
6. SCALAR OPERATORS 

The most important applications of integration with respect to Banach space 

valued measures undoubtedly arise in the theory of spectral operators. To describe its 

central notion, let E be a complex Banach space, BL( E) the algebra of an bounded 

linear operators on E and I the identity operator. A spectral measure is an additive 

and multiplicative map P: Q ~ BL(E), whose domain, Q, is an algebra of sets in a 

space n, such that p(n) = I. An operator T E BL(E) is said to be of scalar type if 

there exists a (i-additive (in the strong operator topology) spectral measure, P, 

whose domain is a o--algebra and a P-integrable function f such that 

(*) 

This notion, due to N. Dunford, extends to arbitrary Banach space the idea of an 

operator with diagonalizable matrix on a finite-dimensional space. It proved to be 

very fruitful as shows the exposition in Part III of the monograph [14]. Many powerful 

techniques in which scalar operators playa role are based on the requirements that Q 

be a cr-algebra and that P be (J-additive. But precisely these requirements are 

responsible for excluding many operators of prime interest from the class of scalar-type 

operators. 

In this chapter, we present a suggestion for extending this class, [35]. It is 

based on the fact that the integral (*) exists if and only if there exist Q-simple 

functions r, j = 1,2, ... , such that 
J 

I II f f.dPII < 00 

j=l n J 

and the equality 

00 

f(w) = L !.(w) 
;=1 J 

holds for every wEn for which 

00 

L I 1.( w)i < 00 • 

;=1 J 
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In that case, 

J fdP = ~ r fdP. 
n j=1 "n J 

So, the integral with respect to P can be characterized purely in terms of the 

operator-norm convergence. Moreover, to use this characterization as a definition of 

the integral with respect to P, it is not necessary to assume that the set function P 

be bounded, let alone o--additive, nor that Q be a o--algebra. It suffices to assume 

that the seminorm 

f H II J n fdPII , 

on Q-simple functions, be integrating. (See Section 2D.) 

Thus, as scalar operators in a wider sense, we propose operators which can be 

expressed in the form (*) assuming that P is a spectral measure such that the 

mentioned seminorm is indeed integrating. Such operators can also be characterized 

intrinsically, that is, without the reference to any particular definition of integral. 

Namely, an operator T E BL(E) turns out to be scalar in this sense if and only if 

there exjsts a (not necessarily bounded) Boolean algebra of projections belonging to 

BL(E) such that the Banach algebra of operators it generates is semisimple and 

contains T. However, in contrast with the classical theory, the Gelfand 

representations of such a Banach algebra is not necessarily the algebra of all 

continuous functions on its structure space but only a dense subalgebra. 

A. Let E be a complex Banach space. Let BL(E) be the algebra of all 

bounded linear operators on E. Then BL(E) is a Banach algebra with respect to the 

operator (uniform) norm, defined by II Til = sup{ I Txl : I xl ::; 1 , x E E}, for every 

T E BL(E). The identity operator is denoted by I. 

Let Q be a quasialgebra of sets in the space n. (See Section ID.) A map 

P: Q -l BL(E) is said to be multiplicative if PUg) = P(f)P(g) for every f E sim(Q) 

and g E sim(Q). For an additive (see Section IE) map, P, to be multiplicative it 

suffices that P(X n y) = P(X)P( Y) for every X E Q and Y E Q . 
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An additive and multiplicative map P: Q-) BL(E) such that p(n) = I will be 

called a BL(E)-valued spectral set function on Q. If Q happens to be an algebra of 

sets, then a spectral set function P: Q -) BL(E) is called a spectral measure; see [14], 

Definition XV.2.L 

The generality of the theory presented in this chapter is not substantially 

increased by the admission of arbitrary spectral set functions instead of spectral 

measures only. This admission is dictated mainly by convenience in considering the 

families of sets which classically occur in integration and spectral theories but are 

merely quasialgebras and not algebras. It also allows for the possibility of 

distinguishing certain nuances in the presented theory. However, with the exception of 

a single remark in the last section, this possibility will not be pursued here. 

A spectral set fnction P: Q -) BL(E) is said to be cr-additive if, for every 

xE E, the E-valued set function XH P(X)x, XE Q, is cr-additive. (See Section 

IF.) That is to say, cr-additivity of spectral set functions is understood in the strong 

operator topology of BL(E) . 

In virtue of the Stone representation theorem, a set We BL( E) is a Boolean 

algebra of projection operators if and only if there exist an algebra of sets, 1, in a 

space n and a spectral measure, P: 1-) BL(E) , such that W::: {P(X) : X E 1} . 

Accordingly, a set of operators W ( BL(E) is called a Boolean quasi algebra of 

projection operators if it is the range of a BL(E)-valued spectral set function, that is, 

if there exist a quasialgebra of sets, Q, in a space n and a spectral set function, 

P: Q ... BL(E) , such that W= {P(X): XE Q}. 

