels, which are given by the formula 

K(x,w) = qh(x,w) 

where w is a ray starting at 0 in T, and the "oricycle index" h(x,w) is defined as 

follows. The ray w induces an orientation on the edges. For the edges along w, the 

positive orientation is the outward direction (with respect. to 0), and for the others, the 

positive orientation points towards w. Consider now the path from 0 to a vertex x, 

and give each of it.s edges the weight + 1 if it is rUll through along the positive 

orientation and -1 otherwise. Thell h(x,w) is defined as the sum of the weights in the 
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path from 0 to x. The level sets of K(. ,w), I.e., the sets {x E T : h(x,w) = constant} 

are the "oricyclcs tangent to 0 at w". The oricycle {h(x,w) = k} is denoted by 

l\(w). \Ve have denoted by D the space of rays emanating from 0, with its natural 

topology ([Cl). The boundary 0 is glued to T as the set of points at infinity: indeed, 

we recall that Yn E T converges to WE 0 if the distance from 0 to the branching 

vertex w - between the ray wand the path from 0 to y - diverges as n -+ ro. n n 
t +t ~ +t 

For every complex number t, the power K = K (x,w) satisfies 

~+t !+t 
PI( = ,(t)K with i(t) = (f cosh(t Jog q), where (f = 2filil(qj+l) is the spectral 

~ !+t 
radius of P in C-(T). Clearly, K is positive if and only if 1m t is a multiple of 

!+t 
2"jlog q. Therefore the functions K (x,w), t E IR , are generalized Poisson kernels. On 

the other hand, all Poisson kernels are of this type: the Martin boundary is 0 for every 

eigenvalue '')'(t), t E IR rCa, !VIZ]. These are all the eigenvalues larger than or equal to 0", 

~+t !-t 
and therefore exactly those with positive eigenfunctions. Observe that K and K 

t > 0 ) belong to the same eigenspace, with eigenvalue ,( t) = 1( -t). However, the 

former if, minimal, whereas the latter is not. 

~+t 

Proposition 2. For t> 0, K (. ,w) is a minimal l(t)-eigenfunction of P. On the 

~ .--t 
other" hand, K is not minimal; its integral decomposition is 

14 l~ 

1(2 (x,,,-,) = ~tJ(x) E Io K2 (x,w) d.ut(wr 

where P., is a positive Bord measure on fL 
" 

Proof. For every tEl[, the operator J'I\ defined in the statement, called the "Poisson 

transform", maps IvI(O) to the 'Y(t)-eigenspace of P. If t is real, J{ t is bijective, 

and one can consider the operator It = ~-l J{ -t : M(n)..., 1\1(0) (see [?lIZ,FP]). 

Clearly, It ( £5 J == Pt is the measure of the statement. We must show that fit > 0 if 

and only if t > O. By a result of [I\IZ] (see also [FP, CoroIUV.1.2]), J{ t is an integral 

) ( () -2t (1-2t)N(w Iv') O( ) kernel operator, with kernel '\(W,W' = 1-0 t )q q " where t = 
(q-q2t)j(q-q-2t), and N(W,W') is the distance between 0 and the branching verte.., 

of the rays w, w'. Thus 1\ is positive if and only if O(t) < 1 , Le., for t > O. 0 
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The next result, originally proved in [EFP], characterizes the group of isometrics 

of T which preserve the oricycle Hk( w) for some (hence all) k. \Ye denote by 

Aut(T) the group of all isometries of T. 

Proposition 3. Denote by E thc subgroup of Aut(T) preserving Hl:;(w) , and by Bn 

the subgroup of Aut(T) fixing all the ve,Uces in the ray w at distance ~ n from o. 

Then E = u B . 
n=O n 

Proof. We first show that En c B for every n . Fix x in T and b in Bn' 'Ve want 

to show that h(b .x,w) = h(x,w). Denote by n+(x) the number of edges with positive 

orientation in the path from 0 to x, and define n_(x) similarly. Since Bn increases 

with il, we can assume that n > D+(X). Among the points left fixed by Bn' the one· 

which has shortest distance to x is the n-th vertex wD of w, and d(X,i':P) = n -

n+(x) + njx) = n -h(x,w). Since the same thing is true with b·x instead of x, we 

conclude that h(x,w) = h(b.x, w). 

