Gavin Brown and David C. Wilson

1. INTRODUCTION

This is a preliminary report on work in progress on an ARGS project concerned with positive trigonometric sums and their applications.

Consider the cosine series

$$
G_{m}(\theta)=\sum_{j=1}^{\infty} j^{-m} \cos j \theta, \quad m \in \mathbb{N}_{\prime}
$$

and its partial sums

$$
G_{m}^{n}(\theta)=\sum_{j=1}^{n} j^{-m} \cos j \theta
$$

We establish the following

THEOREM (i) $G_{m}(\theta)$ is decreasing on $(0, \pi)$,
(ii) the unique zero of $G_{m}(\theta)$ lying in $(0, \pi)$ increases with m_{l} (iii) $G_{m}^{n}(\theta)$ is decreasing on $(0, \pi)$ for $m \geq 2$,
(iv) the unique zero of $G_{m}^{n}(\theta)$ lying in $(0, \pi)$ increases with $m(\geq 2)$ for fixed n.

Apart from the obvious connection with the Riemann zeta function, such series arise in the context of a quadrature-based method for solving boundary integral equations currently being developed by I.H. Sloan and W.L. Wendland [3]: the zeros of $G_{m}(\theta)$ in $(0,2 \pi)$ correspond to the quadrature points, and a consequence of (ii) is the stability of some forms of the method.

The special values $m=1,2,4, \infty$ give an idea of the general

behaviour of $G_{m}(\theta)$:

$$
\begin{aligned}
& G_{1}(\theta)=-\frac{1}{2} \log (2(1-\cos \theta)) \\
& G_{2}(\theta)=\frac{\theta^{2}}{4}-\frac{\pi \theta}{2}+\frac{\pi^{2}}{6^{\prime}} \\
& G_{4}(\theta)=-\frac{\theta^{4}}{48}+\frac{\pi \theta^{3}}{12}-\frac{\pi^{2} \theta^{2}}{12}+\frac{\pi^{4}}{90^{\prime}} \\
& G_{\infty}(\theta)=\cos \theta ;
\end{aligned}
$$

note that up to a constant $G_{2 m}(\theta)$ are the Bernoulli polynomials.
2. PROOF OF THEOREM
(i) For $m=1$ we see imediately from the explicit formula that $G_{1}(\theta)$ is decreasing on $(0, \pi)$. For $m>1$, the series may validly be differentiated termwise $[2,196,199.4]$ so that we reduce to proving $H_{\beta}(\theta)=\sum_{j=1}^{\infty} j^{-\beta} \sin j \theta$ positive on $(0, \pi), \beta>1, \beta \in \mathbb{N}$. In fact that result is valid for all positive real β and Dick Askey showed us how to prove it using the correct kernel: write $j^{-\beta}=\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} t^{\beta-1} e^{-j t} d t$ so that

$$
\begin{aligned}
H_{\beta}(\theta) & =\frac{1}{\Gamma(\beta)} \sum_{j=1}^{\infty} \sin j \theta \int_{0}^{\infty} t^{\beta-1} e^{-j t} d t \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} t^{\beta-1} \sum_{j=1}^{\infty} \sin j \theta\left(e^{-t}\right)^{j} d t \\
& =\frac{1}{\Gamma(\beta)} \int_{0}^{\infty} t^{\beta-1} \frac{e^{-t} \sin \theta}{1-2 e^{-t} \cos \theta+e^{-2 t}} d t \\
& >0 \quad \text { for } \quad \theta \in(0, \pi) .
\end{aligned}
$$

(ii) Denote by $z(m)$ the unique zero of $G_{m}(\theta)$ lying in $(0, \pi)$. Notice that $z(1)=\frac{\pi}{3}$ and that for $m>1$ we have $G_{m}\left(\frac{\pi}{3}\right)=\frac{1}{2}\left(1-2^{1-m}\right)\left(1-3^{1-m}\right) \zeta(m)>0$ and $G_{m}\left(\frac{\pi}{2}\right)=-2^{-m}\left(1-2^{1-m}\right) \zeta(m)<0$.

Thus $z(m) \in\left[\frac{\pi}{3}, \frac{\pi}{2}\right)$, and it is enough to show that $\left(G_{m+1}-G_{m}\right)(\theta)$ is positive on $\left[\frac{\pi}{3}, \frac{\pi}{2}\right], m \in \mathbb{N}_{\sigma}$ for then $G_{m+1}(z(m))>G_{m}(z(m))=0$ which implies $z(m+1)>z(m)$ by (i).