If W ( BL(E) , then by A( W) is denoted the least uniformly closed algebra of 

operators which contains W. If W = {P( X) : X E Q} is the range of a spectral set 

function P: Q -) BL(E) , we write A( W) ::: A{P). Clearly, A(P} is then the closure 

of the family of operators {P(f): f E sim(Q)} in the space BL( E) . 

Recall that, if A is a commutative Banach algebra with unit, then the 

structure space, Ll, of A is the set of all homomorphisms of A onto the field of 
A 

complex numbers. For an element T of A, by T is denoted the Gelfand transform 
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II 
of T; it is the function on II defined by T(h) = h( T), for every hEll. It is 

1\ 

well-known (see e.g. [46], 23B) that sup{ I T(h) I : hEll} :::: II I'll and that the 
1\ 

coarsest topology on II which makes all the functions T, TEA, continuous turns 

II into a compact Hausdorff space. Hence the Gelfand transform is a norm-decreasing 

homomorphism of the algebra A into the algebra, C(ll), of all complex continuous 

functions on ll. If the Gelfand transform is injective, then the algebra A is called 

semisimple. 

Recall that an operator T E BL(E) is called nonsingular if it is invertible in 

BL(E), that is, if there exists an operator S E BL(E) such that ST = TS = I. Then 

of course S = T- 1 is the inverse of each of T. A full algebra of operators is uniformly 

closed algebra of operators which contains the inverse of each of its nonsingular 

elements; see [14], Definition XVII.I.1. 

LEMMA 6.1. Let Q be a quasialgebra of sets in a space n and let P: Q -l BL(E) be 

a spectral set function. 

(i) If f E sim(Q), then the operator P(f) is nonsingular if and only if the 

function f can be represented in the form 

n 
(A.l) f=L eX., 

j=1 J J 

where the n is a natural number, the c. are non-zero complex numbers and the X 
J j 

are pair- wise disjoint sets from Q, j = 1,2, ... , n, such that 

n 

j=l 
L P(XJ = I. 

J 

In that case, (p(f))-l = P(g) ,where 

!,!; -1 
g= L c. X.' 

j=l J J 

(ii) Let f E sim(Q) be a function expressed in the form (A.I) where X E Q 
J 

are pair- wise disjoint sets such that P(XJ f 0, 
J 

for every j = 1,2, ... ,n, and let 
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c = SUp{ I c.1 : j = 1,2, ... ,n} and 
J 

164 

d = sup{11 L P(X.lII: J c {1,2, ... ,n}} . 
jEJ J 

Then c::; IIP(f)11 ::; 4cd. 

(iii) A( P) is a full algebra of operators. 

6.1 

Proof. Let n 2: 1 be an integer. Let X. E Q be pair-wise disjoint sets, such that 
J 

P(X) /: 0, for every j = 1,2, ... ,n and the sum of the operators P(X.l, j = 1,2, ... ,n , 
J J 

is equal to I. Then the family of operators 

n 
L c.P(X.l, 
j=l J J 

with arbitrary complex c. = 1,2, ... , n, is a closed algebra of operators generated by the 
J 

Boolean algebra of projections 

L P(X.l, 
jE] J 

where J varies over all subsets of {1,2, ... ,n}. Then (i) holds by Lemma XVII.2.1 

and (ii) by Lemma XVII.2.2 in [14]. 

To show that A(P) is a full algebra of operators let T be a non-singular 

element of P) . Let f E sim(Q) , 
n 

n = 1,2, ... , be functions such that 

II T- P(f ) II --+ 0, as n --+ 00. Then for all sufficiently large n, the operator P(f) is 
n n 

nonsingular and II T- 1 - (P{f ))-1 11 --+ O. But, by (i), for each such n, there exists a 
n 

function g E sim(Q) such that (P(f ))-1 = P(g ). Therefore, T- 1 E A(P) . 
n n n 

B. With a spectral set function P: Q --+ BL(E), we shall associate the 

semi norm p p on sim(Q) defined by 

(B.I) P p(f) = II P(f) II 

for every f E sim(Q) . 
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PROPOSITION 6.2. A set Yen is p p - null if and only if there exist sets Xj E Q 

such that P(X.) = 0, jo'r every j = 1,2, ... , and 
J 

(B.2) 
00 

Yc U X . 
j=l j 

Proof. Let X. E Q be sets such that P(XJ = 0 for every j = 1,2, ... and (B.2) holds. 
J J 

Let us repeat each set count ably many times, arrange the resulting family of sets into a 

single sequence and call their characteristic functions j = 1,2, .... Then 

f. E sim(Q) , for every j = 1,2'00" 
J 

(B.3) 

and 

(BA) 

00 

I pp(f.l < 00 

j=l J 

00 

L If.(w) I =00 

j=1 J 

for every wE Y. So, by Proposition 2.2, the set Y is p p-null. 

