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A REMARK ON THE RELATIVE ENTROPY

Satoshi Kawakami

INTRODUCTION

The present article is a report of our joint works [4] and {5] with
Mr. H. Yoshida on Pimsner-Popa’s relative entropy H(M|N) for a pair
M > N of finite von Neumann algebras. The notion of the relative
entropy appeared first in Connes-Stormer’s work [1l] as a technical tool
for finite dimensional algebras. In [6], M. Pimsner and S. Popa
extended this notion for finite von Neumann algebras and made clear the
relationship between H(M|N) and Jones index [M:N] for a pair M o N

of finite factors [3].

The aim of this article is to give complete formulas on H(MlMa)
for an arbitrary action « of a locally compact group G on a finite
von Neumann algebra M, applying Pimsner-Popa’s deep results and our
complementary general results. When M is a factor of type IIl'
H(MIMa) is computed by using some conjugacy invariants of actions which

are defined in a modified way of Jones’ one [2].

§1 SOME GENERAL RESULTS.

Before entering in description, we fix some notations used
hereafter. For a von Neumann algebra M, M+ = {all positive elements
of M} and 2Z(M) = the center of M. For a set S, 1S] = the

cardinal number of S.
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Throughout the article, M denotes a finite von Neumann algebra on
a separable Hilbert space with a faithful normal normalized trace =.
+
Let N be a von Neumann subalgebra of M. Then, a function h on M
is defined by
+
h(x) = tnE(x) - sn(x) for xe M.
Here, E is a t-preserving conditional expectation of M onto N and

n is a continuous function for t 2 0 such that n(0) =0 and n(t) =

-t-log t 4if t > 0. Set

SM) = {A = (x,), _: x, € M+ and 3 x, £ 1 where |I| < + e}
i iel i . i
ieI
HA(MIN) = ¥ h(xi) for A = (xi)ieI in S(M).

iel
Pimsner-Popa’s relative entropy H(MIN) is now given by
H(M|N) = sup(HA(MIN); A e S(M}.
Corresponding to an abeliah von Neumann algebra Z(M) n Z(N),

there exists a standard probability measure space (I',p) such that

r (M(y))du(y), N ]QN(V)G#(I’),
r e °r

Z(M) n Z(N) = {diagonalizable operators} = L“(F,u).
]

(M, 1)

@

Then, for p-almost all y € I', the relative entropy H(M(y)IN(y)) is

defined associated with the trace <7

THEOREM 1.1. The function T > y — H(M(y)IN(y)) € [0,=], is p-
measurable and

H(M|N) =I H(M(y) IN(y))du(y) .
r

The component algebras M(y) and N(y) satisfy that 2Z(M(y)) n
Z(N(y)) = € for p-almost all y e T. Thus, what we should do next is
to evaluate the restive entropy H(M|N) for such a pair M o N that

Z{M) n Z(N) = €. Unfortunately, we can not succeed in it in general,
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but, under some stronger conditions, we may give some formulas on
H(M|N) in the next theorems. Here, we also note that the formula
H(M|N) = H(M|L) + H(L|N) is not assured in general for an intermediate

subalgebra L with N c L c M.

THEOREM 1.2. Suppose that the expectation E of M onto N
satisfies (*) E(x) = t(x) for =xe Z(M). Then, we get the
following.

.

i) If H(M|IN) < + =, then 2(M) is atomic.
ii) When Z(M) is atomic, we denote all atoms of Z(M) by
{P,} and the subalgebra 3 pini of M by L. Then, we obtain

i‘ieI .
iel

H(MIN) = H(M|L) + H(L|N) where

H(M|L) = ¥ =< (p,)H(M_ |IN_) and H(LIN) = X mnt(p,).
iexr - Pi Py eI *+
THEOREM 1.3 Suppose that M is a factor of finite type. Then, we

have the following.

i) If H(M|IN) < + «, then N’ n M is atomic, especially, Z(N)
is atomic.

ii) When Z(N) is atomic, we denote all atoms of Z(N) by

{qj}jEJ and 2 g.Mg, by L. Then, we obtain H(M|N) = H(M|L) +
jeJ

H(L|M), where

HMIL) = X atlg

and H(LIN) = ¥ =s(g,)HM_IN_).
Jjed e a

L)
J jeg i %

§2 THE RELATIVE ENTROPY OF FIXED POINT ALGEBRAS
Let o be an action of a locally compact group G on a finite von

Neumann algebra M. We denote the fixed point algebra of M wunder the
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action a by Mu, or by MG if there is no need of mention of a.
In this section, we shall give complgte formulas on H(MIMu).

The action @« of G on M induces an action of G on 2Z(M) and
Z(M)G =z(M) n Z(MG). Corresponding io the abelian von Neumann
subalgebra Z(M)G, there exists a standard probability measure space

(r,p) such that

M%) = r M), sy and zn® = L, .
e °r :

Moreover, for p-almost all y e I', there exists an action o of @

on the component algebra M(y) satisfying that

FM(Y)G duly) .
r

Hence, we have the following immediate consequence of Theorem 1.1.

o = Je al du(y) and MG
Ade °T

@

PROPOSITION 2.1. In the above situation, we have

1M =J meey) M) %) awir)
T

Here, we note that almost all actions ay

of G on M(y) are
centrally ergodic, namely, Z(M(y))G = €. Therefore, we shall consider

the case that an action is centrally ergodic.

