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ON THE L' BEHAVIOR OF EIGENFUNCTION EXPANSIONS
AND SINGULAR INTEGRAL OPERATORS

Michael Christ' and Christopher D. Sogge?

1. INTRODUCTION

Let M be a compact, smooth manifold, without boundary, of dimension n >
2. Suppose that D is a pseudodifferential operator of the class S{% on M, self-
adjoint with respect to some measure y with a smooth, nonvanishing density in local
coordinates. Suppose further that either D is an elliptic differential operator whose
principal symbol is real and nonnegative, or that m = 1 and D is a pseudodifferential

operator whose symbol a(z, £) has the property that
lim a(z, s€)
800

exists and is real and positive for all £ # 0. For any such operator, L2(M, 1) admits

an orthogonal decomposition

.

=0
where each E; is a finite-dimensional eigenspace of D with eigenvalue A;. These
eigenvalues are distinct and form a discrete sequence which tends to +oco. Denote by
7; the orthogonal projection of L? onto E;. Then
Sif=) mif—f
A; <t

in L? norm as j — oo, for all f € L?, and

1122 = D Imifllzs -
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We are interested in the convergence of the series for f € L' rather than L2. However
since the characteristic function of the unit ball is not a Fourier multiplier of L' (IR")
(an elementary calculation), it cannot be true that S?f — f in L! for all f € I?,
when M is the n- torus and D is the ordinary Laplace operator. In fact general
transplantation theorems imply that L! convergence fails for all M and D.
But consider t:he Riesz means
Stf(z) =D (1= X/t)’mif(x)
X<t
for § > 0. It is well known in the context of Fourier series that {S?f} has better
convergence properties when § > 0 than when § = 0, and in fact S{f — f in L!
norm as t — oo for all f € L! as soon as § > 0. Furthermore in IR®, n > 2, the

Bochner-Riesz means

Sif) = [ emieea - /e de
lel<t
are known to become better behaved as § increases. In this case
1S8f = fln >0  ast— ooforall feL!

precisely when 6 > (n — 1)/2, the so-called critical index. Moreover when § equals
the critical index a weaker result remains valid: S{f — f in the weak L! norm, for

all f € L! [7]. This “norm” is

I Fll1,00 = it;lgf\l{w Hf(=) > A},

and L1:* is the set of all measurable f with finite “norm”. An operator bounded
from L' to L™ is said to be of weak type (1,1). The Hardy-Littlewood maximal
function and the Hilbert transform are fundamental examples of opertators which
map L' boundedly to L1'* but not to L!.

When § < (n —1)/2 even LV'* convergence fails for S{ in IR®. The delicacy
of the situation is further evidenced by the fact that S?f need not converge almost

everywhere to f € L' when § = (n —1)/2 [24].
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In the context of an elliptic operator on a compact manifold it was proved more
recently [21] that still S{f — f in L? for all f € L, for all § > (n — 1)/2, which still

is a necessary restriction. Thus one was led to hope for the sharp result:

THEOREM A. [11] Let M, D be as above and § = (n — 1)/2. Then there exists
C < oo such that for all f € L* andt > 0,

157 fll1,00 < Cllflla -

Moreover

IISff—fﬂl,oo—»O ast — oo

for all f € L*.

There is a very closely related result for Fourier multipliers in IR™. Let b be a function

supported in a compact subset of IR". Write
R" = {(,2,) e R*"' xR} .

Suppose that b € C° off of the hyperplane {2, = 0} and that for each # and i

8 i
o -—a—.b(z)

- X 6—1
9z'8 dzi < Cﬂ,tlzn]

where as usual § = (n—1)/2. Suppose @ is a C*° diffeomorphism of a neighbourhood
of the support of b into IR", and let

m(€) = b(27(¢))

(TF)'(&) = F(E)m(&) -
THEOREM B. T is of weak type (1,1).