Conversely, assume that f. E sim(Q) , 
J 

j = 1,2, ... , are functions, satisfying 

(B.3), such that (B.4) holds for every wE Y. Let 

n 
j 

f = ~ c X 
. L },; 'k' 
J j=l J J 

with some integer n. 2: 1, numbers 
} 

Cjk and pair-wise disjoint sets 

By Lemma 6.1, IIP(fj) II 2: I Cjkl , k = 1,2, ... , n. , 
} 

for every j = 1,2, .... whenever 

P(Xjk) f O. Therefore if we modify each function Ij by omitting those sets X jk ' 

together with the corresponding numbers cjk ' for which P(Xjk) f 0, then (B.4) will 

remain satisfied for every w E Y. But then, Y is covered by the remaining sets Xjk ' 

k=1,2, ... ,n., j=1,2, .... 
J 

In view of this proposition, pp-null sets will be called simply P-null. 

For a function f on n, let 

11/11 = inf{sup{ If(w) I : wE n\ Y} : YE AI} , 
00 
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where )f is the family of all P-null sets. Then O:'S IIII1 :'S 00. The function f is 
00 

said to be P-essentially bounded if I1II1 < 00. In that case, the infimum is actually a 
00 

minimum because any subset of the union of countably many P-null sets is P-null. 

That is to say, for any P-essentially bounded function I, there exists a P-null set, 

Y, such that 

11/11 = sup{ If(w) I : wE n\ Y} . 
00 

Following the custom., we shall call P-null any function f on n such that 11ft = 0 . 

The P-equivalence class of a function f will be denoted by [fl, or by [fl p if the 

spectral set fUIlction P needs to be indicated. To be sure, is the set all 

functions 9 on n such that Ilf-gil = 0 . 
00 

Let e(p) be the family of all functions f on n such that, for every £ > 0 , 

there exists a function 9 E sim(Q) for which Iii-gil < f. Then e(p) is an algebra 
00 

under the point-wise operations. 

Let £OO(P) = ([fl : f E e'(P)}. Then LOO(P) is a Banach algebra with respect 

to the operations induced by the operations in the algebra e'(P) and the norm, 

11·11 , induced by the seminorm f H 11/11 ,IE [;Y.l(P) . 
00 00 

The Banach algebra LOO(P} is semisimple (see e.g. [46], Theorem 24C). 

Actually, if fl is the structure space of £OO(P) , then the Gelfand transform is an 

isometric isomorphism of LOO(P) onto the whole of C(Ll). Moreover, for any function 

I E e'( P), the equality 

(B.5) ([Ink) : hE fl} = n {f(w): wE n\yr 
YEN 

holds, where )f is the family of all P-null sets and the bar indicates the closure in the 

complex plane. The set (B.5) is called the P-essential range of the function I. 

C. A spectral set function P: Q -l BL(E) will be called closable if the 

associated seminorm, Ip , defined by (B.I) on sim(Q) is integrating. Obviously, in 

that case, Ip integrates for P. Because Ip is determined by P, we shall write 
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i(F) = t(pp ,sim(Q)), L{F) = L(pp ,sim(Q)), qPP = pp and 

F(f) = J f(w)F(dw) = J' fdF = J fd .,0, 
n n n Pp 

for every f E i(F) , omitting the subscript, 

PROPOSITION 6.3. Let P: Q -) BL(E) be a closable spectral set function, 

The equality Ilfll == 0 holds for a function f on n if and only if f E [(P) and 
00 

(f) = 0, Furthermore, [(F) c e(F) and Ilft:s IIFWII, for every function 

f E [(F) . 

If f E [(P) and g E £(.,0) then E £(.,0) and F(fg) = F(f)P(g) , So, C(P) is 

an algebra of junctions. 

The range of the integration map P: £(P) -) BL(E) is equal to A(P). The 

Banach algebra A(P} is semisimple. The integration map P: L(P) -) A(P) is an 

isomorphism of the algebra L(P) onto the algebra A(P) . 

If f E £( P), then the spectrum of the operator T = F(f) is equal to the 

P- essential range of the function f. 

Proof. If 1 is a function on n such that 11111 = 0, then by the definitions of the 
00 

P-null sets, P-null functions and integral, f E [(P) and P(f) = 0 . 

