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TRIGONOMETRIC SUMS AND POLYNOMIAL ZEROS 

Gavin Brown and David C. Wilson 

1. INTRODUCTION 

This is a preliminary report on work in progress on an ARGS project 

concerned with positive trigonometric sums and their applications. 

Consider the cosine series 

and its partial sums 

G (9) 
m 

1: j-m cos j9, meN, 
j=l 

Gn (9) 
m 

n 
1: j-m cos j9. 

j=l 

We establish the following 

THEOREM (i) G (9) 
m 

is decreasing on (0,11) , 

(ii) the unique zero of Gm(9) lying in (0,11) increases with m, 

(iii) 

(iv) 

Gn (9) 
m is decreasing on 

the unique zero of 

m(1! 2) for fixed n. 

Gn (9) 
m 

(0,11) for m 1! 2, 

lying in (0,11 ) increases wi th 

Apart from the obvious connection with the Riemann zeta function, 

such series arise in the context of a quadrature-based method for 

solving boundary integral equations currently being developed by I.H. 

Sloan and W.L. Wendland [3] the zeros of Gm(9) in (0,211) correspond 

to the quadrature points, and a consequence of (ii) is the stability of 

some forms of the method. 
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The special values m - 1,2,4,. give an idea of the general 

behaviour of G (8): 
m 

1 
G1 (8) = - 2 10g(2(1 - cos 8», 

8 2 11:8 11: 2 
G2 (8) = ~ - ~ + ~, 

8 4 11:8 3 . 11: 28 2 
G4 (8) 48 + 12 """"i"2 

G.(9) cos 9; 

4 11: 
+ 90' 

note that up to a constant G2m(8) are the Bernoulli polynomials. 

2. PROOF OF THEOREM 

(i) For m = 1 we see immediately from the explicit formula that 

G1 (8) is decreasing on (0,11:). For m > 1, the series may validly be 

differentiated termwise [2, 196, 199.4] so that we reduce to proving 

Hp (8) 1: 
j=l 

.-P 
J sin j8 positive on (0,11:), p > 1, peN. In fact that 

result is valid for all positive real p and Dick Askey showed us how 

to prove it using the correct kernel: write .-P 1 [P-1 . 
J = rIP) 0 t. e-Jt dt 

so that 

1 [ P-1 -jt H (8) = -- 1: sin j8 t e dt 
P r(p) j=l 0 

1 [P-1 -t j = -- t 1: sin j8 (e ) dt 
rw) 0 j=l 

1 P-1 e sin 8 d [ -t 
= r-- t t 2t t 

(P) 0 1 - 2e - cos 8 + e-

> 0 for 8 e (0,11:) • 

(H) Denote by z(m) the unique zero of G (9) 
m 

lying in (0,11:) . 

Notice that 

G (!!..) = 1(1 
m 3 2 

11: 
z(l) = 3 and that for m > 1 we have 

1-m 1-m 11: -m . 1-m 
- 2 ) (1 - 3 ) ~ (m) > 0 and Gm (2) = -2 (1 - 2 ) ~ (m) <0. 



17 

Thus z(m) E[~'~)' and it is enough to show that (Gm+1 - Gm) (II) is 

positive on [x n] 3'2 ' m E !li, for then Gm+1 (z (m» > G (z(m» ° which 
m 

implies z(m + 1) > z(m) by (i). 

Now Gm (0) ~ 1m) and G (x) 
m 

I-m 
- (1 - 2 )~ (m) both decrease (to 

1 and -1 respectively), whereas G (!E.) 
m 3 

and G (!.) 
m 2 

increase with m. 

In particular, (Gm+1 - Gm) (9) has an even number, at least 2, of zeros 

in (O,n). It is easily verified that (G2 - G1 ' (9) and 

(G3 - G2 ) (9) have exactly 2 zeros in (O,x); we proceed inductively. 

Since (Gm+3 - Gm+2 )" (9) - (Gm+1 - Gml (9), (Gm+3 - Gm+2 ) (9) has 

precisely 2 points of inflexion in (O,n), and since it is negative and 

concave up at 0 and at n, (Gm+3 - Gm+2 ) (e) cannot have more than 

two zeros in (O,n). 