This was previously known only in the case where the manifold ®({z, = 0}) has

nonvanishing scalar curvature at every point 7] (and only for a prototypical subclass

of b’s).
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There are two obstacles to be overcome in proving Theorem A. First it is neces-
sary to obtain some more explicit grasp of the operators S¢ than is afforded by their
abstract definition in terms of eigenfunction expansions. The proof in [11] relies on
Hoérmander’s work [17] on the Weyl formula for the distribution of the eigenvalues,
following earlier work of Sogge [20], [21].

The second problem is how to establish weak (1,1) bounds, even for an operator
which is described very explicitly. In the present article we discuss only this second
issue, on which some progress has been made in a series of comparatively recent
works [3], [7], [10], [11]. A fairly flexible method has been developed; we attempt to
describe the method and several distinct results which it yields. In the last section

of the article we sketch its application to Theorem B.

2. THE CLASSICAL THEORY

There are two prototypes for the various operators which we shall discuss. The

maximal function of Hardy and Littlewood is

(2.0) Mf(z) = sup /I

|f(z - ry)ldy
i<t
for F € L}, ,(IR"). The fundamental result is that M is of weak type (1,1), which
by interpolation implies L? boundedness for all p > 1. Second is a class of singular

integral operators treated by Calderén and Zygmund:

(2.1) Tf(z) =pvf* K(z)

~tm [ fla-n)K@)d
lyl>e

€—0

. with three hypotheses:
(2.2) T is bounded on L?
(2.3) K(2) = |o|~"0(a/|z])
(2.4) Q€ An(S™?) for some o > 0
where A, denotes the Holder class. Then again T is of weak type (1,1) and bounded

on L? for all p > 1. All the operators discussed in this article are fairly easily seen



33

to be bounded on L? or on L*, so that the weak (1,1) property is sharper than L?
boundedness. Furthermore they were all known already to be bounded on L? for all
p € (1,00) before weak (1,1) boundedness was proved. Thus the weak (1,1) property
was sought as an endpoint result the sharper the existing theory, rather than in order
to deduce the L? boundedness as for (2.0) and (2.1).

The theory is not limited to convolution operators; for more general integral

operators
Tf(@) = [ K(e,w) i)y

(where K is associated to T in the sense of [13]) the natural generalization is to retain

(2.2) and to replace (2.3) and (2.4) by

(2:5) |K(z,y)| < Clz —y|™
plus
(2:6) |VK(e,y)| < Cle —y|™*

or a weaker version of (2.6) involving Holder rather than Lipschitz continuity. (2.2)
plus (2.5) and (2.6) imply weak type (1,1). These hypotheses are not optimal; for
instance (2.4) may be replaced by an L' Dini condition. But the “classical” theory
as formulated for instance in [16] always required some regularity for the kernel K.
In contrast Calderén and Zygmund [2] showed that if Q € L? is odd, then (2.1) and
(2.2) alone imply L? boundedness for all p > 1.

To see where regularity of I{ comes into play let us recall the method of Calderén
and Zygmund. Using L? boundedness and a decomposition of an arbitrary L! func-
tion, they reduce matters to showing that if A > 0, if B = EQ by where the @
are distinct dyadic cubes, bg is supported on Q, |lbglli < CA|Q|, [bo = 0 and
0 10l < CX~[B]l, then |

(2.7) o+ ITB@)| > A} < A Bl) .
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They form the exceptional set
E = U 2Q
Q
where C'Q denote the cube concentric with @ but C times as large. |[E| < C" Y |Q] <

CA~Y||B||, so it is only necessary to consider z ¢ E in (2.7). By Chebychev’s
inequality it suffices to prove that

(2.8) IT Bz re\E) < ClIB]l1 ,

which by the triangle inequality follows from

(2.9) ITbellzr(rm\2q) < Clidqlls  forall @.

