
70 SUPERPOSITION OF EVOLUTIONS 

The main point of this chapter is to present a vector, or operator, version of the 

Feynman-Kac formula representing certain perturbations of a given evolution. While 

for some evolutions, such as the diffusion seraigroup, the formula can be stated in 

terms of classical absolutely convergent integrals, for others, notably the Schrodinger 

group, the usage of a more general conceptual machinery is inevitable. Needless to say, 

the notions introduced in earlier chapters will be used here. 

A. Let E be a Bana,ch space. The algebra of all bounded linear operators 

on E is denoted BL(E) 

The basic ingredient of the abstract Feynman-Kac formula, to be stated in the 

next section, is the BL(E)-valued additive set function determined by an evolution in 

the space E and a BL{E)-valued spectral measure. In this section, the conventions 

pertaining to these notions are introduced. 

Let A be a locally compact Hausdorff space. Although other spaces may 

and indeed are, of considerable interest, in the examples considered in this chapter, A 

will be equal to IR d , for some small or unspecified positive integer d. Let B = B(A) 

be the O"-algebra of Baire sets in A. The B-measurable functions on A will be 

called the Baire functions. (See Section IDo) 

Let P: B -l BL( E) be a O"-additive spectral measure. (See Section 6A.) By 

Corollary 6.6, the spectral measure P is closable. (See Section 6Co) If <p E E, by 

P<p is denoted the E-valued set function on B such that (P<p( (B) = P( B) <p, for 

every B E B. By the assumption, P<p is O"-additive, for every <p E E. The 

integrability with respect to is understood in the sense of Proposition 3.13. That 

is, a function on A is called (P<p)-integrable if it satisfies, mutatis mutandis, any of 

the equivalent conditions (i), (ii) or (iii) of Proposition 3.13. 

Given a Baire function, W, on A, by 

P( VV) = J A WdP = J A W(x)P(dx) 
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will be denoted the operator whose domain consists of the elements, r.p, of the space 

E such that the function W is (Pr.p)-integrable and whose value, P( W)r.p, at any 

such element is given by the formula 

r 

P{ W)r.p = J A W(x)P(dx)r.p. 

The operator P( W) is bounded if and only if the function W is P-essentially 

bounded, that is, there exists a Baire Bo' such that P(Eo) = 0 and W is 

bounded on the complement of Eo' (See Section 6B.) P( W) E BL(E) if and only 

if WE. (See Section 6C.) 

For any real numbers tl and t" such that O:s t' :s t" , let S( t" ,tl) E BL(E) 

be an operator such that 

S( t, t) = I, the identity opereator, for every t 2: 0 ; 

S( t'" ) = S( t'" t"), for any t l , t" and t'" such that 

o :s t' :s t" :s r"; and 

(iii) the map S: {(tl/,i'): O:s tl :s t"} -) BL(E) is continuous in the strong 

operator topology of BL(E) . 

Such a map S: {(t" ): 0 :s t' :s t"} -) BL(E) , with properties (i), (ii) and 

(iii), is called an evolution, or a propagator, in the space E. If S( t" ) = S( t" - t' ,0) , 

for any O:s i' :S t", then we speak of a continuous semi group , or a dynamical 

propagator, and write without ambiguity S(t) = S(t,O) , for every t 2: O. Needless to 

say, the numbers t, t l
, t" , ... entering into arguments of an evolution are intuitively 

interpreted as instants of time. 

Let t 2: 0. For every s E [0, t], let be a set of maps v: [O,sJ -) A to be 

called paths. We assume that { : v E Tt} ::: A, for every s E [O,f]. To formulate 

another assumption, for any S E [O,t] , let prt be the natural projection of onto 
,8 

T . That the value, prt (v), of the map pr~ at an element, v, of It is equal 
s ,8 ~,s 

to the restriction, vi [o,sJ' of v to the interval [O,s]. We shall assume that 

{pr t (v) : v E Tt }::: T , for every S E [O,t] . 
,s s 

Of main interest are the cases in which It::: A[o,tJ, or It consists of all 
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continuous paths v: [O,i] -) A, or ones which are right-continuous at each point of 

the interval [0, t) and have a left limit at each point of the interval tj , etc. 

