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A RE!~ ON THE RELATIVE ENTROPY 

Satoshi Kawakami 

INTRODUCTION 

The present article is a report of our joint works [4] and [5] with 

Mr. H. Yoshida on Pimsner-Popa's relative entropy H(MIN) for a pair 

M ~ N of finite von Neumann algebras. The notion of the relative 

entropy appeared firs't in Connes-S'cormer's work [1] as a technical tool 

for finite dimensional algebras. In [6], M. Pimsner and S. Papa 

extended this notion for finite von Neumann algebras and made clear the 

relationship between H(MIN) and Jones index [M:N] for a pair H ~ N 

of finite factors [3]. 

The aim of this article is to give complete formulas on H(MIMa ) 

for an arbitrary action '" of a locally compact group G on a finite 

von Neumann algebra M, applying Pimsner-Popa's deep resul'ts and our 

complementary general results. When M is a factor of type Ill' 

H (i'1I1Y{J.) is computed by using some conjugacy invariants of ac'tions which 

are defined in a modified ~lay of Jones' one [2]. 

§l SOi'1E GENERAL fu'!:SULTS. 

Before entering in description, we fix some notations used 

hereafter. For a von Neumann algebra M, M+ {all positive elements 

of Ml and Z(M) the center of i'1. For a se't S, lSI the 

cardinal number of S. 



162 

Throughout the article, 1'1 denotes a finite von Neumann algebra on 

a separable Hilbert space with a faithful normal normalized trace ~. 

Let N be a von Neumann subalgebra of M. Then, a function h on 1'1+ 

is defined by 

hlx) ~qE(x) - Iq(x) for X e 1'1+ 

Here, E is a ~-preserving conditional expectation of 1'1 onto Nand 

q is a continuous function for t ~ 0 such that '1'1(01 

-to log t if t > O. Set 

SIMI III (Xi'ieI; 
;­

x. e 1'1 
~ 

and l: 
ie I 

x. ,;; 1 where 
~ 

o and q It) 

III < + -I 

H (M1N) = L 
I:. ieI 

hex. ) 
]. 

for "" (Xi'ieI in SCM) • 

Pimsner-Popa's relative entropy BIMIN) is now given by 

HIMIN) Sup!Ha(MIN); de 5(1'1) I. 

Corresponding to an abelian von Neumann algebra Z(M) n ZeN), 

there exists a standard probability measure space (r,~) such that 

(M,~) a f'l (M(yl)~(y), 
9 r 

N a r N I'\' ) ~ Ir) , 
II r 

Z(M) n ZeN) s Idiagonalizable operators) ~ 
9 

!Tdt) • 

Then, for ~-almost all y e Jr, the relative entropy H!M(y) IN(y)) is 

defined associated with the trace 

THEOREM 1010 The function r", y -> H{M!l) IN!,),) e [0,-], is 11-

measurable and 

H(MIN) f HIM (1) IN (y) ) ~ (y) • 

T 

The component algebras M(r) and N(y) satisfy that Z(M(y)) n 

Z(N(y) C for ~-almost all y E r. Thus, ~;hat we should do next is 

to evaluate the restive entropy HIMIN) for such a pair 1'1 ~ N that 

Z (M) n Z IN) (;. Unfortunately, we can not succeed in it in general, 
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but, under some stronger conditions, we may give some formulas on 

HIMINI in the next theorems. Here, we also note that the formula 

H(MIN) H(MIL) + H(LIN) is not assured in general for an intermediate 

subalgebra L with N c L c M. 

THEOREM 1.2. Suppose that the expectation E of M onto N 

satisfies (*1 E(x) = ~ (x) for x e Z(M) . Then, we get the 

following. 

i) If HIMINI < + OOD then Z (M) is atomic. 

ii) When Z(M) is atomic, we denote all atoms of Z (HI by 

{P i l ieI and the subalgebra I p,Np, 
ieI ~ ~ 

of M by L. Then, we obtain 

H(MIN) H(MIL) + H(LIN) where 

R(MIL) I ~ (p, )HiM IN ) and H{LIN) 
ieI ~ Pi Pi 

,:E fi~ (Pi)' 
~E I 

THEOREM 1.3 Suppose that M is a factor of finite type. Then, we 

have the following. 

i) I.f HIMINI < + 00, then N' n M is atomic, especially, Z(N) 

is atomic. 

ii} When Z(N) is atomic, we denote all atoms of Z(N) by 

Iqj l jEJ and !, g,Mq, 
jEJ J J 

by L. Then, we obtain HIMIN) H(MIL) + 

H(LIM), where 

H(MIL) I fi~ (g.) and HeLIN) 
jEJ J 

I 1; (q,)H(M IN ). 
jEJ J qj qj 

§2 THE RELATIVE ENTROPY OF FIXED POINT ALGEBRAS 

Let a be an action of a locally compact group G on a finite von 

NeQ~ann algebra M. We denote the fixed point algebra of M under the 



action (Jj, by 
<Jt 

M , 
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or by tiP if there is no need of mention of 

In this section, we shall give complete formulas on H(l'1 IM!l!). 

a. 

The action a of G on M induces an action of G on Z(M) and 

Z(M)G = Z(M) n Z(MG). Corresponding to the abelian von Neumann 

subalgebra Z(M)G, there exists a standard probability measure space 

(r ,!l) such that 

(M,!:) ~ r (M{'\'),'l:Y)~('Y) and Z(M)G '" 

e r 
II",!A) • 

Moreover, for ~-almost all '\' E r, there exists an action (lj,Y of G 

on the component algebra MIl) satisfying that 

!it '" (' ft "( d!t (1) and 
Ade r 

M(y) G dj.tl"() • 

s 

Hence, we have the following immediate consequence of Theorem 1.1. 