The reduction to a single cube via the triangle inequality is a small but pivotal step;
it is made possible by the introduction of the L' norm in (2.8). For L»*® there is the
quasi-norm property
I+ gll1,00 < 201 fll1,00 + 2llgll1,00

but no equivalent norm satisfies a true triangle inequality. Thus infinite series can-
not be summed in LY in a straightforward way. This is one of the two essential
difficulties in dealing with L}°,

The advantage of considering a single bg is that now the regularity hypothesis
Q € Ay coupled with the conditioﬁ J b = 0 gives the pointwise bound

(210) Tbo(2)l < 27" (27 |z — 20)) ™" °|Ibells

where |Q| = 27/, and similarly (with a = 1) if |VK(z,y)| < C|z — y|~"~1. This
implies (2.9). In the sequel we shall treat operators for which the best pointwise
_ bound is (2.10) with o = 0; Tbg will belong to L»**° but not to L!, and the method
breaks down for lack of a triangle inequality.

3. VARIANTS INVOLVING OSCILLATORY FACTORS

C. Fefferman [15] examined the L? boundedness of operators T'f = f * K on
IR"™, with

3.1) K(z) = |z~ 100
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where a < 0. The fundamental result was that when ¢ = n, T is of weak type (1,1),
for any a < 0; L? results could then be obtained by an interpolation based on the
analytic family of operators obtained by varying the parameters ¢ and a. Let us
restrict our attention to the case ¢ = n. Then |K(z)| < C|z|™™, and a calculation

shows that K € L°°. However
VK ()| ~ |z|7"" 1t asz— 0,

as (2.6) fails and the “classical” arguments don’t apply. Nonetheless Fefferman estab-
lished the weak (1,1) property, and from his proof may be extracted a rather general

principle: In place of (2.8) it suffices to have
(3:2) ITB|22@mmz) < CMIBl1 -

For then (2.7) still follows by Chebychev’s inequality. (The homogeneity appears
to be inconsistent in (3.2), but actually it is correct because A scales proportionally
to B.) The analysis in [15] also involved considerations more closely tied to the
nature of the particular kernels (3.1), relying in particular on the Fourier transform,

Plancherel’s theorem and an explicit bound
K@)l <c+En

where b > 0 is a known function of a whose precise value is needed in the argument.

Subsequently several authors, in particular Chanillo, Kuntz, Miyachi and Samp-
son, studied operators of the same form but with 0 < a # 1, and with x/. <, replaced
by Xje;>1 @s it must be, relying on the basic method of [15]. Later Ricci and Stein
[19] were led to consider operators Tf(z) = [ f(y)K(z,y)dy with

(3.3) K(z,y) = PV L(z ~y)

where P : IR® x IR® — IR is any polynomial and L is a classical Calderén-Zygmund

kernel, homogeneous of degree —n, C* on the unit sphere and having mean value
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zero there. They proved the L? boundedness for all p € (1,00). But again the
condition |VK(z,y)| < Clz — y|™""! fails badly.

How might one obtain the L? boundedness without first proving the weak (1,1)
property and then interpolating? Consider the special casen = 1, L(z,y) = (z—y)™*
and P(z,y) = (z — y)?, a convolution operator with kernel ei*”z =1, Fix an auxillary

function ¢ € C§°(IR), supported in {} < |z| < 1}, satisfying

i((Q'jw) =1 on IR"\{0}.

Set
Kj(z) = K(2)((2772) = " 271¢(2772)

and

Tif=f=K;.
Then

1Tl < ClUFl N Kl
< Clifll -

A calculation gives
(3.4) 1Z lloo < €2~

for some € > 0, for j > 0, so ||Tjf|lz < C27%||f||2. Therefore interpolation gives for

each p € (1,00)
ITi £l < C27%| £,

for all f € L?, with § = §(p) > 0. Summing the series yields L? boundedness for

> j>o0 T (it turns out that the classical theory applies to 3 j<0Tj). The key is the

' strong L? bound (3.4). More sophisticated versions of the argument apply to a variety

of singular integral operators [4], [5], [14], [12]. Here the fact that L? is between L1

and L?, for p € (1,2), is exploited; L! is not between any two (useful) spaces, and
this is the second fundamental difficulty in dealing with weak type (1,1) estimates.