Let t 2: 0 . Given an integer k 2: 1, sets B E B and numbers 
j 

j = 1,2, ... ,k, such that 0::: tj _ 1 < tj::: for every j = 2,3,. , let 

(A.l) y = {VE : v( E B, j = 1,2, ... ,k} . 
J 

i. , 
J 

TWhenever it is necessary to indicate the parameters on which the set Y depends we 

write Y = Y( 

The family of sets (A.l) formed for all choices of k = 1,2, ... , sets B. E Band 
J 

numbers t j= j , 

denoted by 

, snch that 0::: < t.::: t for every j = 
J 

It is classical and comparatively easy to show, that 

, is 

is a 

semi algebra of sets in the space It' (See Section ID.) 

Now we define the set function Mi : I t -) BL(E) determined the evolution S 

and the spectral measure P. Namely, if k 2: 1 is an integer, B. E B sets and t. 
J J 

numbers, j=1,2, ... ,k, suchthat 0::: t < t.::: ifor j=2,3, ... ,k,·andtheset Yis 
j-l J 

given (A.l), let 

(A.2) 

PROPOSITION 7.1. For every set Y E 1I.t , the operator M/ Y) is defined by (A.2) 

unambiguously. The resulting set junction Mt : -) BL( E) is additive. 

Proof. Let Y E 1I.t . If Y is given 

some j = 1 ,k. So, let Y t 0. If 

(A. 1 ), then Y = 0 if and only if B = 0 for 
j 

Y = Y(tl'".,tk ; Bv .. ,Bk), for some integer 

k 2: 1, sets B E B and pair-wise different numbers t 
j j' 

j = 1,2,,,.,k, and also 

Y = Y(sl'"",se; Cl'".,Ce), for some integer e 2: 1, sets C E Band pair- 'Nise 
m 

different numbers 

every j = 1,2,,,.,k 

sm' m = 1,2,,,.,£, then Cm = Bj whenever sm = tj , Bj = 1\ for 

such that t. t s for every m = 1,2, ... ,£, and = A for every 
J m 

m = 1,2,.. such that s t t. for every j = 1,2, ... ,k. Therefore, property (ii) of an 
m J 

evolution and the equality P(A) = I imply that the operator M,( Y) is defined 
); 

unambiguously by (A.2). 
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To prove the additivity of the set function : I t --) BL(E), by Proposition 

1.8, it suffices to prove that this set function is 2-additive. However, the 2-additivity 

follows immediately from the following general set theoretical fact: If X E I t , Y E I t 

and Z E I t are sets such that Yn Z = I/) and X = YU Z, then there exist an integer 

k 2': 1, sets A., B. and C., belonging to !3, pair-wise different numbers t., 
J J J J 

j = 1,2, ... ,k, and an integer mE [1,k] such that 

X = {v E Tt : v(t.l EA., j = 1, ... , k}, Y = { v E It: v( t J E B. , j = 1, ... , k} , 
J J ' J J 

Z= {VETt : v(tJ E C., j= l, ... ,k}, 
J J 

A. = B. = C. for every j * m, j = 1,2, ... ,k, B n C = I/) and A = B U C . 
J J J m m m m m 

It should be noted that the set function Mt'P, for some given 'P E E, is 

usually of more direct interest than Mt itself. To be sure, Mi'P is the E-valued 

function on 1.t whose value at any set Y E I t is equal to Mi Y) 'P . 

Let p be a gauge on some quasi algebra Q c 1.t integrating for the restriction of 

Mi'P to Q. Let f E C(p,Q). By 

L, f( v)Mt(dpv)'P = JT fdp(Mt'P) := (M) pU)'P 
t i 

will be denoted the 'integral of the function f with respect to Mt'P,' that is, the 

value, C(f), of the continuous linear functional, C , on C(p,Q) such that 

e(x) = M/X)'P, for every X E Q. (See Section 3A.) We should note though that, 

usually, p does not integrate for (the corresponding restriction of) , so that the 

symbol '(M) (f) i is meaningless as are other symbols for the 'integral of f with 
t p 

respect to Mt .' 

