6. SCALAR OPERATORS

The most important applications of integration with respect to Banach space
valued measures undoubtedly arise in the theory of spectral operators. To describe its
central notion, let E be a complex Banach space, BL(E) the algebra of all bounded
linear operators on F and [ the identity operator. A spectral measure is an additive
and multiplicative map P:¢- BL(E), whose domain, &, is an algebra of sets in a
space €0, such that P(Q2) =1I. An operator T € BL(FE) is said to be of scalar type if
there exists a o-additive (in the strong operator topology) spectral measure, P,

whose domain is a o-algebra and a P-integrable function f such that
(*) T-= J fap.
, Q

This notion, due to N. Dunford, extends to arbitrary Banach space the idea of an
operator with diagonalizable matrix on a finite-dimensional space. It proved to be
very fruitful as shows the exposition in Part IIT of the monograph [14]. Many powerful
techniques in which scalar operators play a role are based on the requirements that g
be a o-algebra and that P be o-additive. But precisely these requirements are
responsible for excluding many operators of prime interest from the class of scalar-type
operators.

In this chapter, we present a suggestion for extending this class, [35]. It is
based on the fact that the integral (*) exists if and only if there exist @-simple

functions fj, j=1,2,..., such that
5[ s
[ Pl < w
=1 407

and the equality

holds for every we Q for which
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In that case,

dP=oo dP.
jﬂf L]

So, the integral with respect to P can be characterized purely in terms of the
operator-norm convergence. Moreover, to use this characterization as a definition of
the integral with respect to P, it is not necessary to assume that the set function P
be bounded, let alone o-additive, nor that @ be a o-algebra. It suffices to assume

that the seminorm

fell ] faml,

on @-simple functions, be integrating. (See Section 2D.)

Thus, as scalar operators in a wider sense, we propose operators which can be
expressed in the form (*) assuming that P is a spectral measure such that the
mentioned seminorm is indeed integrating. Such operators can also be characterized
intrinsically, that is, without the reference to any particular definition of integral.
Namely, an operator 7T € BL(E) turns out to be scalar in this sense if and only if
there exists a (not necessarily bounded) Boolean algebra of projections belonging to
BL(E) such that the Banach algebra of operators it generates is semisimple and
contains T. However, in contrast with the classical theory, the Gelfand
representations of such a Banach algebra is not necessarily the algebra of all

continuous functions on its structure space but only a dense subalgebra.

A Let E be a complex Banach space. Let BL(E) be the algebra of all
bounded linear operators on E. Then BL(F) is a Banach algebra with respect to the
operator (uniform) norm, defined by ||7]| =sup{|Tz| : |z| < 1,z€ E}, for every
T € BL(F) . The identity operator is denoted by I.

Let @ be a quasialgebra of sets in the space Q. (See Section 1D.) A map
P:Q- BL(E) is said to be multiplicative if P(fg) = P(f)P(g) for every fe€ sim(Q)
and gesim(g). For an additive (see Section 1E) map, P, to be multiplicative it

suffices that P(X N Y) = P(X)P(Y) forevery X€ g and Ye€Q.
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An additive and multiplicative map P:¢- BL(E) such that P(Q2) = I will be
called a BL(E)-valued spectral set function on ¢. If @ happens to be an algebra of
sets, then a spectral set function P: Q- BL(E) is called a spectral measure; see [14],
Definition XV.2.1.

The generality of the theory presented in this chapter is not substantially
increased by the admission of arbitrary spectral set functions instead of spectral
meagsures only. This admission is dictated mainly by convenience in considering the
families of sets which classically occur in integration and spectral theories but are
merely quasialgebras and not algebras. It also allows for the possibility of
distinguishing certain nuances in the presented theory. However, with the exception of
a single remark in the last section, this possibility will not be pursued here.

A spectral set fnction P:0- BL(E) is said to be o-additive if, for every
z€ E, the E-valued set function Xr» P(X)z, Xe€ @, is o-additive. (See Section
1F.) That is to say, o-additivity of spectral set functions is understood in the strong
operator topology of BL(E) .