S. Chanillo raised the question of whether operators of the class (3.3) are of weak

type (1,1), and it was proved in [3] to be so, using the basic idea of (3.2). However
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(3.2) can no longer be verified by means of the Fourier transform, and one is led to
work directly with the kernel K. The fact that the L? norm in (3.2) is taken over
the somewhat irregular set IR®\E is awkward, for it is reasonable to expect that
orthogonality considerations will be useful in proving an L? estimate. On the other
hand it is too much to hope that any B will be mapped to L?(IR™), so the deletion

of E must play a significant role. In [3] a truncation 7" was constructed so that
T'B=TB on IR"\E

and it was then shown that
IT" Bl|Z2 ey < CAIBll1 -

The truncation was of the form T"B = 3 T)bq where Tg depends on Q); see [3] for
details.

Now (3.2) would follow from the pointwise bound
|7 T'Blloo < CA .

Thus whereas the classical theory relied on pointwise bounds for Tbg, roughly speak-
ing the new method requires pointwise bounds for T*T'B (disregarding the trunca-
tion). Actually the variant (3.8) below is more typical of the applications.

The distribution-kernel for T T is

J(z,y) = /T&#(z,x)lf'(z,y) dz
where K’ is the kernel for T". It turns out that except for certain degenerate P,
[J(z, )| < CA+ |z —y)™""

for some €(P) > 0, for “most” (z,y). Thus the kernel for 7" T" is significantly better
behaved than the kernel for T itself. This happens in a variety of situations and is at

the heart of applications of the method. The technical issue in [3] was to make precise
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the meaning of “most”. This necessitated a quantitative analysis of the zero variety
of an arbitrary real-valued polynomial on IR", based on some elementary algebraic
geometry.

Historically the next advance was made in [6], but it was only recognized some-
what later [7] that a general technique with a variety of applications was at hand.
The least tractable of the oscillatory kernels (3.1) had turned out to be the case
a=1,

K(z) = el|z] ™" x 151 -

This is a case of intrinsic interest. For setting
Sife) = [ emetfe)a - len’ o
lel<e
with § = (n — 1)/2 in IR", gives S{f = f * K where K is C*° and radial, and as

& — oo admits an asymptotic expansion
K(z) = cos(2r|z| + B)(colz|™™ + c1|z|™" "1 +...)

with ¢o # 0 and f a calculable constant. The oscillatory factors cos(2n|z| + 8) and
¢'l*l turn out to have equivalent behavior for our purpose, so when a = 1 we have
returned to a special case of the original question of convergence of eigenfunction
expansions.

Let us set out the skeleton of the proof in some generality, then examine its
specialization to the particular kernel il*l|z|—" Xjz121- Suppose K is some distribution
with K € L*® and K = > K; with K; supported where |z| ~ 27, and make the
. rather minimal size hypothesis that K is a finite measure, possibly singular, with
total mass bounded uniformly in j. To prove that T'f = f % K is of weak type (1,1)
it suffices to show that if B is as above and E is the union of the dilated cubes C,Q
for some large Cy then (3.2) holds. Now all the cubes Q are dyadic,so B = Y% _ B;

where

B;= Z bg .

Q=2
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On R™\E
TB=) Y BjxKi
i iz
=3 (Z Bj* Km)
8=0 j
(3.5) = i T.B
=0

since bg* K; is supported on CoQ C Eif |Q] = 27,4 < j, and Cj is chosen sufficiently
large. This last expression will replace the truncation 7" B.