EXAMPLE 7.2. Let 'P E E. Let Q c I t be a quasi algebra. Let p be a gauge on Q 

integrating for the set function Mt'P restricted to Q. Let 0:::; tl < t2 < ... < 

tn_1 < tn :::; t and WI' W2 , ... , Wn be Baire functions on A such that the function 

f, defined by 
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f( v) = II W( v(t ) ) 
j= 1 J J 

for every v E Ti ,is p-integrable. Then 

= S( 

EXAMPLE 7.3. Let cp E E. Let Q c be a Let p be a gauge on Q 

integrating for the set function : Q -i E. Let O:s s:s t. Let = L; C : { '7 l' 

-1 Pr -
t , 

s 

E Q} and = p(pr- 1 ( ), for every Z E . Assume that the gauge p 
t ,s s 

for the set function on -i E. Let 9 be a p -integrable function on 
s 

TWa Baire function on A and • s ' 

f(v) = W(v(s))g(pr t /v)) , 

for every v E Ti . If the function f is p-integrable, then 

B. Vie maintain the notation of Section A. 

Assume that an evolution, S) in the space E and a spectral measure, P, on 

B= are Let cp be an element of the space E. 

Let i 2: O. Let l be the ~V'.J'_.U)"~V measure on the interval [O,t] and l(L) the 

of all (individual) Lebesgue functions on [O,t] . 'vVe of course, 

l.(f) = J~ f( 

for every f E i( 

Let Q be a semialgebra of sets in the space T t such that Q c 1lt and let p be 

a gauge integrating for the restriction of the set function 

s E [O,t] , let = {Z c T : pr-I I (Z) E Q1 and let p (Z) 
s ,s' s 

ZE Q . 
s 

to Q. For every 

o(pr- 1 (Z) I for every 
f t ,s J, 
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Let TV be a function on [0, t] x A such that the function r H TV( r, v( r)) , 

T E [O,l] , is i-integrable for p-almost every v E It' For every s E [O,t] , let es be a 

function on to be called the Feynman-Kac functional, such that 

(B.I) v) == exp [ f: TV(r,v(r))dr] , 

for every vET for which the integral at the right exists. 
s 

If e happens to be p -integrable, let 
s s 

(B.2) 

In particular, 

u( s) =: f e (v) M ( d v) 'P . 
ISS Ps 

s 

In order to present concisely an intuitive interpretation of u( t), let us extend 

the definition of TV onto the whole of [0,00) x A by letting s,x) == TV( , for 

every s 2: t and every x EA. Assume that, for every tl and t" such that 

(B.3) . )dS] 

is a well-defined operator belonging to BL(E) and the resulting map T: {(t" ,t') : 

o :::: il :::: t"} --) BL( E) is an evolution in the space E. 

Then u( t) can be thought of as the element of the space E into which 'P 

evolves under simultaneous action of Sand T during the time-interval [O,t]. In 

fact, if the numbers 0 == to < t1 < ... < tn- 1 < tn == t represent a partition, jz., of the 

interval [O,t] , let us denote 

Furthermore, let 
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Wj = exp [ J:j T,· )dr] , 
j-l 

so that T(t. l't.) = P( WJ , for every j = 1,2, ... ,n, and 
r J J 

n 
~(v) = n W.(v( ), 
r j=l J 

for every v E r,. Then, by Example 7.2, 
I 

7B 

Now, if the partition .it is sufficiently fine, then we may expect that ~ (t) will be 

approximately the outcome of the simultaneous action of the evolutions Sand T on 

cp during the time-interval [O,t]. On the other hand, we may also expect that the 

integral of 'Iz 'with respect to Mt'P' will approximate the integral of e t . 

Turning these heuristics into a solid argument would of course require an appeal 

to a Trotter-Kato type theorem. However, we shall proceed differently. Namely, 

assuming that the function e is p -integrable, for every s E [O,t], we are going to 
s s 

present a sufficient condition for the function S H u(S) , S E [O,t], to satisfy a 

Duhamel type integral equation which expresses formally the idea of the superposition 

of the two evolutions. The condition is stated in terms of (t®p)-integrability. (See 

Section 5C.) 

So, let 

f(s,v) = W(s,v)exp [J: W(r,v(r))dT)] , 

for every S E [O,t) and v E It for which the integral at the right exists. 

