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NORMAL SUBRELATIONS OF ERGODIC EQUIVALENCE RELATIONS 

J. Feldman (1) , C.E. Sutherland(2) and R.J. Zimmer (3) 

§O INTRODUCTION 

In this paper we introduce the notion of a "normal" subrelation of 

an ergodic equivalence relation, and study some of its consequences. 

Details will appear elsewhere [2]. 

Throughout, we deal with a countable non-singular equivalence 

relation 8 on a standard non-atomic probability space (X,B,~), as in 

[1] or [4]. Thus S ~ X x X is a Borel set, for each x E X, 

Sex) = {y EX: (y,x) E SI is countable, and for each E E B with 

j.l. (E) 0, j.l.(S(E» 0 where 8(E) u{8(x) x EEl. For our 

purposes, there is no loss of generality in assuming that j.l. is a 

probability measure, and that S is ergodic i.e. for E E B, j.l.(S(E» E 

{0,1}; we will hence forth make these assumptions. In addition, we 

assume for simplicity that the measure 11 is finite and invariant, as 

in [1] i.e. that S is of type Ill. 

In recent years, much has been learned about the structure of such 

relations, up to isomorphism; here Sl on (X1 ,B1 ,11 1 ) is isomorphic to 

S2 on (X2 ,B2 ,11 2 ) if there is a bimeasurab1e map $ Xl ~ y~ bet"een 

conull subsets of Xl and X2 for "hich 112 0 <I> has the same null 

sets as Ill' and for which (X,y) E Sl if and only if (<I> (x),$ (y» E 

82 . The reader is referred to [1,3,7] for a glimpse of what is known. 

Our interest however is not so much in the relations themselves, but in 

the possible subrelations R of a given ergodic equivalence relation S 
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on (XfB,~l; alternatively, if Rand S are given equivalence 

relations, we are interested in the various embeddings of R in S, 

§l THE INDEX COCYCLE 

Let S be an ergodic, countable, non-singular III-equivalence 

relation on (X,B,~) as above, and let R ~ S be a (Borel) 

subrelation; we do not assume R is ergodic, A modification of the 

selection argument of [lJ guarantees there is a set J {1,2, , .. ,N} ~ 

N (where we allow N =), and a Borel map ~ (y,X) E S -> ("'x (y) ,x) E 

J x X such that ~(y.x) ~Iy',x) if and only if Iy,y'l. R; 

effectively, (y) y E S(x») are a set of labels for the R-

equivalence classes within Sex) - the number of such classes (N) is 

essentially independent of x by the ergodicity of S. N is called 

the index of R in S. We now define a map cr~ S -> L(J), the group 

of all permutations on the set J, by 

Y) IVy!z» 

for (x,y). S, (y,z) E s, 

'" (z) x 

THEOREM 1,1 [(2) In the situation described above 

1 
al cr~ is a l-cocycle, or o~ E Z-(S,L(J» i,e. for (x,y) E S, 

(y, z) E S, we have 

(x,y)o~(y,z) crw(x,z); 

b) If It> S .... J x X is another "labelling map", then there is a 

Borel map X E X -> VEE (J) 
x 

such that for (x, Y) E S, 

-1 
(J $ (x, y) v xGIf' (x, y) v y 

thus the cohomology class cr of all' depends only on the pair 

R t;; S. 



97 

c) If R,R' ~ S are ergodic and define cohomology classes 0,0' E 

1 ( , . f H S,~(J», then there ~s an automorph~sm a 0 S such that 

(f. (2) (R) R' if and only if there is an automorphism ~ of S 

such that cr 0 
~ (2) 

0' . (AS in [4], 
(2) 

a is the restriction 

of a x a to S). 

Thus the isomorphism classes of ergodic subrelations R of S are 

controlled completely by (a subset of) the cohomology Hl(S,~(J». We 

will refer to the cocycle cr (or its class) corresponding to a 

subrelation R of S as the index cocycle of the pair; where 

appropriate it will be denoted (JR' 

We may recover R ~ S (up to a transitive relation) from oR as 

follows. Given 1< E Zl(S,J.:(J», we define the skew Eroduct R S x J 

as the equivalence relation on X x J given by 

«x, i) (y, j)) E R if and only if (x,y) E Sand ,,(x,y) (j) i. 

We also define S on X x cT by 

«x,i), (y,j» E S if and only if (x,y) E S. 

THEOREM 1.2 ([2] ) If R ~ S is an ergodic su.brela.tion and r.:: = <J R' 

then there is an isomorphism of S with S x T(J) which carries R to 

R x T(J), where T(J) denotes the transitive relation J x J on J. 

Conversely, if 1( E Zl (S,E (1'» is arbitrary, then the index cocycle 

for R!:;S can be taken tobegiven.by o«x.,i),(y,j» ",(x,yl. 

E'inally, if '" E Zl(S,E(J» is ergodic (i.e. S 

index cocycle for R {(x,yl E S 1C (x,y) (1) 

1C • 

x 

'" 
J is ergodic), the 

1J is cohomologous to 

cr 
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Thus there is a complete correspondence between ergodic 

subrelations ReS (up to automorphisms of S) and the ergodic 

cocycle in z1 (S,l: (J) I. 

§2 NORMALITY OF SUBRELATIONS 

Definition 2.1 A subrelation ReS on (X,~) is said to be normal if 

the restriction of OR to R cobounds i.e. if there is a measurable 

map x e X ~ v 
x 

E :E(J) such that OR (x, y) 
-1 

v v 
x y 

a.e. for (x,y) E R. 