It now suffices to show that
(3.6) 1T Bll72mny < C27°N|Blx

for some ¢ > 0. It is useful to group the terms B; * K; together according to
the difference s = j — ¢, which from the geometric point of view has a natural
interpretation as the (logarithm of the) ratio of the scales 2/ and 2¢ associated to B;

and to K;, respectively. In the classical case where K satisfies (2.6),
1K 40 % bolls < C27°||bg ]l

when |Q| = 2™/; the nontrivial factor of 27° is just this ratio of scales. This motivates
hoping for the decaying factor of 27¢ in (3.6).
Of course

(3.7) 1B = Z(R’j%’ * Kjio * Bj, Bj)

J
+ 2Z(<Z f\’j+3 * Kiyg* B,‘,BJ‘>)
J i<j
where K;(z) = Kj(—z). The off-diagonal terms must be reckoned with, but to see
the principal thrust of the analysis let us restrict attention to the sum of the diagonal

terms, ¢ = j. It suffices to show that

(3.8) IR jzs* Kjgo * Bjlloo < C27%N .
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The essential properties of B; involve both cancellation and size restrictions: B; has
mean value zero on every dyadic cube of sidelength 2/ in IR™, and fQ |B;] < CAQ|
for every cube of sidelength greater than or equal to 2/. The latter condition says
heuristically that on scales > 27, B; looks like a bounded function with L® norm
C). This is clearly relevant to (3.8), where we seek an L™ estimate. This property
was not exploited in the classical theory but will be crucial for us.

So far the analysis has been purely formal, but the behavior of K j*IC; will depend
on the nature of the particular kernels (or measures) at hand. If |K(z)| < C|z]™™ then
(3.8) holds trivially with e = 0, and the issue is the decaying factor 27¢¢, There are
two senses in which K j+as * Kji, may be better behaved than K, itself, namely in
terms of smoothness or of size, and either one might potentially be exploited because
of the two properties of Bj. In the instance K = ei"’llwl‘"x|,|2 1, & calculation using

the method of stationary phase gives
|B; % Ki(z)] < C27™(1 + |a|)~(»~D/2 |

the latter factor capturing the improvement relative to |K;(z)| = C2~™. (3.8) fol-

lows.

4. SMOOTHNESS CONDITIONS

Let F be a distribution supported in a fixed compact region in IR". There are
many senses in which F' may be said to possess some degree of smoothness. Several of
these notions and the distinctions between them are quite relevant to the applications

of the general method just outlined. Let us digress to contemplate some of them.

" Consider

(A) F € Ay for some a > 0.

(B) [(suppy—s <, |F(z) = F(y)])dz < Cr¢
for all r € [0,1], for some ¢ > 0.

(©) suprrf |F(z + k) — F(z)|dz < Cr€
for all r € (0, 1], for some € > 0.
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(D) r / / |F(z) — F(y)| dz dy < Cr¢

|Jz—yl<r
for some € > 0.

(E) Fe Lt forsomep>1ande>0.

(Fp) 1Q(f * F)ll, < Créllfllp
for all f € L? and r € (0, 1], for some € > 0, where

(Qe)"(6) = P(26)f(6)

and 9 € C°(IR™) is an auxiliary function identically zero near the origin but
nonvanishing everywhere on some annulus. p € [1,00) is a parameter; a different
condition (Fp) corresponds to each p.

(G) |F(E) < C(L+E)
for some € > 0.

(H) Jy wi(r)& < oo

where
wi(r) = sup /|F(w + h) — F(z)|dz .
[h|<r
The following implications are valid:
D) & (B)
(A) = (B) = (C) & (F1) = (F) = (Fz) = (G)
4
(H)
where ¢ € (1,2), and the implication (G)=>(F,) is valid under the additional assump-

tion that F' is a finite measure. Of course it is implicitly assumed in (B), (C) and

(D) that F is a function.
To each condition (-) corresponds ()’
FxF satisfies (-).