Let f E £(P). Let f. E sim(Q), j = 1,2, ... , be functions, satisfying condition 
J 

(B.3), such that 

(C.l) 

for every I./J E n for which 

(C.2) 

Then, by Lemma 6.1, 

(C.30) 

00 

f(w) = L f.(w) 
j=l J 

00 

L If.(w) I < 00. 

pI J 

00 

L II!.II < 00 • 
j=1 } 00 

By the completeness of the space Loo(P) , there exists a function 9 E elF) such that 
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(CA) 

in LOO(P) , Since, by Proposition 002, the set of points WEn, for which the equality 

(C.l) does not hold, is P-null, we have Ilf-gt =: 0, and so, IE e(p). Moreover, 

by Lemma 6.1, 

for every n =: 1,2,.,.. Therefore, by Proposition 2.1 and the continuity of norms, 

Ilft:s il P(f) Ii . 
If, moreover, 9 E sim(Q), then, by Lemma 6.1, P(f.g) == P(f')P(g), for every 

J J 

j = 1,2, ... , and, by (B.3), 

00 00 

(C,5) L IIP(f,g):s L IIP(fJIIIIP(g)11 < 00. 

j=l J pI 1 

Hence, /g E C(P) and PUg) = P(f)P(g). But then, we can write (C.5) for any 

function 9 E C(P). Consequently, by Proposition 2.1, Ig E C(P) and PUg) = 

P{f)P{g) for any f E C(P) and 9 E C(P) . 

It is clear, from the definition of the integral, that for any f E [(P), the 

operator P(f) belongs to A(P), the closure of the set {P(h): hE sim(Q)}, Hence, 

to show that {P(h): hE £(P)} == A(P), it suffices to show that the set {P(h): hE 

[(PH is closed in BL(E). So, let the operator T be in the closure of this set. Let 

hj E C(P) be functions such that II T-P(h) II < 2- j for every j == 1,2, .... Let 11 = hI 

and f. = h. - h. l' for every j = 2,3, .... Then the condition (B.3) is satisfied, and, so 
J J r 

by Proposition 2.1, if f is a function such that (C.l) holds for every wEn for which 

(C.2) does, then f E C(P) and T = P{f) . 

It is now obvious that the integration map P: L{P) -) A(P) is an isomorphism 

of the algebras L{P} and A(P). Because the algebra L(P) is semisimple, being a 

dense subalgebra of LOO(P) , the algebra A(P) too is semisimple. 

By Lemma 6.1, the algebra A(P) is full. Therefore, the spectrum of an 

operator T belonging to A(P) coincides with its spectrum as an element of this 
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algebra. Because of the isomorphism of A{P) and L{P) , this spectrum coincides 

with the spectrum of the element, [fl, of the algebra L(P) such that T = P(f) , 

which is equal to the essential range of the function f. 

D. If F: Q ~ BL(E) is a closable spectral set function, then by Proposition 

6.3, L{F) c LOO(P). Clearly, if F is not bounded on the algebra generated by Q, 

then the integration map is not continuous in the norm of the space LOO(F) and its 

domain, L(P) , is not equal to the whole of LOO(P). This domain is of course dense in 

LOO(P) and the following proposition implies that the integration map is closed. 

PROPOSITION 6.4. A spectral set function F: Q -) BL( E) is closable if and only if 

thel'e exists an injective map ~: A(P) ~ LOO(P) such that II~(T)II :S IITII, fOT ever-y 
00 

T E A(P), and ~(F(f)) = [fl , fOT every f E sim(Q) . 

If the spectral set function P: Q ~ BL(E) is indeed closable then such a map ~ 

is unique, its Tange if equal to L(P) and the map ~ is equal to the inverse of the 

integration map. 

Proof. If such a map 1>: A(F) ~ LOO(P) exists, then it is unique and linear because 

{P(f) : f E sim(Q)} is a dense subspace of A(P}. Let then f. E sim(Q) , j = 1,2, ... , be 
J 

functions satisfying condition (B.3) and let 

00 

L f.(w) = 0 
j=l J 

for every wEn for which (C.2) holds. Let T E BL(E) be the operator such that 

n 
limllT- L PUJII=O. 
n--)oo ]"=1 J 

Then of course T E A(P). Because the map ~ is norm-decreasing, condition (B.3) 

implies that (C.3) holds and, if [g] = ~(T), then (C.4) does. Now, by Proposition 

6.2, the set of the points wEn for which (B.4) holds is P-null, and so, [g] = 0 . 
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Consequently, T:= 0 because the map qi is injective. That is 

00 

L P(f.) == 0 , 
i=l J 

and, by Proposition 2.8, the set function P is closable. 

If the set function P is closable, then by Proposition 6.2, such a map 

q;. : A(P) -l Loo(P) exists: it is the inverse of the integration map. 

Let us now mention a sufficient condition for a spectral set function to be 

closable. But first a definition: 

A spectral set function P: Q -l BL(E) is said to be stable if P( y) ;:;; 0 for every 

P-null set Y which belongs to Q. 

PROPOSITION oJ), If Q is an algebm sets and P: Q -) BL(E) a bounded and 

stable spectral set function, then P is closable. 