Now take b E B. Let x E T and choose yEW with d(y,o) > ma..oo.;:(d(x,o), 

d(b· x,o)). Among all the points of the oricycle y belongs to, y will then be closest to 

x and to b·x. Hence, b·y=y, so that bEuBn. o 

\Ve conclude this section with a simple observation on the action of isometries on 

sequences going to infinity in a homogeneous tree. 

Proposition 4. If Y n ... WEn, then there exists isometrics Tn which fix 0 and map 

)'n to a vertex of the ray w. The sequence Tn may be chosen so that Tn convf1'ges 

(pointwise on T) to the trivial isometry. 

Proof: As before, we denote by wn the branching vertex between the path from 0 to 

Y n and the ray w. As Y n -!- w , wn ... w too, by the way the topology of Tun is 

defined. Then it is enough to choose Tn so that it satisfies the following two conditions. 

First, T interchanges the path from W to y with the segment of w which begins 
n n n 

at wand goes forward a number of steps equal to d(w ,y ). Second, T fixes every n n n n 

vertex that precedes "-' in the ordering induced by lJ.}. Observe that the T 's do not n n 

fix lL', but their limit does. 0 
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4. The Minimal Martin boundary of a product of trccs 

We shall now consider the cartesian product r of n trees T i , homogeneous of 

degree Gj' As remarked in the introduction, all but one of the Gj'S may be 1. If all 

the Gjis are 1 ,then r = 7ln i whose l\1artin boundary has been studied in Section 2. 

We consider the transition operator on f defined, as in Section 1, as a convex 

combination L Q'.P. of the Laplace operators on the factors. All the results are taken 
I 1 

from [PSJ. 
n 

If r = x T. and qk = q. for some k,j, then there exist isometries switching 
i=l I J 

T k and Tj' The transition operator is invariant under these isometries if and only if 

= Oif YVe restrict attention to the subgroup Aut*(f) c Aut(f) without switches: 

n 
Aut,,(r) = x Aut(T.). 

i=l I 

Proposition 5. Choose a reference vertex 0 in r and suppose that the Green kernel 

Gs(x,y) is finite for all x,y. FOT every T E Aut",(f) and X,Y E f , one has: 

i) Ks(x,ry) = Ks(T-1x, y)/Kg(T-10,y) 

ii) if (J E Aut*(f) fixes 0, Ks( To"T~O,TO) '" 1. 

IvIore generally, this result holds for all transient operators on an infinite graph r 

which are invariant under the group of isometries we replace 

Aut*(f) in the statement. 

Proof. As P is invariant under , one has TX, ry) '" Gg(x, for any 

TE 

i) Ks(x, ry) = Gs{ T-1x,y)/Gs( T 

-1 -1) (-1)/ ( Ks( T x,y)· T o,Y = Kg T x,y Kg T 
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ii) Ks( TOT-IO,TO) = GS(O"T-10,0)/G S( T- 10,0) = 1 

-1 
because (J ° = o. 0 

n 
From now on, the statements are meant only for r = x T.. We denote by n 

i=l 1 

n 
the spac.e of rays: 0 = . x 0i' Vertices in r are denoted by x = (xl""'xn), with 

1=1 

xi E Tj" Similarly, rays in 0 are denoted by W = (wl""'wn), The space r u 0 is 

endowed with the product topology: x converges to w if xi'" wi for every i. The 

subgroup Aut*(r) is normal and of finite index in Aut(r), the quotient being 

isomorphic to the group of permutations of the factors with the same degree q. 
1 

Therefore, in the generic case, Aut*(f) = Aut(f). The group Aut(f) 

is endowed with the topology of pointwise convergence on r. The subgroup of Aut*(r) 

wruch fixes 0 E r is denote by r. Then Proposition 5 yields the following 

consequence. 

Corollary. Assume that (y.) 
J 

is a sequence in r such that Ks( . 'Yj) converges 

pointwise to a function f. If Tj E Aut*(f) and Tj '" T E %, then 

as j -+ 00, for each x E f. 

Proof. Making use of Proposition 5.i, we obtain 

K (X,T.Y.) = K (T-:-1x,y.)/K (T-:1o.y.) ... f( r-1x), 
8 JJ SJ J S.l 'J 

since r:-lx = T-lX for large and K (O,y.) = l. 
J S J 

o 

K (x, T.Y.) -d( T -lx) 
S J J 

We are now ready to apply the Martin method and determine the minimal 

boundary. Take an unbounded sequence (Yj) in f for which Ks(' 'Yj) converges 

pointwise to a minimal positive eigenfunction f of P. We shall compute f. 