In each case (-) = (-)', and (G)&(G)".
We consider these conditions with F' = Ky = (K, where ( is as before and K is

some distribution with K € L®, which we would like to show defines by convolution
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an operator of weak type (1,1). (K; = ¢((277.)K should be analyzed by passing to
Ki(z) = 2"¢(z)K(2/z).) The most relevant conditions are (H), (B)' and (G). If K
is homogeneous of degree —n and if F' = (K satisfies (H) then

llbq * K12 (mm\29) < Cllbglla

for all bg of the type described in section 2; (H) is the weakest condition with this
property. (See [23], Remark 6.10, page 51.) Thus (H) is really the limit of the range
of applicability of the classical analysis.

(B) was first made explicit in this context in [10]; it is actually completely

equivalent to the inequality
|F * B_g|loo < C27%°A for all s >0, all B_; and some ¢ >0,

where B_, satisfies the cancellation and size conditions spelled out at the close of
section 3. Thus (in the most typicél applications) our method depends on knowing
that Ky satisfies (B)'. However we should embhasize that details of the method vary
from one application to another, and in fact these smoothness conditions do not really
enter into the proof of Theorem B or into the treatment of e/l*lz=1x,.,5,, which rely
on the size condition on B_, but not its cancellation property.

In the next section we discuss a case in which K, satisfies the weak condition
(G). Recall that when n > 4, the normal derivative of surfa.ce measure on the unit
v sphere S~ satisfies (G) with € = 1/2, and that on IR!, for any e < 1/2 there exists
a totally singular measure which satisfies (G) with that value of ¢, so (G) is really
quite weak. In particular it does not imply (B)'.

F,) is used in [8], and an L? variant of (D) arises in [9].
P

5. MAXIMAL FUNCTIONS
Consider a variant of the Hardy-Littlewood maximal function: In IR®, n > 2,

let S be a measurable set with finite measure, star-shaped about the origin. Let

Msf(z) = sup / |f(z—ry)dy .
r>0J8
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Write S = {(r,6) : 0 < r < h(6)} in polar coordinates and note that S has finite
measure if and only if A € L*(S™™1). A very closely related type of maximal function
is
Maf()=sup [ 1= ru)lOw/u)dy
>0 J]y|<1 :

Q & L'(5™!) nonnegative. It is quite easy to use the method of rotations [2] to
show that Mg and Mgq are bounded on LP(IR™) for all p > 1, for all h € L™ and
Q € L1, respectively, but it is an open question for which S and which  they are of

weak type (1,1), and consequently when differentiation results such as

lim |S|™! / f(z —ry)dy — f(z) ae. VfelLl
r—0 s

are valid. No example of S nor of  is known for which the maximal function is
not weak type (1,1). The application of the method of rotations breaks down for
LY because it relies on the triangle inequality, in the form of Minkowski’s integral
inequality. |

R. Fefferman and later F. Soria [22] have shown that Mg maps L' to L1»* if Q
satisfies an entropy condition. More recently S. Hudson [18] obtained an interesting
positive result in IR?, assuming @ € L*(S!) to be monotone with respect to some
choice of an origin on $', and making an additional hypothesis on the geometric
structure of . With only a size hypothesis on 2, the best that is known [10] is that
Mg is of weak type (1,1) if Q € L(log L), that is,

/ QlogT N < 00.
Sn—-1

An easy corollary [10] is that Mg is weak (1,1) if

/ h"logt h < oo .
Ssn-1

In order to apply our now-familiar technique to Mg, fix an auxiliary function
¢ € C$°(IRY), nonnegative and identically one on [1/2,1]. Then pointwise, for all
f20,

Mq f(z) < CTf(z)
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where
Tf(z) =sup|f * K;(z)|
j
and

Kj(z) = (277 |e))z/z]) -

Let B be as before. Introduce the quadratic expressions
1/2
(5.1) T,B(z) = (2 |Bj_ * K_,-(m)|2> ,
J

and observe that

T51 < 3 I.B)

8=0

pointwise off of E. Therefore it suffices to prove that
T B||}2(mny < C27A| By ,
which by homogeneity follows from the familiar inequality

(5.2) 1Ko * Ko % B_,[Joo < C27°).