Proof. Let [sim(Q)] = {[fl : f E sim(Q)}. Because P is stable, there is a map 

P: [sim(Q)] -l BL(E) , unambiguously defined by PWD ;:;; P(f) , for every 

f E sim(Q). Because P is bounded and Q is an algebra, by Lemma 1, the map P is 

bounded. Then P has a unique continuous extension onto the whole of LOO(P). By 

Lemma 1, P and its extension are norm-increasing. Therefore, P so extended has 

an inverse, q" which is norm-decreasing. Because both maps, P and q;., are 

bounded, the domain of q, is closed and, hence, equal to A{P}. So, by Proposition 

6.4, the set function P is closable. 

COROLLARY 6.6. Let P: Q -l BL(E) be a spectral set function such that, for every 

x E E and x' E E', the set function X H x' P(X)x, X E Q, generates a O"-additive 

measure of finite variation. The the set function P is closable. 

Proof. The assumption implies that the additive extension of P onto the algebra of 

sets generated by Q is bounded and stable. 
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Corollary 6.6 implies, in particular, that a v-additive spectral measure whose 

domain is a v-algebra of sets is closable. 

E. Let us call a Boolean quasi algebra of projections We BL(E) semisimple 

if the Banach algebra, A( W), it generates is semisimple. 

PROPOSITION 607. A Boolean quasialgebra projection operators, We BL(E) , is 

semisimple if and only if there exists a quasialgebra of sets, Q, in a space n, and a 

closable spectral set junction, P: Q -l BL(E) , such that A( W) = A(P) . 

Proof. Let W be semisimple. Let n be the structure space of the Banach algebra 

A( W). Let us denote by q, the Gelfand transform and put Q = {q,(S) : SEW} . 

Because we identify sets with their characteristic functions, Q is a quasialgebra of sets 

in the space n. Let P( q,(S)) = S, for every SEW. This defines a spectral set 

function P: Q -l BL(E) such that the empty set is the only P-null set. Therefore, 

Loo( P) = C( n) and the Gelfand transform is clearly a norm-decreasing injective map 

from A(P} = A( W) into Loo(P} such that Ill(F(f)} = [fl for every f E sim(Q). So, 

by Proposition 6.4, the spectral set function P is closable. 

Conversely, if a closable spectral set function P such that A( liT!) = A(P) 

exists, then, by Proposition 6.3, the Banach algebra A( W) is semisimple. 

COROLLARY 6.8. Any bounded Boolean algebra of projections is semisimple. 

Proof. By the Stone representation theorem, for any Boolean algebra of operators, 

W, there exists an algebra of sets, Q, and a spectral set function P: Q -l BL(E) 

such that 0 is the only P-null set and {P(X) : X E Q} = W. By Proposition 4.5, the 

set function P is closable. 

Let us call an operator T E BL(E) scalar in the wider sense if there exists a 

semisimple Boolean quasialgebra of operators We BL(E) such that T E A( W). By 

Proposition 4.7, and Proposition 4.3, an operator T is scalar in the wider sense if and 
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only if there exist a quasialgebra of sets, Q, in a space n, a closable spectral set 

function P: Q -) BL(E) and a P-integrable function f such that T = P(f) . 

An operator is said to be scalar in the sense of N. Dunford if there exist a 

ll-algebra of sets, Q, in a space n, a ll-additive spectral measure P: Q -) BL(E) 

and a function f E C(P) such that T = P(f). We may also call such operators 

ll-scaiar. By Corollary 6.6, operators which are scalar in the sense of Dunford are 

scalar in the wider sense. Moreover, these operators can be characterized in terms 

introduced here. 

By a Boolean ll-algebra of projection operators is understood a Boolean algebra 

of projection operators which contains the strong limit of every monotonic sequence of 

its elements. 

PROPOSITION 6.9. An operator T E BL(E) is scalar in the sense of Dunford if and 

only if there exists a Boolean u-algebra of projection operators, We BL(E) , such 

that T E A( W) and every element of W commutes with every operator from BL(E) 

which commutes with T. 

Proof. If the operator T E BL(E) is scalar in the sense of Dunford, then there exist a 

ll-algebra of sets, Q, in a space n, a ll-additive spectral measure P: Q -) BL( E) 

and a function f E C(P) such that T = P(f). Let Qf be the minimal ll-algebra of 

sets such that QI e Q and, if PI is the restriction of P to Q" then f E C(P,). The 

range, W = {P(X) : X E Q/}' of the spectral measure P, is then a Boolean 

ll-algebra of projections such that T E A( W) and every element of W commutes 

with every operator commuting with T. 