Writing Yj = (Yj,l"'" Yj,n)' we may assume that the sequence (Yj,i)j is 

unbounded for 1:5 i :5 m and bounded for m < i :5 n, where m ~ 1. Passing to a 

subsequence, we can then assume that y .. has a limit w· EO. for i:5 m and that y .. 
j,l J I J,l 

= Yj is constant for i > m. Now write r = f' x f" with 
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m n 
f' = )( T. and f" = x T., 

1 I m+l I 

and analogously n = fl' x nil. Then Wi = (w1, ... ,wm) E 0' and y" = (Ym+l'···' Yn) E 

fl!. 

The first step in the application of the ]'vlartin method is to assume the existence 

of the lin-tit (not the minimality yet), and to reduce the problem to the setting of 

euclidean lattices. 

Proposition 6. Let K (.,y.)-d 
S J as described above. With the assumptions and the 

"etation just introduced, it follows that f is constant along the o1'icyclfS 

m 
Hk k (w') = x Hk (w.) 

r· m j=1 i 1 

in fl. 

Proof. We fix a component T j of T' with i oS m and prove that f(x) does not 

change if we move the coordinate Xi within an oricycle Hk. (wi). By Proposition 4 and 
! 

the corollary to Proposition 5, we may assume that YJ·· converges "radially" to W., in 
,I I 

the sense that each Yj,i is on the ray Wi. Let 'j for each j be an isometry of 1\ 
whose restriction to (,oJi is a shift in the positive direction and which satisfies 'jO =: Yj,i" 

Let /3 E B, where B is defined with respect to Ti . Because of Proposition 3, /3 

E B for large m, in particular for somem of the form m = d(o, y .. ). But for this 
m J~ 

m we have B = T· BO ,~l, so that /3 = T.(JT~l with (J E BO c JK Nowe..xtend '., /3, 
m J J J J _ J 

and (J to isometries of f by keeping the i I coordinates fixed, i' '" i. Then 

Proposition 5 gives 

f(/3x) = lim K (,.ui:1x,r.o):::: lim K (x,y.):;; f(x). 0 
. S]j J . S J 
J J 

Finally, we assume that the limit is minimal and we compute it. Recall that, on 

the i-th component, = 2J'(}cosh(tlogq·)f(q·+l) [see Section 3J. 
! I! 

Theorem 2. Assume that the limit junction of Proposition 6 is a minimal positive 

eigenfunction. Then m = nand 

n Ht. 
f(x) = n K l(x., w.) 

1=1 I I 
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for some (t l ,··., tn) E IR~ satisfying (J>(tp-'" t n) >= I a j 'Yj(t) = s. 

Proof. We first assume m = n. Then the limit f depends only on the oricycle indices 

kj , and we can realize it as a function f(kl' ... ,kn) on 7l.n. As the reference vertex 0 

belongs to the oricycle with index zero in each component, we have f(O, ... ,O) = 1. 

Moreover, for each vertex Xi in T j , say Xi E Hk. (w) , the unique neighbour of Xi in 
I 

the direction of positive orientation (with respect to w) belongs to the oricycle 

Hk.+l(wi), while all the other neighbours (the predecessors of Xi) belong to the 
1 

oricycle of index kj-l. Therefore, 

sf(k1,oo.,k ) = Pf(k1, .. ·,k ) = n n 

(1) 
n 

= L a.[q.f(k1,oo.,k.-l,oo.,k )+f(k1, .. ·,k.+l, ... ,k )]/(q·+l). 
i=l 1 lIn 1 n 1 

Thus f is a minimal positive eigenfunction for a (nearest-neighbour) transition operator 

with drift in 7l.n By Corollary 1 of Section 2, f(kl'.oo,k ) = n exp( t.k.), with 
nil 1 

(J>(tl'oo.,tn) = s. We observed in Section 3 that an exponential function of the oricycle 

index on a homogeneous tree is a power of the Poisson kernel. This completes the proof 

in the case m = no 

In the general case, split x as (x',x") E r' x r". Then the limit is constant on 

oricycles in r', and we write f(x' ,Xii) = f(k1,ooo, km; x"). We also decompose P as 

m n 
P = I a.P. + L a.P. = pi + P". 