Hence (Gm+1 - Gm) (a), mEN, has exactly two zeros in (O,x) 

one 1n 
n 

(°'3) and the other in 

. .. [n n] ~s pos~t~ve on 3'2. 

n 
(2,lt) ; in part1cular (Gm+1 - Gml (8) 

(lH) For the partial sums it does not seem possible to mimic the 

elegant use of the gamma-function kernel. However the classical 

Jackson-Gronwall result on the positivity of the partial sums of Hl (e) 

gives all the information required (and that result has been given many 

pretty proofs over the years) . 

(iv) zn (m) increases with ro, mEN, m ~ 2. 

G1 (1l) 
m 

Note first that the assertion is trivial for n 

cos 9 and 
n 

1m) m 2' so we suppose n ~ 2. 

1 since 

Then 
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[It It]. n It 
Zn(m) E 4'2 S1nce Gm (2) < 0 (Gn (li) 

m 2 
is an alternating sum of terms 

decreasing in absolute value, the first of which is negative) and since 

G:(~) > 0 (to see this, pair the jth term with the (j - 4)th, 3,4,5 

mod 8, j., 11). As before it suffices to prove 

(Gn 
m+1 

n [It It] Gm> (e) > ° on 4'2' that is, to prove 
n . 1 
I ~ cos )9 < 0, 

m + 1 
j=2 j 

ee[!.li] 4'2 ' n,m., 2. Summing by parts we see that it is enough to prove 

C (II) 
n 

n . 1 [It 11:] 2 
I ~ cos j9 < 0, 9 e 4'2' n 2 . 
'2 ,2 J= J 

Since cos 29, cos 39 and (cos 29 + cos 49) are negative 

throughout [~,~] we have (9) < 0 on [!,~] for n = 2,3,4. 

n ., 5 we sum twice by parts to see that 

2 sin2 ~ Cn (9) 1 sin2 !. 5,2 1 .239 
4 2 18 S1n 9 - ill Inn "2 

For 

{- I J..::.!. 
n-2 ( '-1 

j=3 j2 

2j + 

(j + 1)2 

j + 1 ) . 2 ~S S:l.n 
(j {- 2)2 2 

+1 -- n - 1) . 2 nS - --~2- S:l.n z-
n 

+ n -21 sini2n + 1)~ sin ~ 
n 

1 2 9 5.2 1.2395 
s 4' sin ~ 18 Sl.n 61 - 144 lun "2 + 144 2 

+ n -21 sin(2n + 1)~ sin ~ 
n 

f( sin2 ~) {- n -2 1 sin(2n + l)~ sin ~ 
n 
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123 
where f(t) = 144(5 - 133t + 184t - 16t ). Because f is concave up 

we have f( sin2 ~) s max{f( sin 2 9 ~, f( sin 2 

Cn (9) < 0 on [9 1 ,9 2 ] whenever F(9 1 ,9 2 ,n) 

9~} on [91 ,92 ], 

= max{ f( sin 2 
9 1) 

2) , 

f( sin2 9 ;)} + 
n - 1 9 2 
--2- sin "2 < o. Also, since f( sin 2 ~ < 0 

n 

and 

on [~~ 

we have Cn (9) < 0 on any subinterval where sin(2n + 1)~ s o. 

( II: 11:) (II: II: ) • For n ~ 9 we have F 4'2,n S F 4'2,9 < 0; for 5 S n S 8 1t 

is necessary to subdivide the interval: 

for n 8 ( II: 611:) (811: II: ) we have F 4'17,8 < 0, F 17'2,8 < 0 and sin 1~9 S 0 

on [ 611: 811:] 
17'17 ' 

( 411: 611: ) for n - 7 we have F 15'17,7 < 0 and sin 1;9 S 0 

on [ II: 411:] 
4'15 

[ 611: 11:] 
u 15'2' 

for n = 6 we have F(~,~,6) < 0, ~~'~'6) < 0 and 

for n 5 we have F( 41i II: ) 11'2,5 < 0 
119 

and sin 2 sOon [ II: 411:] 
4'11 . 

a 

3. REMARKS 

Statement (i) of the theorem is valid for arbitrary real numbers 

u ~ 1, as the proof shows. We will discuss the extension of the 

remainder of the theorem to non-integral m on another occasion, [1]. 

For u < 2 no even partial sum is decreasing; nevertheless it seems 
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that these partial sums still have a unique zero in (O,:it I • 

this can be proved using Vietoris' methods (see [1], [4]). 
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