THEOREM 7.4. If, for every· s E [O,t) , the function e is p -integrable and the 
s s 

function f is (i®p)-integrable, then 

(BA) u(t) = S(t,O)'P + J~ S(t,s)P( W(s,· ))u(s)ds. 
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Proof. First note that 

I~ f(s,v)ds::: exp [ I: w(r,v(r))drl] - 1 = e) v) - 1 , 

for every v E It such that f( "v) E £(t) , Furthermore, by Example 7.3, 

I f(s,v)M,(d v)\<? = S(t,s)P( W(s,' ))u(s) , 
T ' P 

t 

for every s E [O,t] such that I(s,') E £(p,Q). Therefore, by theorem 5.11, 

u(t) - S(t,o) 10 = IT (e/v)-I)Mt(dpv)\<?= 
t 

= J [f !(s,v)dS] M/dpv) 10 = fU !(s,V)M/dpV)\<?]dS= 
Tt 0 0 Tt 

== J~ S(i,s)P( W(s" ))u(s)ds. 

7.4 

It should be noted that it may be possible to define u(s) by (B.2), for every 

s E [O,t], and to write equation (BA) independently of whether (B.3) defines an 

evolution. Indeed, the initial-value problem 

u(t) = P( W( t, . )) u(t) , t > 0; u( 0+) :;; 10 , 

may have a solution for some 10 E E but not for others. 

Now, assuming that (B.4) holds for every t E (O,to)' where 0 < to:S 00 , 

formal differentiation gives that 

(B.5) 

where 

u(t) = A(t)u(t) + P( W(t,' ))u(t), t E (O,to) , 

A(t)¢ = lim r- 1(S(t+r,t)¢-¢) , 
r-lO 

for every ¢ E E such that this limit exists in the sense of convergence in the space E. 

Furthermore, (BA) also implies that u(O+) =:: 10 . 
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So, another, perhaps more conventional, interpretation of '11,( t) is that it is the 

value at t of a generalized solution of the initial-value problem consisting of equation 

(B.5) and the condition that '11,(0+) = rp. 

C. Let A be a locally compact Hausdorff space. Let t H "E t , t E IR , be a 

continuous group of homeomorphisms of the space A. That is, for every t E IR, a 

homeomorphism E i : A -l A is given such that 

(i) E t = "E t o"E , for every s E IR and t E IR; and 
5+ S 

(ii) for every x E A, the orbit t H Eix, t E IR, of the element x is a 

continuous map of IR into A. 

Let B be the (I--algebra of Baire sets in A. Let K be a Balre measure on A. 

That is to say, there is a vector lattice, £(1\;), of functions on 51 and a positive linear 

functional, 1\;, on £(1\;) such that its restriction to Bf), = B n £(K) is ()-additive and 

£(,'£) = £( K,B 1\;) and Brp E £(.-;) for every set B E B and function rp E C( 1\;). (See 

Section 3B.) For the sake of simplicity, we assume also that I\; is o--finite, that is, A 

is equal to the union of a sequence of sets belonging to 

Let 1:S P < 00 and E= LP(Il,) with the usual norm. (See Section 3C.) To 

simplify the exposition, we shall use the standard licence and not distinguish between 

elements of the space E and the individual functions on A determining them. 

Let S(t)rp = rpo"E t , for every t E IR and rp E E. Assume that 

0) S(t)rp E E, for every t E IR and rp E E; 

(ii) for every t E IR, the so defined map S(t): E -l E is an element of 

BL(E); and 

(iii) for every rp E E the map t H S( t) rp, t E IR, is continuous. 

So, S: IR -l BL( E) is a (continuous) group of operators. 

For any set BE B, let P{B) be the operator of point-wise multiplication by 

the characteristic function of the set B. Then the map P: B -l BL(E) is a 

o--additive spectral measure. The integral, P{ W), of a Balre function W is the 

operator of pointwise multiplication by the function W. So, we may write simply 

P(Wj = W. 
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For any t ~ 0, let Tt be the space of all continuous maps v: [O,tj-l A. For 

every x E A and r E [O,t], let 

I'(r)=.:~ x. 
x L-1' 

Then, by the assumptions, ~I x E It' for every x EA. For any set Y CIt' let 

If the set Y E Qt is given by (A.I) with some integer k ~ 1, sets B j E Band 

numbers t" j == 1,2, ... ,k, such that 0:5 t. 1 < t.:5 t for every j =.: 2,3, ... ,k, let 
J }- J 

This is of course a version of (A.2) for the case when the evolution S happens to be 

time-homogeneous, that is, it is a semigroup. 