III m+l 1 1 

Now one has, with k = (k1,· .. , km ), 

m 

(2) 

Pf(k;xll ) = I a.[q.f(k1,o""k.-l, ... ,k ;x") + 
i=l I 11m 

+ f(kl' ... ,kj+l, ... ,km;xll)l!(qj+l) + Pllf(k;x") = sf(k;x"). 
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Let' ~\ be the i-th canonical basis vectoL As f and Pllf;::: 0, one has 

od(k+e.;x") ::$ (q.+l)P'f(k;x")::$ sf(k;X"). Thus Harnack's inequality (Proposition 1) 1 I J 

m t.k. t+t. 
holds for f( 'x")' and f(kx") = II q. I I f(O'x") = II K. l(X. w.)f(O·x"). 

1- "" , • 1 ' . 1 l' 1 ' 
1=1 I 

It follows that f(O;.) is a positive eigenfunction of plIo As such, it must be 

minimal, since f is a minimal positive eigenfunction of P. But P" is defined on the 

product of n-m trees. By induction in n, we conclude that 

n Ht. 
f(O; XII) = II K l(xi , wi) 

m+l 

for some Wi' (wm+1, ... , E nil. 

(Observe, by the way, that no indication is necessary when m == n - 1, because in 

that case Proposition 2 applies to )). But since is constant in fll, 

cannot depend on w" , and we have a contradiction. 

The only thing which is left to prove is that (/)(t)::: S , and this is immediately 

checked. The theorem is proved, 0 

Thus the wjnimal :Martin boundary for the eigenvalue s is contained in n x ,qJs ' 

where n = x OJ and ,qJs is the hypersurface {t E IRn : tj ;:: 0 for i = l, ... ,n, 

(/)(t1, ... ,t ) = s}. We have not shown yet that the minimal boundary coincides with this n 

set: we must still prove that all the generalized Poisson kernels 
1 .~.~. 

V-( ') - II L't..\X,UJ;t - ~ 
i Cj. ) 

(Xi'Wj are minimal. Anyway, we already have the integral 
i 

representation that we were looking for: 

Theorem 3. Every 

some positive measure 

of P in r with 

== J J K(x,w;t) dPh(w,t) 
n ,qJs 

s is of the type 

Here one can choose carried the set of extreme points of 0 x Then 

Ilh wlll be unique. Observe that Theorem 3 yields the correct range of eigenvalues s for 

which there exist positive eigenfunctions: the condition is 

s ~ (/)(0, ... ,0) = L 01· 
i 1 
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') 

where vi is the spectral radius of Pi in t(TJ Notice that !J:>(O, ... ,O) is the spectral 

radius of P in ?(r), because the Pi conm1ute. 

We now show that all the generalized Poisson kernels are minimal. 

Theorem 4. All the generalized Poisson kernels K(x,w;t) a7'e minimal positive 

eigenfunctions (with eigenvalue s = iP( t)). The7'efore the minimal Mallin boundary is ,If 

= fl x 9J. The joint positive eigenfunctions of the operato7's P., with eigenvalues 
S I 

Sj = 'Y( t i ) , a7'e represented by positive measures on )( ear7'ied by flx{ t}, with 

t = (tl' ... ,tn). 

Proof. Observe first that, if K(. ,vJit) is not minimal, then K(. ,w';t.) cannot be 

minimal for any Wi "" Iv, because the action of some T E .% c Aut*(r) transforms one. 

kernel into the other, by the corollary to Proposition 5. On the other hand, if K(x,w;t) 

is not minimal and s = 1f.(t) , then Theorem 3 yields a unique positive measure II, 

carried by the set of minimal points in n x ..0s ' such that K(x,w;t) = 

J K(x,e;u)dv(~,n). By the remark at the beginnjng of the proof, II does not charge n x 

{t}. However, K(x,w;t) splits as a product and is therefore a joint eigenfunction of the 

Pi's. The action of Pi gives 

l(t j)K(x,w;t) = f l(ui )K(x,eiU )dv(e,u). 

nx..0s 

By the uniqueness of v, we have 'Y( uj)dv( (,u) = 'Y( t)dv( e,n). In other words, II is 

carried by flx{ t}, a contradiction. This argument proves also the statement about the 

joint eigenfunctions of the p.'s. 
I 

o 

Remark. Consider the minimum eigenvalue 0' for which there exist positive 

eigenfunctions of P ,that is, the spectral radius of P in r(r). Then 0' = iP(O, ... ,O) = 