Now $G_{m}(0)=\zeta(m)$ and $G_{m}(\pi)=-\left(1-2^{1-m}\right) \zeta(m)$ both decrease (to 1 and -1 respectively), whereas $G_{m}\left(\frac{\pi}{3}\right)$ and $G_{m}\left(\frac{\pi}{2}\right)$ increase with m. In particular, $\left(G_{m+1}-G_{m}\right)(\theta)$ has an even number, at least 2 , of zeros in $(0, \pi)$. It is easily verified that $\left(G_{2}-G_{1}\right)(\theta)$ and $\left(G_{3}-G_{2}\right)(\theta)$ have exactly 2 zeros in $(0, \pi)$; we proceed inductively. Since $\left(G_{m+3}-G_{m+2}\right)^{\prime \prime}(\theta)=-\left(G_{m+1}-G_{m}\right)(\theta),\left(G_{m+3}-G_{m+2}\right)(\theta)$ has precisely 2 points of inflexion in $(0, \pi)$, and since it is negative and concave up at 0 and at $\pi_{0}\left(G_{m+3}-G_{m+2}\right)(\theta)$ cannot have more than two zeros in $(0, \pi)$.

Hence $\left(G_{m+1}-G_{m}\right)(\theta), m \in N_{\theta}$ has exactly two zeros in $(0, \pi)$: one in $\left(0, \frac{\pi}{3}\right)$ and the other in $\left(\frac{\pi}{2}, \pi\right)$; in particular $\left(G_{m+1}-G_{m}\right)(\theta)$ is positive on $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$.
(iii) For the partial sums it does not seem possible to mimic the elegant use of the gamma-function kernel. However the classical Jackson-Gronwall result on the positivity of the partial sums of $H_{1}(\theta)$ gives all the information required (and that result has been given many pretty proofs over the years).
(iv) $\quad z_{n}(m)$ increases with $m_{f}, m \in \mathbb{N}_{f} \quad m \geq 2$.

Note first that the assertion is trivial for $n=1$ since $G_{m}^{1}(\theta)=\cos \theta$ and $z_{1}(m) \equiv \frac{\pi}{2}$, so we suppose $n \geq 2$. Then
$z_{n}(m) \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ since $G_{m}^{n}\left(\frac{\pi}{2}\right)<0 \quad\left(G_{m}^{n}\left(\frac{\pi}{2}\right)\right.$ is an alternating sum of terms decreasing in absolute value, the first of which is negative) and since $G_{m}^{n}\left(\frac{\pi}{4}\right)>0$ (to see this, pair the j th term with the $(j-4)$ th, $j \equiv 3,4,5$ $\bmod 8, j \geq 11)$. As before it suffices to prove $\left(G_{m+1}^{n}-G_{m}^{n}\right)(\theta)>0$ on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$, that is, to prove $\sum_{j=2}^{n} \frac{j-1}{j^{m+1}} \cos j \theta<0$, $\theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right], n, m \geq 2$. Summing by parts we see that it is enough to prove $C_{n}(\theta)=\sum_{j=2}^{n} \frac{j-1}{j^{2}} \cos j \theta<0, \theta \in\left[\frac{\pi}{4}, \frac{\pi}{2}\right], n \geq 2$.

Since $\cos 2 \theta, \cos 3 \theta$ and $(\cos 2 \theta+\cos 4 \theta)$ are negative throughout $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ we have $c_{n}(\theta)<0$ on $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$ for $n=2,3,4$. For $n \geq 5$ we sum twice by parts to see that
$2 \sin ^{2} \frac{\theta}{2} C_{n}(\theta)=\frac{1}{4} \sin ^{2} \frac{\theta}{2}-\frac{5}{18} \sin ^{2} \theta-\frac{1}{144} \sin ^{2} \frac{3 \theta}{2}$

$$
\begin{aligned}
& \quad+\sum_{j=3}^{n-2}\left(\frac{j-1}{j^{2}}-\frac{2 j}{(j+1)^{2}}+\frac{j+1}{(j+2)^{2}}\right) \sin ^{2} \frac{(j+1) \theta}{2} \\
& \\
& +\left(\frac{n-2}{(n-1)^{2}}-\frac{n-1}{n^{2}}\right) \sin ^{2} \frac{n \theta}{2} \\
& \\
& \quad+\frac{n-1}{n^{2}} \sin (2 n+1) \frac{\theta}{2} \sin \frac{\theta}{2} \\
& \leq \frac{1}{4} \sin ^{2} \frac{\theta}{2}-\frac{5}{18} \sin ^{2} \theta-\frac{1}{144} \sin ^{2} \frac{3 \theta}{2}+\frac{5}{144} \\
& \\
& \quad+\frac{n-1}{n^{2}} \sin (2 n+1) \frac{\theta}{2} \sin \frac{\theta}{2} \\
& =f\left(\sin ^{2} \frac{\theta}{2}\right)+\frac{n-1}{n^{2}} \sin (2 n+1) \frac{\theta}{2} \sin \frac{\theta}{2}
\end{aligned}
$$