PROPOSITION 2.1. In the above situation, I"e have 

H(MIMG) = J H\!II'l') IM{,,()G) ~(1) 
r 

Here, we note that almost all a.ctions of G on l'l(y I are 

G centrally ergodic, namely, Z(M(y)l ~. Therefore, we shall consider 

the case that an action is centrally ergodic. 

LEMMA 2.2. If an act.ioll oc of G on M .is csntra11y ergodic, the 

assumption (*) in Theorem 1.2 is satisfied for the pair M:> I·P. 

PROPOSITION 2.3. Suppose that an action !l! of G on M is centrally 

ergodic. Then, we get the following. 

i} If H < + w, then ZIM) is atomic. 
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ii} V&en Z(M) is atomic, we denote by !Pil ieI the family of 

all atoms of Z~M) and by H the stabilizer at p for a fixed 

projection p among Pi'S, 

H(MIMG) 

Then, ~le have 

L 11" (p.l 
ieI ~ 

+ H(M IMH) , 
P P 

NOW, the rest to do is to comput.e the relative entropy H(MI:tP) in 

the case that M is a factor of type Ill' 

LE[II'MA 2.4, Let 0\ be an outer action of G on a factor M of finite 

type, T.hen, I"e get H 1M I loglGI. 

This lemma is easily generalized as follows by applying P:t'oposition 

2.1 and 2.3. 

COROLLARY 2.5. LeI; H be a :finite von Neumann a.lgebra with a fa-ithful 

normal norma1.ized trace 't and IX be a 't -preserving properly outer 

action of G on r1. Then,. l'lYe get H(MI1'1G) loglGI. 

NON, we shall concentrate our attention t.o the structure of an 

action '" of a loca.lly compact group G on a factor M of type III 

such that H(MI1'1ll ) < 1- 00. We denote by K(ll), or often abbreviated by 

K, a subgroup {g E G; is an inner automorphism of 1'1) of G. We 

note that K is a normal subgroup of G but not necessarily closed in 

general. 

Suppose tha.t H (t~ I MG) <: 1- = Then, ~~e get (a), (b), (c), and (dl 

which will be described belo~;. 
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(a) K is a closed normal subgroup of G such that G/K is a 

finite group. 

Then, by choosing a suitable Borel section, there exist a Borel 

multiplier ~ of K and a Borel ~-representation V of K such that 

Uk = AdVk and VhVk = ~(h,k)Vhk (Ve = 1). Moreover, there exists a 

Borel T-valued function ~ of G x K satisfying that ug(Vk ) 

~(g,k)V -1 (g e G, k e K). 
gkg 

since H(MIMK) < +~, (MK), n M ~ 

V(K)" must be atomic by (i) of Theorem 1.3. Therefore, V is 

decomposed as a direct sum of multiples of finite dimensional 

irreducible ~-representations of K. Here, we denote by X the set 

of all unitary equivalence classes of finite dimensional irreducible ~-

representations of K and we define the action U of G on X by 

U (x k ) ~ (g,k)x_1 (g e G, k e K) for [x] e X. 
g gkg 

We denote by n 

the G-orbit space of X. For each orbit men, set d 
m 

dim X (X e m) 

and Iml the number of X e III. Denote by {f) X the family of 
X xe 

central minimal projections of V(K)" corresponding to the canonical 

central decomposition of V and set e 
m 

we get the following. 

(b) Each f is an atom of Z(MK) 
X 

(c) Each e is an atom of Z(MG) 
m 

(d) (MG), n M = (MK), n M = V(K)". 

! 
xem 

f 
X 

for 

if f '¢ 0, 
X 

if em '¢ 0, 

III e n. 

and ! 
xeX 

and ! 
men 

We note that (~,~) is a representative of characteristic 

Then, 

f l. 
X 

e = 1. 
m 

invariant of actions and (~(em»men is a representative of inner 
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invariant of actions in a modified way of Jones'sense [2l. Under these 

investigations, we get the following. 

THEOREM 2.6. Let M be a factor of type III with the canonica~ trace 

~ and a be an action of a ~ocal~y compact group G on M. If 

H(MIMG) < + 00, we have 

H(MIMG) H(MIMK) + H(MKIMG) 

loglG/KI + 
2 

I 't (eoo)log(doo1oolh (em»' 
!l)Eg 

Finally, we remark on the case that G is a finite group. Let a 

be an action of a finite group G on a factor M of type Ill' We 

name a a Jones action if 't (e) d 2 Iwl/IK(a) I. 
m ((l 

For each 

characteristic invariant [A,~l E A(G,K), Jones constructed a model 

action 
(A, It) 

sG,K of G on the hyperfinite factor R of type III in 

[2]. We note that, when M R, a is a Jones action if and only if 

a is conjugate to 
(?. ,,,) 

sG,K for Klal K and Ala) [?.,JA]. 

is an immediate consequence of Theorem 2.6. 

The next 

COROLLARY 2.7. Let a be an action of a finite group G on a factor 

M of type Ill" Then 0 $ H(MIMot ) s logIG!. Moreover, H(MI~fo;) 

loglGI if and on~y if the action (It is a Jones action. 

By this corollary, when M R, we see that there is one and only 

one action a up to conjugacy in each stable conjugacy class 

(characterized by each characteristic invariant) such tha:t H(RIR(l() 

attains the maximum value loglGI, which is nothing but Jones' model 

action. Corollary 2.7 is easily generalized in the case that M is 
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not necessarily a factor by applying the foonulas in Proposition 2.1 and 

2.3. For the details, see [4]. 
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