Let St be the a-algebra of sets generated by I t . 

PROPOSITION 7.5. If Y E Sf' then By E B. If Y E I t ' then Mi Y) =.: S( t)P(By) . 

Let epEE. If J.t(y)=S(t)P(By)ep, forevery YESt , then J.t is an E-valued 

a-additive set function on St such that j.t( Y) == M/ Y)ep, for every Y E I t . 

Proof. Because By E B for every Y E I t and B is a a-algebra, it follows that 

By E B for every Y ESt' The equality M/ Y) =.: S(t)P(B y) can be checked by a 

direct inspection for any Y E I t . Then the last statement is obvious. 

Let ep E E and let us keep the notation of Proposition 7.5. Because the set 

function J.t is a-additive, Proposition 3.13 is applicable. Let I ep' oj.tl be the 

variation of the set function epf OJ.t, for any ep' E Ef . Let 

for every f E sim(lt ). Then, by Proposition 3.13, the semi norm (J integrates for (the 

linear extension of) j.t. 
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EXAMPLE 7.6. Let O:s tl < t2 < 00. < tk-l < tk:s t, let WI' W2,oo., Wk be Baire 

functions on A and let 

k 
f( v) = IT W( v( t.)) 

j= 1 J 

for every vET. The function f is p-integrable if and only if the function 

k 
'P II W.o L: i 

j= 1 J - j 

(the multiplication is point-wise) determines an element of the space E'. Moreover, 

k J fd M = [ 'P IT W.o L: -t] 0 L:t ' T P j= 1 J j 
i 

whenever the function f is in fact integrable. 

PROPOSITION 7.7. Let W be a function on [O,t] x A such that the function 

no) W( r,L: x), r E [O,t] , is integrable for r;,-almost every x EA. Let 
r 

(C.2) 

for every x E A such that the integral on the right exists. Then the function et is 

p- integrable if and only if the function Vt # determines an element of the space E'. , 
If the function e t is indeed p- integrable, then 

JT e/ v)tt(dpv) = (Vi, w'P) 0 L: t . 

t 

Proof. When the integral in (C.2) exists in the sense of Riemann, then the statement 

follows easily from Example 7.6. So, the statement is valid for all functions that are 

A;-almost everywhere limits of functions for which the integral in (C.2) exists in the 

sense of Riemann. 

The special case when A = lR d , for some integer d 2: 1, and z:; is the 

fundamental solution of the dynamical system of differential equations :i; = a(x) , 
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where a: lR d -+ IRd is a mapping with components a1,a2,···,a d' is of a particular 

interest. For any xO E IR d , the function t H Eti, t E IR, is then the solution of this 

system passing through i at t = O. In this case, the infinitesimal generator of the 

semigroup S is the differential operator 

If the function 'P is smooth enough and 

for every t:o:: 0 and x E IR d , then u is a solution of the problem 

au d [) d at = L a. Ox + Wu, t > 0 , x E IR ; u(O+,x) = 'P(x) , x E IR . 
j=l J j 

The case of the Feynman-Kac formula suggested in this section admits many 

variants. None-the-less the set function Mt it gives rise to can be considered rather 

'degenerate' . More complex cases are obtained by introducing another parameter. 

For every y E [0,1], let t H E~, t E IR, be a group of homeomorphisms of the 

space A. Assume that the map (x,y,t) H I;~x, of the space Ax [0,1] x/R into A, is 

continuous. 

Let E = LP(K,® t}, where K, ®t is the tensor product of a O'-finite Baire 

measure on A and the Lebesgue measure on [0,1]. For a function 'P on A x [0,1] 

and t E IR, let 

for every x E A and y E [0,1]. Assume that, for every 'P E E and t E IR, the 

function S(t) 'P determines again an element of E , that the resulting map 

S( t) : E -+ E is an operator belonging to BL( E) and, finally, the so defined map 

t H S( t), t 2: 0, is a continuous group of operators. 

Let t:o:: 0 and let T t have the same meaning as before. Let 

'Y (r) = I;Y x 
x,y -r ' 
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forevery xEA, yE[O,l] and rE[O,t]. For a set Yc ,let B~:::{X:ix,yE Y}. 