LEMMA 2.2. If an action o of G on M is centrally ergodic, the

assumption (*) in Theorem 1.2 is satisfied for the pair M o M.

PROPOSITION 2.3. Suppose that an action @« of G on M 1is centrally
ergodic. Then, we get the following.

i) IFf H(MIMG) < 4+ o, then 2Z(M) is atomic.
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ii) When 2Z(M) is atomic, we denote by {pi}. the family of

ieT

all atoms of Z(M) and by H the stabilizer at p for a fixed

projection p aﬁong pi's. Then, we have
G H
HMIM) = Z nt(pi) + H(M_|M ).
ieI p P

. ; G .
Now, the rest to do is to compute the relative entropy H(M|M') in
the case that M is a factor of type IIl'
LEMMA 2.4. Let o be an outer action of G on a factor M of finite

type. Then, we get H(MIMG) = logl|Gl.

This lemma is easily generalized as follows by applying Proposition

2.1 and 2.3.

COROLLARY 2.5. Let M be a finite von Neumann algebra with a faithful
normal normalized trace t and o be a =t -preserving properly outer

action of G on M. Then, we get H(MIMG) = logl|G]|.

Now, we shall concentrate our attention to the structure of an
action @ of a locally compact group G on a factor M of type II1
such that H(M|Ma) < + e, We denote by K(a), or often abbreviated by
K, a subgroup {g e G; ag is an inner automorphism of M} of G. We
note that K is a normal subgroup of G but not necessarily closed in
general.

Suppose that H(MlMG) < + o, Then, we get (a), (b), (c), and (d)

which will be described below.
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(a) K is a closed normal subgroup of G such that G/K is a

finite group.

Then, by choosing a suitable Borel section, there exist a Borel
multiplier p of K and a Borel p-representation V of K such that

ak = Advk and thk = p(h,k)vhk (Ve = 1). Moreover, there ex1§ts a

Borel T-valued function A of G x K satisfying that ag(vk) =

Alg,k)V -1 (g e G, k € K). Since H(MIMK) < + oo, (MK)’ NnM>

gkg

V(K)’’ must be atomic by (i) of Theorem 1.3. Therefore, V is
decomposed as a direct sum of multiples of finite dimensional
irreducible p-representations of K. Here, we denote by X the set

of all unitary equivalence classes of finite dimensional irreducible p-

PN

representations of K and we define the action o of G on X by

-1 (ge G, ke K)Y for [r] e X. We denote by Q
gkg

the G-orbit space of X. For each orbit o e Q, set dw =dim g (y € o)

ag(nk) =A(g,k)m

and |o| = the number of gy e o. Denote by [fx)xEX the family of

central minimal projections of V(K)’’ corresponding to the canonical
central decomposition of V and set em = 3 fx for we Q. Then,
LE®

we get the following.

(b) Each £ 1s an atom of Z(MK) if £ =# 0, and Y £ = 1.
4 4 x
xeX
(c) Each e, is an atom of Z(MG) if em # 0, and z e, = 1.
(05 o)

(d) (MG)' NnM= (MK)’ nM=V(K)"".

We note that (A,p) 1is a representative of characteristic

invariant of actions and (t(em))wE is a representative of inner

Q
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invariant of actions in a modified way of Jones’sense [2]. Under these

investigations, we get the following.

THEOREM 2.6. Let M be a factor of type II1 with the canonical trace

T and a be an action of a locally compact group G on M. If

H(MlMG) < + «, we have

H(MIMG) = H(MIMK) + H(MKIMG)
2
= loglG/Kl + T 1t (e )log(d |ol/t(e )).
(0] [:] [0]
wsQ
Finally, we remark on the case that G is a finite group. Let «

be an action of a finite group G on a factor M of type II We

1
name o a Jones action if t(ew) = dilml/lK(a)l. For each

characteristic invariant [A,p] € A(G,K), Jones constructed a model

action séxéu) of G on the hyperfinite factor R of type II1 in
14
[2]. We note that, when M =R, a 1is a Jones action if and only if
: . O,p) - -
o 1is conjugate to sG K for K(a) = K and A(a) = [A,n]. The next
14

is an immediate consequence of Theorem 2.6.

COROLLARY 2.7. Let a be an action of a finite group G on a factor

M of type II Then 0 s H(MIM®) s log|G|. Moreover, HM|M") =

1°

logl|G| if and only if the action « 1is a Jones action.

By this corollary, when M = R, we see that there is one and only
one action @ up to conjugacy in each stable conjugacy class
(characterized by each characteristic invariant) such that H(RlRa)
attains the maximum value 1log|G|, which is nothing but Jones’ model

action. Corollary 2.7 is easily generalized in the case that M is
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not necessarily a factor by applying the formulas in Proposition 2.1 and

2.3.
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For the details, see [4].
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