2:; (t.0'. , and 9J consists only of the origin. Thus every positive O'-eigenfullction of P 
J 1 0' 

is a j'oint (J.-eib"enfullction of the p. 's. 
. 1 1 
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We conclude this section by determining the Poisson boundary of r , Le., the support of 

the reproducing measure PI of the harmonic function 1. Denote by du.'. 
I 

the 

normalized measure on 

Aut(T j ) (see IFP] 

nj which is invariant under the stability subgroup 4 of 0 in 

for more details). Then J K(x.,w.)dtt· "" 1. Hence n. 1 1 J 
J 

dJLl = €I dw. €I b , where r = ~21 1,1, ... ,1), because K(x,w;r) = n K(x.,w.). Therefore: 
. Jr· . III 
1 I 

Theorem 5. For every bounded P-harmonic function h there exists cP E L ""(n), with 

Ilcpll = Ilhll , such that 
'" co 

h(x) = In K(x,w,r)ip(w)dw1···dwn· 

Thus the Poisson boundary f1x{r} is a proper subset of M. In particular, bounded 

harmonic functions are jointly harmonic with respect to Pi. 

5. Asymptotic behaviour of Poisson kernels and rate of escape along trajectories to 

infinity. 

This section is a report of results of [PSj. We omit the details, and present only 

the ideas. We are interested in finding a connection between the asymptotic behaviour 

of lVlartin and Poisson kernels on trajectories moving to infinity along a "multiray" in 

n 
r = x T. and the II asymptotic direction" of the trajectory. The e..xistence of a 

1=1 I 

connection is suggested the results for euclidean lattices (see the comments after 

Theorem 1). 

Let s > \I>(O, ... ,O). We would like to determine the limit behaviour of the 1Iartin 

kernels Ks(x'Yj) as Yj -<- WEn. However, this is a difficult task. Indeed, the Martin 

kernels are difficult to compute. They do not split as products (otherwise they could not 

be harmonic except at one point only), and their construction relies on the delicate 

combinatorics of path composition in cartesian products. We know that any limit of 

Ks(x'Yj)' for a sequence Yj tending to the boundary, must be either of type x'" 

K(x,w;t) for some WE 11, t E ..'lIs or an integral of such functions. Our explicit formula 

for K(x,W; t) can be used to obtain results about the asymptotic behaviour of Poisson 
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integrals. This we shall now describe. 

A point w = (wI"'" wn) E n determines a multiray in r, also denoted wand 

defined as the product of the rays wi in' Tj" Associating a point x = (xl"'" x) in 

this multiray with the n-tuple (Ixil)~, we get a bijection between the multiray and INg. 
As x tends to' co within the multiray, the direction of the vector (Ixil) ElNg c IRn 

(called the direction of x) will be important. 

Clearly, any finite measure Jt on the Martin boundary n x..0s has a Poisson 

integral 

KsJt(x) = J K(x,w,t)dJt(w,t). 

There is a canonical measure dux:lt on n x ..0s' Here dw = dwI ... dwn was introduced 

at the end of the last section, and dt is the area measure in ..0s' If f E L1(dux:lt), we 

can define its Poisson integral as Ki = Ks(fdux:lt). The corresponding normalized 

Poisson integral is ~f(x) = Ki(x)/Ksl(x), where 1 denotes the constant function on 

n x ..0s' 

Comparing with the situation in the bidisc [S), we expect pointwise convergence 

~f(x) ... f(wo,tO) as x ... Wo E n and the direction of x approaches grad ~(tO)' Here 

we assume that to E..0S is not on the boundary of this manifold with boundary. As will 

be shown in [PS), this convergence indeed holds if f is-continuous in n x ..0s' This 

means that the functions (w,t) ... K(x,w;t)/KsI(x), which are defined in n x..0s and 

positive with integrals 1, tend to a unit mass at (wo,tO) as x tends to w and the 

direction of x tends to grad ~(tO)' In particular, the map (w,t) ... K(x,w,t) roughly 

speaking takes its largest values in n x..0s when w is close to x and t is such that 

grad ~(t) is nearly proportional to (Ixil)~. 

For f E LI(dux:lt), there is a Fatou theorem ([PS)) saying that ~f(x) ... f(wo,tO) 

for a.a. (wo,tO)' Here it is required that x approach the boundary within a "tube" 
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associated with (wo,tO): there must. exist a C> 0 such that x E r is for. some r> 0 

at distance at most C from the point of the multiray Wo corresponding to 

([r8<J>(to)j 8ti])~ =1 E 1N3· Here the brackets denote the integer part. The proof of this 

theorem goes via a weak type (1,1) estimate for the corresponding ma..'{imal function. 
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