Let rp E E, For every Y ESt' let Y) be the element of the space E such 

that 

(S( -t)tt( )(x,y) = B~(x)rp(x,y) , 

for I~-almost every x E A and every y E [0,1]. It is then a matter of direct 

calculation that tt( Y) = Y)cp, for every Y E Qt ' 

D. Let d:::: 1 be an integer. We shall specialize the situation of Sections A 

and B taking the d-dimensional arithmetic Euclidean space, IR d , for A and the 

space of all scalar valued O"-additive set functions on the a'-algebra, B::: B(lR d) , of all 

Baire sets in IRd for E. Because every element of E has finite and IT-additive 

variation, we use the standard conventions about integration with respect to elements 

of E mentioned in Section 3F. Namely, we note that the variation, I cpl , of an 

element, rp, of the space E is a gauge on B which integrates for rp, denote 

£( (p) ::: £( I \0 I) and do not show the gauge, I rp I , in symbols for integral with respect 

to 0? The norm, II rpll , of an element, cp, of the space E is the total variation of 

d 
\0, that is, the number I rp I (IR ) . 

The Lebesgue measure on IRd is denoted by A. Identifying the elements of 

Ll(>..) with their indefinite integrals, we identify the space L1(A) with a subspace of 

E consisting of those elements which are A-absolutely continuous. 

Given a set BE 13 ,let P{B) be the operator of restriction to the set B. That 

is, (P(B)rp)(X)::: rp(BnX) , for every set X E B and every rp E E. So, on the 

subspace L1(A) of E, the operator P(B) acts as point-wise multiplication by the 

characteristic function of the set B. For every BE 13, the operator P(B) is an 

element of BL(E) and the map P: B..., BL(E) is a IT-additive spectral measure. 

Let D be a strictly positive real number and let 
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for every t > 0 and x E IRa. (I xl stands for the usual Euclidean norm of an element 

x of IRd .) 

Let S(O) = I and 

(S(t)cp)(B) = J B dx JlRd Pn(t,x-y)cp(dy) , 

for every t > 0, B E Band 10 E E. Then the set function S( t) 10 , that is, 

B H (S( t)cp)(B) , BE B, is an element of the space E. For every t > 0, the 

operator S(t), that is, 10 H S( t) 10, 10 E E, is an element of BL( E). Finally, the 

resulting map t H S( t), t E [0,00], is a continuous semigroup, S: [O,ooj-+ BL(E), of 

operators. 

The semigroup S can be interpreted as a mathematical description of isotropic 

and homogeneous diffusion in IRa with the diffusion coefficient D. It is called the 

Poisson semigroup. Its infinitesimal generator is the (closure of the) operator Dtl, 

where 11 is the Laplacian in IRa. 

Given a t 2: 0, let be the set of all continuous paths v: [O,t] -+ A . 

Because S is a semi group , the formula (A.2), defining the set function Mt : llt 

-+ BL(E), takes the form (C.I), for every set YE 1lt given by (A.I) with some integer 

k 2: 1, sets B. E B and numbers t., j::: 1,2, ... ,k, such that 0 ~ t. 1 < t. ~ t, for 
J J r J 

each j:= 2,3, ... ,k . 

Let 10 E E be a non-negative measure. Let 

for every Y E 1I.t . Then Pcp is a non-negative u-additive set function on llt and so, 

it generates a measure in the space Tt . This fact, dating back to N. Wiener, is 

classical; see, for example, [11], Theorem VIII.2.2. If 10 is a probability measure on 

IRa, then p is called. the d-dimensional Wiener measure of variance 2D per unit of 
10 

time with initial distribution 10. (See Example 4.33.) 

Now, if 10 is an arbitrary element of the space E, then p = PI 101 is a gauge 

on 1I.t which integrates for 10. 
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Let W be a Baire function on [O,t] x[Rd. Mark Kac noted, see [26],Chapter 

that, if the function p-) W( f, v( r)) , l' E [O,t] , is Riemann integrable in [O,t] , for 

p-almost every vET t' then the Feynman- Kac functional, 

e (v) == exp [ Ji 
t 0 

1',v))dr] , v E 

is p-measurable on It. Consequently, if et is also bounded then it is p-integrable. 