In virtue of the Stone representation theorem, a set W C BL(E) is a Boolean
algebra of projection operators if and only if there exist an algebra of sets, %, in a
space (0 and a spectral measure, P:7%- BL(E), such that W= {P(X): Xe T} .
Accordingly, a set of operators W C BL(E) is called a Boolean quasialgebra of
projection operators if it is the range of a BL(E)-valued spectral set function, that is,
if there exist a quasialgebra of sets, @, in a space {1 and a spectral set function,
P:Q-BL(E), such that W={P(X): Xeg}.

If WcBL(FE), then by A(W) is denoted the least uniformly closed algebra of
operators which contains W. If W={P(X): Xe€ g} is the range of a spectral set
function P:@- BL(E), we write A(W) = A(P). Clearly, A(P) is then the closure
of the family of operators {P(f) : f € sim(@)} in the space BL(E) .

Recall that, if A is a commutative Banach algebra with unit, then the
structure space, A, of A is the set of all homomorphisms of A onto the field of

complex numbers. For an element T of A, by 7 is denoted the Gelfand transform
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of T; it is the function on A defined by ff\“(h) =h(T), for every he A. Itis
well-known (see e.g. [46], 23B) that sup{| T(R)| : he A} < ||T|| and that the
coarsest topology on A which makes all the functions ]A”, Te A, continuous turns
A into a compact Hausdorff space. Hence the Gelfand transform is a norm-decreasing
homomorphism of the algebra A into the algebra, C(A) , of all complex continuous
functions on A . If the Gelfand transform is injective, then the algebra A is called
semisimple.

Recall that an operator T € BL(E) is called nonsingular if it is invertible in
BL(E) , that is, if there exists an operator S € BL(E) such that S7'= 7S=17. Then
of course §= T 1 is the inverse of each of T'. A full algebra of operators is uniformly
closed algebra of operators which contains the inverse of each of its nonsingular

elements; see [14], Definition XVII.1.1.

LEMMA 6.1. Let @ be a quasialgebra of sets in a space @ andlet P: Q- BL(E) be
a spectral set function.
(i) If fesim(@), then the operator P(f) is nonsingular if and only if the

function [ can be represented in the form
n

(A1) f=Y X,
P

where the n is a natural number, the ¢, are non-zero complex numbers and the X,-

are pair-wise disjoint sets from @, j=1,2,...,n, such that

In that case, (P(f))—1 = P(g) , where

_ 1
9= 721 ¢ XJ
(ii) Let fesim(Q) be a function expressed in the form (A.1) where Xj €g

are pair-wise disjoint sets such that P(X],) #0, for every j=12,..,n, and let
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= sup{lcjl cJj=1,2,..,n} and
d=sup{|| T P : T (12,m)}
T
Then ¢ < ||P(f)|| < 4cd.

(iii) A(P) is a full algebra of operators.

Proof. Let n >1 be an integer. Let X], € § be pair-wise disjoint sets, such that
P(Xj) #0, for every j=1,2,....,n and the sum of the operators P(Xj) , j=1,2,...n,

is equal to . Then the family of operators

n
j;l ch( Aj) ,

with arbitrary complex ¢ = 1,2,...,n, is a closed algebra of operators generated by the

Boolean algebra of projections

where J varies over all subsets of {1,2,...,n} . Then (i) holds by Lemma XVII.2.1
and (ii) by Lemma XVII.2.2 in [14].

To show that A(P) is a full algebra of operators let T be a non-singular
element of A(P). Let fn esim(9), =n=12,.., be functions such that
|| T-P( f -0, as n-ow. Then for all sufficiently large 7, the operator P fn) is
nonsingular and || i (P(fn))_lll - 0. But, by (i), for each such n, there exists a
function g € sim(d) such that (P( fn))_1 = P( gn) . Therefore, Tle AP).