A simple interpolation with crude estimates for the case Q € L' reduces our task to
proving (5.2) for § € L*°, with a bound proportional to ||Q2||2,; actually (5.2) won’t
hold unless € L?.

In IR? it is easy to see that Ko * K is Holder continuous (except at 0). Define

measures pg, for § € S*1, by

[raum=[ £y ()
Then
Ro% Ko = f / (jio * 1) UO)w) df duw .

In IR?, fig * p, is clearly absolutely continuous and has a smooth density when

6 # Fw. Making this quantitative and integrating with respect to df dw yields the
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Hoélder continuity except at 0, where the bounds blow up at a rate which may be
estimated [7].

In higher dimensions fig * y,, will be supported on a two-dimensional plane,
hence certainly will be singular. The situation is subtle: the threefold convolution
Ko+ Ko+ K, is Hélder continuous in any dimension, indeed this holds for any K, € L?
satisfying (Q); yet it is possible to construct an example with Q € L* but Ko * Ko
not Hélder continuous, even away from 0, in IR3.

It was proved in [10] that Ko * K, satisfies the smoothness condition (B), in all
dimensions, for all § € L*; in other words K satisfies (B)'. The proof involved
writing

(Ko * Ko x B_,)(0) = (LR, Q)
where L : L®°(S™!) — L'(S™71) is a linear operator which depends implicitly on
B_, and is rather singular; it involves integrations over curves on S®~!. The L2-based
technique of [4] and [5] can then be applied to L.

Perhaps the most interesting question in this area is whether there is an L?
theory for a class of more singular maximal functions involving integrations over

lower-dimensional sets, of which a typical example is

Mf(e) = sup |f * pj(2)l
where
[1au= [ seindee)
and o is surface measure on the unit sphere. An extension of the basic technique

was introduced in [6] and used to show that this M maps the real-variable Hardy

space H!(IR™) to L1, a result intermediate in strength between L? boundedness

for p > 1 and weak type (1,1).

6. PROOF OF THEOREM B (SKETCH)
The obstacle to applying the general method is that unless the singular locus

M = ®({z, = 0}) has nonvanishing scalar curvature at every point, one cannot
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hope to obtain any explicit expression for K = . In fact its behavior changes
dramatically from the case where M is curved to the case where it is a hyperplane.
The real complications arise when M is flat to infinite order, but not linear, at some
points. Therefore we are led to work less with K and more on the Fourier transform
side, bringing Plancherel’s theorem into play in a decisive way. However it is too much
to hope to get away with Fourier transform side arguments alone, for the properties
of B admit no direct re-interpretation in terms of B.
Let n € CP(IR™) satisfy

oo

Zn(2‘jt) =1 on R*

—oo

and 7} € Cg°(IR™!) satisfy

Z 7z’ +v)=1 on IR"!,
veZn-1

Set

bj(2) = b(=)n(2]zal) and B(z) = b;(2)i(2/25" +v),

so that b = 37b; = 37 37 b%, where j ranges only over Z*, modulo a Cg° function
which may be disregarded. Composing with & produces a corresponding decomposi-

tion of m. Set
(Tjf) = fm; and (TVf) = fm?.
Let B be as before and decompose it as Y B; as in section 3, except that B; = 0

for all ¢ < 0, and By = Y bg, summed over all Q with |Q| < 1. It suffices to prove
that

2
(6.1) > Tjy.B; <C27)\|B|; fors>0,
>0 L2(R")
(6.2) > Tjy.B; < C2°||B|x fors <0,
>0 LY(IR"\E)
and