This happens, for example, when d 1',x) == W(O,x) , for every l' E [O,t] and :r E [R , 

and the function .) is bounded above and continuous on the complement of a set 

of capacity zero in because the set of VET t that avoid a given set of 

capacity zero has the \Viener measure equal to zero. 

if et is indeed p-integrable, for every t > 0, the element 

(D.l) 

of the space E belongs to L1(/\) , for every r.p E E. Let us abuse the notation and 

denote by x H u( , x E [Rd, the density of u( t). In terms of densities, the integral 

equation can be re-written in the form 

(D.2) u(t,x) ::: r d pr-/t,x-y)r.p(dy) + Ii J' d PD(t-s,x-y) W(s,y)u(s,y)dyds, JIR ~ 0 [R 

for x E IRd and t > o. This equation represents the initial-value problem 

(D.3) 
'Ii( ::: D!:1u(t,x) + W(t,x)u(t,x) , t > 0 , x E U~d 

lim J u(t,x)dx= ~?(B), BEB. 
t--70 + B 

If d:::: 2, it is easy to produce functions W such that u( t) is well-defined by 

(D.l) for every t:::: 0, but, for many r.p E E, the integral equation (D.2) does not 

have a solution. Then the problem (D.3) does not have a solution either. For 

example, W( t,x) = -I xl- d , t:::: 0, x E A, x * 0, is such a function. Still, u( t) has 

a perfectly good physical interpretation. (See Section ac.) 
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E. Let d 2: 1 be an integer. We take, again, A = IRd. Let E = L2(>.) , 

where A is the Lebesgue measure in IRd. Elements of the space E and functions on 

IRd representing them will not be distinguished. The norm of an element, rp, of E 

will be denoted by II rpl! . 

For any BE B = B(lRd), let P(B) be the operator of point-wise multiplication 

by the characteristic function of the set B. That is, P(B)rp = Brp, for every rp E E. 

Then P: B --j BL(E) is a a-additive spectral measure. 

Let m be a strictly positive number. Let S( 0) = I and, for every t E IR , 

t*-o, let S(t) E BL(E) be the operator such that 

for every x E IRd and every rp E Ll n L2(A). The root is determined from the branch 

that assigns positive real values to positive real numbers. It is well-known, and can 

easily be shown using the Plancherel theorem, say, that such an operator S( t) exists, 

for every t E IR, is unique and the resulting map t H S( t), t E IR, is a unitary group 

of operators. It is called the Schrodinger group. The infinitesimal generator of the 

Schrodinger group, S: IR --j BL(E) , is (the closure of) the operator 

where b. is the Laplacian on IRd. 

Let t 2: O. Let Ti be the set of all continuous paths v: [O,t] --j IRd. Let the 

set function Mt : It --j BL(E) be defined by the formula 

for every set 

Y={vETt:v(tJEB., j=1,2, ... ,k}, 
J J 

where k 2: 1 is an integer, the sets B. belong to B and the numbers t. , 
J J 

j = 1,2, ... ,k, satisfy the conditions 0:::: t. 1 < t.:::: t for every j = 2,3, ... ,k. Let rp be 
r J 

an element of the space E. 
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Our aim is to produce a gauge on 1li which integrates for the set function 

Mt'P. Actually, a suggestion for producing such a gauge is presented in Example 4.33, 

because the construction exhibited there for d = 1 can be easily adapted for arbitrary 

d. However, we present now another construction. 

By a special partition of Tt we shall understand any llt-partition, 'P, 

obtained in the following manner. (See Section ID.) Assume that k 2': 1 is an 

integer, are B-partitiol1s of IRd and t. are numbers, j = , ... ,k, such that 
J 

to = 0, t. 1 < t., for every j = 1,2, ... ,k, and t, = t. The partition 'P then consists 
r J /(; 

of all sets of the form 

E E.,j = O,l, ... ,k} , 
J 

with arbitrary sets B. belonging to the partition A, for every j = O,l, ... ,k. We say 
J J 

that the partition 'P is determined by the numbers t and partitions A, 
j J 

j = O,l, ... ,k. The set of all special partitions of Tt will be denoted by r. 

Our construction uses the fact, proved in the following proposition, that the set 

function Mt'P has finite 2-variation with respect to the set of partitions r. (See 

Section 4A.) 

PROPOSITION 7.8. . 2 
For every special partition, 1', we have v2(Mt'P,'P;Tt) = II lOll . 