B. With a spectral set function P:@- BL(E), we shall associate the

seminorm pp oOn sim(Q) defined by

(B.1) pplf) = 1Pl

for every f € sim(Q) .
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PROPOSITION 6.2. A set YCQ is pP—null if and only if there exist sets X]_ €g
such that P(X],) =0, forevery j=12,.., and

9]
(B.2) Ycu X..
1 7

Proof. Let Xj € 0 be sets such that P(Xj) =0 forevery j=1,2,... and (B.2) holds.
Let us repeat each set countably many times, arrange the resulting family of sets into a
single sequence and call their characteristic functions fj , j=12,... Then

fj € sim(g) , for every j=1,2,...,

(B.3) ,21 Pp(f) < o

and

(B.4) RUCIEE
=1

for every we Y. So, by Proposition 2.2, the set Y is p P—null.
Conversely, assume that ij sim(@) , j=1,2,.., are functions, satisfying

(B.3), such that (B.4) holds for every we Y. Let

i}
= c, X
J j§1 ik =gk’

with some integer n, >1, numbers ¢

& and pair-wise disjoint sets Xjke a,

k= 1’2"“’";’ for every j=1,2,... By Lemma 6.1, ||P(fj)|l > [cjkl , Wwhenever
P(X;k) # 0. Therefore if we modify each function fj by omitting those sets Xjk,

together with the corresponding numbers Cpo for which P(X]_k) # 0, then (B.4) will
remain satisfied for every w€ Y. But then, Y is covered by the remaining sets Xjk ,

k=120, j=12,...

In view of this proposition, p P—null sets will be called simply P-null.

For a function f on O, let

Il = inf{sup{|f(w)| : we A\Y}: Ye 4y,
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where /¥ is the family of all P-null sets. Then 0< ||| < o. The function f is
said to be P-essentially bounded if [|f| < . In that case, the infimum is actually a
minimum because any subset of the union of countably many P-null sets is P-null.
That is to say, for any P-essentially bounded function f, there exists a P-null set,

Y, such that
I7ll,, = sup{1f(w)] : we Q\ Y} .

Following the custom, we shall call P-null any function f on € such that ||f]] =0.
The P-equivalence class of a function f will be denoted by [f], or by [f] p if the
spectral set function P needs to be indicated. To be sure, [f] is the set of all
functions g on Q such that ||f-gl| =0.

Let £°(P) be the family of all functions f on € such that, for every ¢ >0,
there exists a function g€ sim(g@) for which || f—g”00 < ¢. Then L®(P) is an algebra
under the point-wise operations.

Let L™(P)={[f]: fe L(P)}. Then L™(P) is a Banach algebra with respect
to the operations induced by the operations in the algebra L®(P) and the norm,
I ||00 , induced by the seminorm f»r ||f|| feLP).

The Banach algebra L*(P) is semisimple (see e.g. [46], Theorem 24C).
Actually, if A is the structure space of L*(P), then the Gelfand transform is an
isometric isomorphism of L™(P) onto the whole of C(A) . Moreover, for any function

f€ L%P), the equality

(B.5) {lilT(A):heAt= n {flw): weQ\Y}"
YeN

holds, where ¥ is the family of all P-null sets and the bar indicates the closure in the

complex plane. The set (B.5) is called the P-essential range of the function f.

C. A spectral set function P:¢@- BL(E) will be called closable if the
associated seminorm, B s defined by (B.1) on sim(g) is integrating. Obviously, in

that case, [ integrates for P. Because P is determined by P, we shall write
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L(P) = £(p, sim(Q)) , L(P) = L(g, ,sim(Q)) , 4, = and
P =] S =] jap=] ja, P,

for every fe L(P), omitting the subscript.

PROPOSITION 6.3. Let P: Q- BL(E) be a closable spectral set function.

The equality Hf][oo =0 holds for a function f on Q if and onlyif e L(P) and
(f)=0. Furthermore, L(P)cL®(P) and Il < 1PN, for every function
feL(P).

If fel(P) and g€ L(P) then fge L(P) and P(fg) = P(f)P(g). So, L(P) is
an algebra of functions.

The range of the integration map P:L(P)- BL(E) is equal to A(P). The
Banach algebra A(P) is semisimple. The integration map P: L(P)- A(P) is an
isomorphism of the algebra L(P) onto the algebra A(P) .

If feL(P), then the specirum of the operator T = P(f) is equal to the

P-essential range of the function f.

Proof. If f is a function on € such that ||fl| =0, then by the definitions of the
P-null sets, P-null functions and integral, f€ £(P) and P(f)=0.