THEOREM 2.2 [2] Let ReS be equivalence relations on (X,~), and 

suppose R is ergodic. Then the following are equivalent: 

iJ R is normal in S. 

ii) there are endomorphisms 

s (x) u R(<j>. (x» 
J J 

and 

•. E EndIR), j E J. 
J 

such that 

R(o!>j(x» I"l R(41 k (X) <jl for j i' k; 

iii) there is a discrete group G and a homomorphism e S -> G such 

that 

a) ker 9 { lx, Y) ESe (x, y) e} R; 

b) if g E G and x E X are given, there exists y E X with 

(y,x) E Sand 9 (y,x) g, 

c) for any other discrete group H and homomorphism K S -> H 

with kerK ~ R, there is a homomorphism K' G -> H with K = 

K' 0 G. 

iv} The extension S xcrJ of S by the index cocycle of R is normal 

in the sense of [6]. 

The theorem may be generalized to nonergodic subrelations R of S 

at the expense of replacing the group G of iii) by a discrete 

measured ergodic groupoid q. The group G or groupoid q is termed 

the guotient of S by R, and it is routine to see that any discrete 
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group or groupoid can occur as a quotient; we should also note that the 

"quotient relations" of [4] are a special case of our construction. 

It is easy to see where the group G of 2.2.iii) comes from: for 

j, k e J and x e X, define j*Xk [to mean R(+ j(+ k(x» R(+ {(x» 

where {+ j} are "choice functions as in 2.2.ii). Since '* k '* k J x J Y 

for (x,y) e R (as +, e End(R) 
J 

for all j) and since R is ergodic 

j* k 
x 

is (essentially) independent of x, and provides a group law on J. 

The group G is of course the same as that provided by Zimmer's theory 

of normal extensions. 

Theorem 2.2 has some surprising consequences for group actions. 

COROLLARY 2.3 Let Hj be discrete groups with normal subgroups N ., 
J 

and suppose H j acts freely on (X"Il.) 
J J 

with Il j finite and 

invariant, and with N j acting ergodically (j=1,2) . Then, if there is 

a measure space isomorphism of (Xl,ll l ) with (X2 ,1l 2 ) carrying 

orbits to H2-orbits and Nl-orbits to N2 orbits, we have Hl/Nl 

isomorphic with H2 /N2 . 

H -
1 

Note that if R is normal in S and ergodic the quotient group G 

"acts" as endomorphisms of R; in the notation of Theorem 2.2,. we may 

choose 

g e G, 

+ e End(R), g e G 
g 

such that II (+ x,x) g 
g 

and we have (+ gO+h (x), + gh (x» e R for all 

for all x e X and 

x e X. It is 

routine to show that we may assume + is invertible for each g 
g 

(although this may fail if R is not ergodic - see [4]). Furthermore, 

we have 
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THEOREM 2.4 [2] Suppose R is normal in S and ergodic with the 

quotient group G being amenable. Then there is a homomorphism g E G 

-l> $g E Aut (R) such that e ($ x,x) g for all g E G. 
g 

§3 CLASSIFICATION RESULTS 

In this section, S on (X,fl) denotes the hyperfinite relation of 

type III (c.f. [4]; Our objective is to classify (some of) the 

subrelations R of S. 

THEOREM 3.1 [2] Let S on (X,fl) be as above. 

a) There is a bijectiv'e correspondence ,between ergodic (not 

necessarily normal) subrelations of S (up to automorphisms of 5) of 

finite index 1'1 and conjugacy classes of transitive subgroups of the 

symmetric group :!:N on N symbols. 

b) There is a bijective correspondence between ergodic normal 

subrelations R of 5 (up to automorphisms of S) and (isomorphism 

classes of) countable amenable groups. 

§4 RIGIDITY RESULTS 

Throughout this section H will denote a connected, non-compact 

simple Lie group with finite centre, and r c H will denote a lattice 

(see [7] for definitions and discussion) . 

THEOREM 4.1 ([2]) For 1,2, Let S, 
J 

on 

ergodic relation with normal ergodic subrelation 

,11 j) be a III 

R, • 
J 

Suppose that the 

quotient groups S ./R, 
J J 

are amenable, that is generated by a free 

action of a lattice r, in H" and that iI.-rank H,;?: 2, Then if 
J J J 

is isomorphic to 8 2 , is locally isomorphic ,"ith H2 • 
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THEOREM 4.2 [2] Let r c H be a lattice and let 8 be the equivalence 

relation generated by a free III ergodic action of r and suppose 

F.-rank H;;' 2. Then if R c 8 is normal and ergodic, R has finite 

index in 8. 

THEOREM 4.3 [2] Let r c H be a lattice (with no rank assumption on 

H) and let 8 be the equivalence relation generated by a free ergodic 

III-action of r. Then, if R c 8 is amenable and strongly normal, R 

is finite (i.e. R(x) is finite for each xl. 

The same conclusion as in Theorem 4.3 holds if r is the 

fundamental group of a complete Riemannian manifold with sectional 

curvature k satisfying k ~ c < 0 for some constant c. In 

particular, it holds for free groups. 

In Theorem 4.3, R being s"trongly normal means that {g E [8]: g 

normalizes Rl generates 8. 8"trong normality implies normality in 

general; 'che converse is true for ergodic subrela"tions, bu·t not in 

general (c.f. [4]). 

§5 COMMENTS 

Many ergodic equivalence relations (but not all) admit normal, 

ergodic, amenable subrelations, and hence maximal such oneS". While 

these maximal, normal, ergodic, amenable subrelations are not unique, we 

know of no example of an equivalence relation S with maximal, normal, 

ergodic, amenable subrelations which are not conjugate via automorphisms 

of S. 

Finally, we should note there is a strong connection between 

subrelations and pairs of von Neumann algebras 

This aspect will be dis.cussed in [5J 0 

(M,N) with MeN. 
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