Conversely, let We BL(E) be a Boolean ll-algebra of projections such that 

T E A( W). By the Stone representation theorem there exist a compact space n, an 

algebra 1 consisting of its compact and open subsets and a spectral set function 

P: 1-) BL(E) such that W = {P(X) : X E 1}. Let Q be the ll-algebra of sets 

generated by 1. Because P is in fact ll-additive and W is a ll-algebra of 

operators, the set function P has a strongly (T-additive extension onto Q, still 
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denoted by P, whose range remains equal to W; see, for example, [30]. Then 

P: Q -) BL(E) is a spectral measure such that, by Proposition 4.3, T = P(f) , for some 

function f E £(P) . 

Operators which are scalar in the wider sense but not scalar in the sense of 

Dunford abound. A way of producing a wealth of such operators is indicated the 

following 

EXAMPLE 6.10. Let D=(O,l], Q={(s,t]:O:ss:St:Sl}. Let p>l and 

p( X) = (t( X)) 1/ P, for every X E Q, where t is the one-dimensional Lebesgue 

measure. By Proposition 2.13 and Proposition 2.26, p is an integrating gauge on Q. 

Let E = L(p,Q) . 

For every X E Q, let P(X) be the operator of point-wise multiplication by 

the characteristic function of the set X. That is, P(X)[u]p = [Xulp' for every 

U E £(p,Q). Because £(p,Q) of £P(t) (see Example 4.16(ii) in Section 4C) the so-defined 

spectral set function P: Q -) BL(E) is surely not (I-additive; indeed, its additive 

extension on the algebra of sets generated Q is not bounded. Nevertheless, P is 

closable. Moreover, if n:::: 1 is an integer and a set X is equal to the union of n 

pair-wise disjoint sets, X k , k = 1,2,.0.,n, belonging to Q, then lIP(X)II:s n(p-l)/p. 

In fact, let u be a function belonging to £(p,Q). Let c. be numbers and Y. E Q 
J J 

sets, j = 1,2, ... , such that 

and 

for every wEn for which 

Then 

00 

L I c.lp( Y) < 00 

j=l) J 

00 

u(w) = L c'y'(w) 
j=l J J 

00 

1: I c.1 Y.(w) < 00 • 

j=l J J 
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for every j == 1,2, ... , and 

00 

(Xu)(w) = L c.Y.(w)X(w) 
j=l J J 

for every wEn for which 

00 

L Ic.I(Y.nX)(w) < 00. 

j=1 J J 

Therefore, Xu E C(p,Q) and qp(Xu):::; n(P-l)!Pqp(u) . 

Now, let Z be the function on IR which is periodic with period 1 and its 

restriction to n is equal to the characteristic function of the interval (i,l]. For 

every j == 1,2, ... , let X. be the function w H Z(2i- 1w), WEn. Hence, X. E sim(Q) 
J J 

and IIP(X.)II :::; 2(j-l)(p-l)!p , for every j == 1,2, .... Also, if f(w) = w, then 
J 

for every WEn. Therefore, f E C( P) and 

F. This and the next sections are devoted to an example, or, rather, a class 

of examples, which is sufficiently rich to display all the features of the presented 

theory. 

Let G be a locally compact Abelian group and r its dual group. The value of 

a character e E r on an element x EGis denoted by (x,e> . 
Let 1 < P < 00 and let E == LP( G), with respect to a fixed Haar measure on 

the group G. 

Let Jl(r) be the family of all individual functions on r which determine 

multiplier operators on E. That is, f E Jl(r) if and only if there exists an operator 

/I /I 2 p " Tf E BL(E) such that (Tfrp) == frp, for every rp E L n L (G). Here, of course, rp 

denotes the Fourier-Plancherel transform of an element rp of L2( G) . 
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Functions belonging to )(P(f) are essentially bounded. In fact, 11/1100:S: II Tfll , 

for every f E )(P(r) , where 11/1100 is the essential supremum norm of I with respect 

to the Haar measure. The operator T, depends only on the equivalence class of the 
J 

function f. That is, if I E )(P( r) and if 9 is a function on r such that g(~) = f( {) 

for almost every ~ E r, relative to the Haar measure, then 9 E )(P(r) and Tg = Tf . 

It is well-known that an operator T E BL(E) commutes with all translations of 

G if and only if there exists a function f E )(P(r) such that T = Tf · So, {Tf : 

f E )(P(r)} is a commutative algebra of operators, containing the identity operator, 

which is closed in BL(E). Clearly, JiP(r) is an algebra of functions and the map 

f H 1f , f E Jl(r) , is multiplicative and linear. 

Let 1P(r) be the family of all sets Xc r such that X E )(P(r). Let 

P~(X) = T X, for every X E 1P(f') . 

PROPOSITION 6.11. The lamily 1P(r) is an algebra 01 sets in rand 

F~ : l P(r) -) B(LP( G)) is a closable spectral set junction. 