Let fe L(P). Let f,- €sim(@), j=1,2,..., be functions, satisfying condition
(B.3), such that

(1) o= §
]___

for every we  for which

(c2) ROIRES

7=1
Then, by Lemma, 6.1,
(€.30) L il <o
=1

By the completeness of the space L®(P), there exists a function g€ L°(P) such that
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(C4) | =1 [f]
=1

in L®(P). Since, by Proposition 6.2, the set of points w € Q, for which the equality
(C.1) does not hold, is P-null, we have ||f—g||00 =0, andso, feL%P). Moreover,

by Lemma 6.1,
n
DELIRI
=1 =
for every n=1,2,... Therefore, by Proposition 2.1 and the continuity of norms,
I, < 12O -

If, moreover, g€ sim(g), then, by Lemma 6.1, P( f]_g) = P( fj)P( g), for every
j=1,2,..., and, by (B.3),

(C.5) Z 17(7,9) < Z PGP <

Hence, fge L(P) and P(fg)=P(f)P(g). But then, we can write (C.5) for any
function g€ L(P). Consequently, by Proposition 2.1, fge€ £(P) and P(fg)=
P(f)P(g) for any fe L(P) and ge L(P).

It is clear, from the definition of the integral, that for any fe L(P), the
operator P(f) belongs to A(P), the closure of the set {P(h): h € sim(@)} . Hence,
to show that {P(h): he L(P)} = A(P), it suffices to show that the set {P(h):he
L(P)} is closed in BL(E) . So, let the operator T be in the closure of this set. Let
hj € L(P) be functions such that || T—P(hj)|| < 277 for every j=1,2,... Let fi=h
and fj = hj - hj_1 , for every j=2,3,.... Then the condition (B.3) is satisfied, and, so
by Proposition 2.1, if f is a function such that (C.1) holds for every we€ Q for which
(C.2) does, then fe L(P) and T= P(f).

It is now obvious that the integration map P: L(P) - A(P) is an isomorphism
of the algebras L(P) and A(P). Because the algebra L(P) is semisimple, being a
dense subalgebra of L®(P), the algebra A(P) too is semisimple.

By Lemma 6.1, the algebra A(P) is full. Therefore, the spectrum of an

operator T belonging to A(P) coincides with its spectrum as an element of this
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algebra. Because of the isomorphism of A(P) and L(P), this spectrum coincides
with the spectrum of the element, [f], of the algebra L(P) such that T= P(f),

which is equal to the essential range of the function f.

D. If P: Q‘—» BL(E) is a closable spectral set function, then by Proposition
6.3, L(P)c L®(P). Clearly, if P is not bounded on the algebra generated by &,
then the integration map is not continuous in the norm of the space L®(P) and its
domain, L(P), is not equal to the whole of L*(P) . This domain is of course dense in

L®(P) and the following proposition implies that the integration map is closed.

PROPOSITION 6.4. A spectral set function P: Q- BL(E) is closable if and only if
there exists an injective map ® : A(P) - L°(P) such that ||®( T)l|00 < |17, for every
Te A(P), and ®(P(f)) =[f], for every fesim(Q). |

If the spectral set function P: Q- BL(E) is indeed closable then such a map @
s unique, its range if equal to »L(P) and the map @ s equ\al to the inverse of the

integration map.

Proof. If such a map ®: A(P) - L®(P) exists, then it is unique and linear because
{P(f) : f € sim(@)} is a dense subspace of A(P). Let then f,- esim(9), j=1,2,..., be

functions satisfying condition (B.3) and let
0]
L f(w)=0
=17
for every w e Q for which (C.2) holds. Let 7€ BL(E) be the operator such that

lim |7~ § P =0.

n— 00 =1

Then of course T € A(P). Because the map @ is norm-decreasing, condition (B.3)
implies that (C.3) holds and, if [g] = ®(T), then (C.4) does. Now, by Proposition
6.2, the set of the points we Q for which (B.4) holds is P-null, and so, [¢]=0.
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Consequently, T'=0 because the map @ isinjective. That is
[09)
L P(f)=0,
i=1 Y

and, by Proposition 2.8, the set function P is closable.
If the set function P is closable, then by Proposition 6.2, such a map

® : A(P) » L°(P) exists: it is the inverse of the integration map.