(6.3) “TSB"”ZLz(]R,") S 02-68}\”30”1 for s 2 0.
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To prove (6.2) we need some crude estimates on the inverse Fourier transforms
of the m¥. Fix j and v, let w be any fixed point in the support of b}, and rotate
coordinates in the £-space so that at ®(w), (D®)(8/0z,) points in the direction of
08/0¢,. Then a careful integrationi by parts establishes pointwise bounds for (m})”,

in the coordinates (z', z,,) dual to these rotated {-coordinates.
LEMMA 1. |(m%) ()| £ Cn27"(1 + 27/2|a'| 4+ 27|z, |) ™ for all N, j,v.

Since the rotation depends on j and v it is not possible to sum over j and v
to obtain pointwise bounds for 7, without sacrificing essential information. But

Lemma 1 does yield
LEMMA 2. |[(m%)"||z: jojp2e+} < Cn27N273(=D/2 for all j,v, N and all s > 0.

Summing over v, which ranges over an index set of cardinality comparable to
2/(»=1)/2  gives a bound of Cy2~N* for the L! norm of 71; on the same region. Now

(6.2) follows at once.
As for (6.1), there exists C < oo such that no € is contained in the supports of

more than C of the m}, so Plancherel’s theorem yields a bound of

> T4 Bill3
j’v

for the left-hand side of (6.1). This innocuous exploitation of orthogonality is a key

step. Since there are about 2/("~1/2 values of v for each j, it suffices to show that
(6.4) ITY*TY Bjslloo < C273(n=1/2\p=ee

for all j > s >0 and all v.
Fix j and v. The multiplier for T/*T} is |m} |?, which has the same size and
smoothness properties as 2-7(»=1)/ 2m; . Thus in the coordinates of Lemma 1 the

same integration by parts argument establishes the following.

LEMMA 3. The convolution kernel for T/*Ty is majorized pointwise by

Cn27 3= D/29=in(1 4 27i2|3! | 4 279 |z|)~N
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for all N.

It is straightforward to see that m} is supported in
{€:1¢' —w'| < C271/% and |én —wa| < C277}

for some C independent of j and v, in the rotated coordinates adopted above. More-

over for all ¢, 3

(6.5)

” O 2t < carsenrgisig

where C depends on i, 8 but not on j,v. This follows from the chain rule. Lemmas 1
and 3 follow from (6.5) by a straightforward integration by parts.

Roughly speaking, Lemma 3 implies that (m})" is supported essentially on a
rectangle of dimensions C27/2 in the ' directions and C2/ in the x,, direction, and
satisfies a certain favorable L bound. We have already remarked that on scales
larger than 2¢, B; behaves like an L™ function with norm at most CA. When i < j/2
we may clearly combine these two facts in a straightforward way to obtain an upper
bound on ||T}*T} Bjl|co, and a slightly more careful analysis yields (6.4) for all ¢ < j
with € = (n — 1)/4. (6.3) follows in the same way. The proof of Theorem B is, in
outline, complete. More details may be found in the proof of Theorem A in [11],
though the notation there must be unraveled.

The decomposition of m as Em’]’ is both natural and in a sense optimal for
our purpose. The first decomposition as )~ m; has two motivations: first, in the
case m(¢) = distance (¢, M)? which inspires the more general multipliers of the the-
orem, 7 is roughly the same as m((277x), and second, it respects the homogeneity
of distance (¢, M). Unfortunately no satisfactory bounds hold for ri; and a further
decomposition is suggested. We have chosen the coarsest decomposition for which
pointwise bounds may be obtained for the m} without sacrificing essential informa-
tion. Given that b} is to be supported on a rectangle with one side of length compa-

rable to 274, purely geometric considerations suggest that the other sides should be
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chosen to have lengths no longer than C279/2. This choice gives the largest rectangles
which, under an arbitrary diffeomorphism, are mapped to sets which in a reasonable

sense look like rectangles, with comparable dimensions.
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