Proof. It follows from the mentioned properties 

1P(r) is an algebra of sets and the set function P = P~ is spectral. Furthermore, a 

set Y c r is P-null if and only if it is null with respect to the Haar measure on r. 

Consequently the Haar measure equivalence classes of functions on r are the same as 

the P-equivalence classes and so are their oo-norms. Therefore, Loo(P) is a Banach 

subspace of Loo(r). Now, A{F) is a closed subalgebra of the Banach algebra 

{Tf : f E MP(r)}. For every T E A(P) , let qi( T) = [fl, where f E )(P(r) is a 

function such that T = Tf . Then qi is an unambiguously defined norm-decreasing 

map from A{P) into Loo(F) such that q;.(P(f)) = [t], for every IE sim(lP(r)) . 

Therefore, by Proposition 6.4, the set function P is closable. 

The usefulness of this proposition depends of course on how rich is the algebra 

of sets 1P(r). A result of T.A. Gillespie implies that it is rich enough to permit 

complete spectral analysis of translation operators. Let us introduce the necessary 

relevant notation. 
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Let 'I' be the circle group, {Z E { : I zl = 1}, with its usual topology of a 

subset of the complex plane. Connected subsets of 'I' will be called arcs. For an 

element x of the group G and an arc Z c T , let 

Xz = {~ E f : (x,e> E Z} . ,x 

Let K1 (r) be the family of all sets X z,x corresponding to arcs Z C T and elements of 

x E G. The classes of sets K (r), n = 2,3, ... , are then defined recursively by 
n 

requiring that K n (f) consist of all sets X n Y such that X E K n-l (f) and Y E K1 (f) . 

LEMMA 6.12. The inclusion K (r) c llP(r) is valid for every p E (1,00) and every 
n 

n = 1,2,.... Moreover, for every p E (1,00), there exists a constant C 2: 1 such that 
P 

IIPl!(X)11 :::: en, for every X E K (f), every n = 1,2, ... , and every locally compact 
P n 

Abelian group f. 

Proof. For n = 1, this is a simple re-formulation of Lemma 6 of [18]. (See also 

Lemma 20.15 in [12].) By induction, the result follows for every n = 2,3, .... 

Let '1 be the family of all subsets of IR which contains all members of .tl (IR) 

and all intervals in IR and no other sets. The families , , n = 2,3, ... , are then 
n 

defined recursively by requiring that 'n consist of all sets Xn Y such that X E 'n-l 
and YE'l' 

If we combine Lemma 6.12 with a classical theorem of M. Riesz (interpreted to 

the effect that intervals belong to J{P(IR) and determine a bounded family of multiplier 

operators; see e.g. [8], Theorem 6.3.3) we obtain the following 

COROLLARY 6.13. The inclusion c 7lP(IR) is valid for every p E (l,oo) and every 

n = 1,2,.... Moreover, for evenJ p E (l,oo), there exists a constant D > 1 such that 
P -

II P'IRP(X) II :::: Dn, for every X E J and n = 1,2, .... 
P n 

G. The (total) variation of a function f of bounded variation on IR or on 

'I' will be denoted by var(f). Recall that every function, f, of bounded variation 

has a decomposition, such that the function f 1 
is absolutely 
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continuous, f2 is continuous arid singular (its derivative vanishes almost everywhere) 

and f3 is a jump-function. If the function f vanishes at a point (or at -(0) then 

there is only one such decomposition with all the three components, 11' f2 and f3 , 

vanishing at that point. If the continuous singular component, f2 , is identically 

equal to zero, then the function f is called non-singular. 

LEMMA 6.14. Let a, (3 and b be real numbers such that a:::; (3. Let u be the 

function on IR such that u(t) = 0 for t < a, u(t) = b{t-a) for a:::; t:::; (3, and 

u(t) = b((3-a) for t 2: (3. Then there exist numbers c. and sets X. E J2 , j = 0,1,2, ... , 
J J 

such that 

00 

L 
j=O 

I c.1 IIPIRP(XJII :::; 2~var( 11,) 
J J P 

and 

00 
L c X(t) = u(t) 

j=O J J 

for every t E IR . 

Proof. Because var( u) = I b I (,8-a), by Corollary 6.13, the statement holds with 

cj = 2- j b(!3-a) , j = 0,1,2, ... , Xo = [(3,00) and 

j = 1,2, .... 

PROPOSITION 6.15. Let f be a reat non-singular function of bounded variation on 

II{ such that f( -(0) = O. Then f E C(P~) and 

(G.I) 

for every p E (1,00) . 

Proof. Let f = f 1 + f 3 for a function g, integrable on IR, such that 
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t E IR, and a jump-function 13 vanishing at -00. Then varU) = var(fl) + var(f3) . 