where $f(t)=\frac{1}{144}\left(5-133 t+184 t^{2}-16 t^{3}\right)$. Because f is concave up we have $f\left(\sin ^{2} \frac{\theta}{2}\right) \leq \max \left\{f\left(\sin ^{2} \frac{\theta_{1}}{2}\right), f\left(\sin ^{2} \frac{\theta^{2}}{2}\right)\right\}$ on $\left[\theta_{1}, \theta_{2}\right]$, and $C_{n}(\theta)<0$ on $\left[\theta_{1}, \theta_{2}\right]$ whenever $F\left(\theta_{1}, \theta_{2}, n\right)=\max \left\{f\left(\sin ^{2} \frac{\theta^{1}}{2}\right)\right.$. $\left\{\left(\sin ^{2} \frac{\theta}{2}\right)\right\}+\frac{n-1}{n^{2}} \sin \frac{\theta}{2}<0$. Also, since $f\left(\sin ^{2} \frac{\theta}{2}\right)<0$ on $\left[\frac{\pi}{4^{\theta}} \frac{\pi}{2}\right]$ we have $C_{n}(\theta)<0$ on any subinterval where $\sin (2 n+1) \frac{\theta}{2} \leq 0$.

$$
\text { For } n \geq 9 \text { we have } F\left(\frac{\pi}{4}, \frac{\pi}{2}, n\right) \leq F\left(\frac{\pi}{4}, \frac{\pi}{2}, 9\right)<0 ; \text { for } 5 \leq n \leq 8 \text { it }
$$

is necessary to subdivide the interval:
for $n=8$ we have $F\left(\frac{\pi}{4}, \frac{6 \pi}{17}, 8\right)<0, F\left(\frac{8 \pi}{17}, \frac{\pi}{2}, 8\right)<0$ and $\sin \frac{17 \theta}{2} \leq 0$ on $\left[\frac{6 \pi}{17}, \frac{8 \pi}{17}\right]$
for $n=7$ we have $F\left(\frac{4 \pi}{15}, \frac{6 \pi}{17}, 7\right)<0$ and $\sin \frac{15 \theta}{2} \leq 0$ on $\left[\frac{\pi}{4}, \frac{4 \pi}{15}\right] \cup\left[\frac{6 \pi}{15}, \frac{\pi}{2}\right]$,
for $n=6$ we have $F\left(\frac{\pi}{4}, \frac{\pi}{3}, 6\right)<0, F\left(\frac{\pi}{3}, \frac{\pi}{2}, 6\right)<0$ and for $n=5$ we have $F\left(\frac{4 \pi}{11}, \frac{\pi}{2}, 5\right)<0$ and $\sin \frac{11 \theta}{2} \leq 0$ on $\left[\frac{\pi}{4}, \frac{4 \pi}{11}\right]$.
3. REMARKS

Statement (i) of the theorem is valid for arbitrary real numbers $0 \geq 1$, as the proof shows. We will discuss the extension of the remainder of the theorem to non-integral m on another occasion, [1]. For $\alpha<2$ no even partial sum is decreasing; nevertheless it seems
that these partial sums still have a unique zero in $(0, \pi)$. If $\alpha \geq \frac{9}{8}$ this can be proved using Vietoris" methods (see [1], [4]).

REEERENCES
[1] G. Brown and D.C. Wilson, Positivity results for trigonometric sums, in preparation.
[2] K. Knopp, Theory and application of infinite series, 2nd English edition, Blackie, London-Glasgow, 1951.
[3] I.H. Sloan and W.L. Wendland, A quadrature based approach to improving the collocation method for splines of even degree, Preprint, 1988.
[4] L. Vietoris, Über das vorzeicher gewisser trigonometrischer summen, S-B Öster. Akad. Wiss. 167 (1958) 125-135; Teil II: Anzeiger O̊ster. Akad. Wiss. (1959) 192-193.

School of Mathematics University of New South Wales Kensington
New South Wales 2033.