Proof. Let the partition l' be determined by the numbers t. and the B-partitions 
J 

A., j = O,l, ... ,k. Because the operators S(t-t.) and SU.-t. 1) are unitary and .h. is 
I J J J r I J 
a B-partition of IR d , we have 

IIMt( Y(to, .. ·,t. liBo, .. ·,B. 1))'P11 2 == \' IIMt( y(to, .. ·,t. 1,t.;B., ... ,E. 1,B.))'P112 , r r l... rJJ r J 
B.EA 

J J 

for any sets Be E j!e' e == O,l, ... ,j-l, and any j = 1,2, ... ,k. Moreover, because S( t) 

is a unitary operator and j!o is a B-partition of IRd , 
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Therefore, 

Now, let /-l be a non-negative real-valued (J-additive set function on B such 

that jJ,(B) = 0 if and only if '\(B) = 0 and /-l(lRd) = 1. Let t be the d-dimensional 

Wiener measure of variance one, say, per unit of time with initial distribution /-l. (See 

Section D.) 

Given a partition PEr, let 

for every X E li' putting, by convention, t(Xn y) / t( y) = 0, whenever t( Y) = O. By 

Proposition 2.13, the set function (Jp is an integrating gauge on I t , for every PEr. 

So, if P is a non-empty subset of r, Proposition 2.14, the set function IT, 

defined by 

IT(X) = sup{ (Jp(X) : PEP} , 

for every X E l i , is an integrating gauge on I t . 

By Proposition 7.8, however we choose P, the equality (J(T t ) = 1I'P112 holds. 

Moreover, the gauge (J is monotonic. (See Section 2G.) We can choose P so that 

the inequality IIM/X)'P112 ::; (J(X) holds for every X E I t . To do that it suffices to 

take P = r. However, much more economical choices of the set P are possible. In 

fact, there are countable subsets of r which can be chosen for such a P. 
1. 

Having made such a choice of P, let p(X) = (a-(X))2, for every X E I t . 

Then, by Proposition 2.26, the gauge p integrates for the set function Mt'P. 

It may be interesting to note that there does not necessarily exist a 
1 

non-negative O"-additive set function, 0", on lli such that the gauge (J2 integrates 

for the set function Mt'P. In fact, we have the following proposition, in which d = 1 , 

due to Brian Jefferies, which implies that v2(Mt'P,TI(lt);Tt) = 00, for some 'P E E. 
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PROPOSITION 7.9. Let Q be the semialgebm in the space [R x IR consisting of all sets 

olthe/orm AxB with AEB and BEB. Let cp(x)=exp(-t(1+i)x2), every 

x E IR. Let v(A x B) = P(B)S(l)P(A)cp, for every A E Band BE B . Then 

v2(v,II(Q);1R x IR) = 00 • 

Proof. For any A E Band B E B, we have 

I J exp( -ixy- ti)dx 12 dy . 
A 

The Cauchy-Schwarz inequality implies that 

Now, for every n = 0,1,2, ... , let = 21fn + 1f/3 and 

e = {(x,y): XEIR,yEIR, Ixy-27ml :s: rr/3, y 2:: a}. 
n n 

Then O:s: x:s: 1 and cos(xy) 2:: t, for every (x,y) E e , so 
n 

I J B J A exp( -ixy- tx2)dxdy I 2:: t exp( -t )'(A)A(B) , 

whenever A E B, BE B, A x Been' n = 0,1,2, .... Consequently, 

and, hence, 

(E.l ) 

for any sets A E Band BE B such that A x Bee , n = 0,1,2, .... 
n 

If B is sufficiently small interval centered around a point y > a , then there 
n 

exists an interval, A, of length arbitrarily close to 21f/3y such that A x Bee , 
n 

n = 0,1,2,.... Moreover, for every n = 0,1,2, ... , the set C contains a pair-wise 
n 
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disjoint family, , of such sets, A x B, which can be chosen so that 

L (A(A))2'\(B) >J'OO [~7r]2 dy_2-n. 
AxBEJ a y 

n n 

Because the sets C , n::: 0,1,2, ... , are pair-wise disjoint, by (Kl), the 2-variation, 
n 

v2(v,II(Q);1R x IR) , of the set function lJ is not less than 

exp(-l) ~ [r f27rJ2d _2- n] =00. 

81f n~O a l3 Y Y 
n 