Moreover, there exist numbers c. and intervals X., j = 1,2,3, ... , such that 
J J 

for every t E IR, and 

There also exist numbers b. and bounded intervals Y., j = 1,2, ... , such that, if 
J J 

u.(t)=J t b.Y.(s)ds, 
J -00 J J 

for every t E IR and j = 1,2, ... , then 

00 00 3[ 3 L var(uJ:= L I u.(oo) I <"2 Ig(s)lds="2 var(fl) 
j=l J j=l J -00 

and 

for every t E IR. Hence, by Lemma 6.14, and Proposition 2.1, f E .c(P~) and the 

inequality (G.1) holds. 

This proposition points at the richness of the space .c(P~). To be sure, this 

space also contains functions of bounded variation which do not vanish at -00 and 

many functions of unbounded variation. In fact, it also contains many functions of 

unbounded r-variation, for any r > 1, because already the characteristic functions of 

many sets from J2 are such. (In this context, see [24].) As .c(P~) c )(P(lR), we have 

a large class of multiplier operators which are scalar in the wider sense. 

LEMMA 6.16. Let r, a, (J and b be real numbers such that 1'::; a < (J::; r + 211" . 

Let u be the function on 11' such that u(expti) = 0 for r::; t < a, u(expti) = Nt-a) 

for a::; t < (J, and u(expti) = b((J-a) for (J::; t < r + 211". Then there exist numbers 

c. and sets X. E K2(T) , j = 0,1,2, ... , such that 
J J 
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I I c.1 IIPf()C)II :s c;2var( u) 
j=O J J p 

and 

00 
L c.X.(z) = u(z) 
j=l J J 

for every Z E '.If . 

Proof. Let m be the largest integer such that m(fJ-O'.):S 27r. Let I = a. + 27rm-1 . 

Note that var( u) = 2101 (fJ-O'.), r-:s a. < fJ:5 1:S r+ 271" and m(f-O'.) = 271". Hence, 

by Lemma 6.12, it suffices to take Co = b(fJ-O'.), Xo = {expti : fJ:s t < r + 27r} , 

C = 21- j lrbm- 1 and 
j 

X. = {exp(f-t)i :exp(2/-1mti) E {expsi : 0 < s:S lr}} n {expti : 0'.:5 t < fJ} 
J -

for j = 1,2, .... 

PROPOSITION 6.17. Let r E IR and lei f be a real non-singular function bounded 

variation on '.If such that !(expri) = O. Then f E l(pfl and 

for every p E (1,00) . 

Proof. It is analogous to that of Proposition 6.15 only Lemma 6.16 is used instead of 

Lemma 6.14. 

COROLLARY 6.18. Let x E G, let u be a non-singular function bounded 

variation on '.If and let f(~) = u( (x,e» , for every ~ E r. Then f E £(P¥) for every 

p E (l,oo) . 

Proof. A power of a character of a group is a character and all characters of '.If are 

powers of a single one, namely the identity function on '.If. Interpreting G as the 

group of characters of r we see immediately that, for every Y E JC (1'), the set 
n 

X = {e E r : (x,e> E Y} belongs to JC (r) , n = 1,2,.... So, Lemma 6.12 and 
n 

Proposition 6.17 imply the result. 
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Now, each element, I, of the group G is interpreted as a function on r - the 

character it generates - that is, the function e H (I,e>, ~ E r. Then IE Jf(r) and 

T is the operator of translation by x. By Corollary 4.17, x E C(pf) and 
x 

(G.2) 

for every x E G. For p = 2, this is an instance of Stone's theorem (see e.g. [46], 

36E). 

Some observations about the Stone formula (G.2) could be of interest because 

they could possibly have somewhat wider implications. Its proof shows that, 

x E C(pp ,K2(r)), for every x E G, where P = Pt with any p E (1,00). That is to 

say, for every IE G, there exist numbers cj and sets Xj E K2(r), j = 1,2, ... , which 

depend of course on x but not on p, such that 

00 
L I c.1 IIPt(XJII < 00 , 
j=1 1 J 

the equality 

holds for every e E rand 

00 

T L c. P~(X.) , 
x j=1 J J 

for every p E (1,00). Hence for each p E (1,00), the translation operator, T , is 
x 

expressed as the sum of the same multiples of the projections Pt.(X.), j = 1,2, .... 
J 

These projections too are 'the same' for each p, only the space, E;::: LP( G), in 

which they operate varies with p. 

Also the fact that the sets Xj ' j:::; 1,2, ... , belong to the class K2(r) may 

possibly be worth noting. The algebra l P(f) contains of course also sets of much 

greater complexity than those belonging to K2(r). It seems that it would contribute 

considerably to our understanding of multiplier operators to know what kind of sets, 

besides those belonging to the classes K (f), n = 1,2,00', are in the algebra l P(r) 0 

n 

The classes J , n = 1,2, ... , give us some indication in the case r = IR . 
n 