Let us now mention a sufficient condition for a spectral set function to be
closable. But first a definition:

A spectral set function P: Q- BL(E) is said to be stable if P(Y) =0 for every
P-null set Y which belongs to & .

PROPOSITION 6.5. If @ is an algebra of sets and P : Q- BL(E) a bounded and

stable spectral set function, then P is closable.

Proof. Let [sim(@)]={[f]:fesim(@)}. Because P is stable, there is a map
P:[sim(Q)] - BL(E), unambiguously defined by  P([f]) = P(f), for every
fesim(Q) . Because P is bounded and ¢ is an algebra, by Lemma 1, the map Pis
bounded. Then P has a unique continuous extension onto the whole of L®(P). By
Lemma 1, P and its extension are norm-increasing. Therefore, P so extended has
an inverse, ®, which is norm-decreasing. Because both maps, P and &, are
bounded, the domain of @ is closed and, hence, equal to A(P). So, by Proposition

6.4, the set function P is closable.

COROLLARY 6.6. Let P:Q- BL(E) be a speciral set function such that, for every
T€FE and z° € E', the set function Xv 2’ P(X)z, X€ @, generates a o-additive

measure of finite variation. The the set function P is closable.

Proof. The assumption implies that the additive extension of P onto the algebra of

sets generated by ¢ is bounded and stable.
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Corollary 6.6 implies, in particular, that a o-additive spectral measure whose

domain is a o-algebra of sets is closable.

E. Let us call a Boolean quasialgebra of projections W C BL(E) semisimple

if the Banach algebra, A(W), it generates is semisimple.

PROPOSITION 6.7. A Boolean quasialgebra of projection operators, W C BL(E) , is
semisimple if and only if there ezists a quasialgebra of sets, @, in a space @, and a

closable spectral set function, P: Q- BL(E), such that A(W) = A(P) .

Proof. Let W be semisimple. Let ) be the structure space of the Banach algebra
A(W) . Let us denote by ® the Gelfand transform and put @={®(S):Se W}.
Because we identify sets with their characteristic functions, @ is a quasialgebra of sets
in the space . Let P(®(S))=S5, for every S€ W. This defines a spectral set
function P:@- BL(F) such that the empty set is the only P-null set. Therefore,
L*(P) = C(Q) and the Gelfand transform is clearly a norm-decreasing injective map
from A(P)= A(W) into L™(P) such that ®(P(f)) =[f] for every fe sim(Q). So,
by Proposition 6.4, the spectral set function P is closable.
Conversely, if a closable spectral set function P such that A(W) = A(P)

exists, then, by Proposition 6.3, the Banach algebra A(W) is semisimple.
COROLLARY 6.8. Any bounded Boolean algebra of projections is semisimple.

Proof. By the Stone representation theorem, for any Boolean algebra of operators,
W, there exists an algebra of sets, @, and a spectral set function P: ¢ - BL(E)
such that § is the only P-null set and {P(X): X € g} = W. By Proposition 4.5, the

set function P is closable.

Let us call an operator T € BL(E) scalar in the wider sense if there exists a
semisimple Boolean quasialgebra of operators W C BL(E) such that T e A(W). By

Proposition 4.7, and Proposition 4.3, an operator 7T is scalar in the wider sense if and
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only if there exist a quasialgebra of sets, ¢, in a space {0, a closable spectral set
function P:g- BL(E) and a P-integrable function f such that T = P(f) .

An operator is said to be scalar in the sense of N. Dunford if there exist a
o-algebra of sets, @, in a space 0, a o-additive spectral measure P : Q- BL(E)
and a function fe L(P) such that T=P(f). We may also call such operators
o-scalar. By Corollary 6.6, operators which are scalar in the sense of Dunford are
scalar in the wider sense. Moreover, these operators can be characterized in terms
introduced here.

By a Boolean o-algebra of projection operators is understood a Boolean algebra
of projection operators which contains the strong limit of every monotonic sequence of

its elements.

PROPOSITION 6.9.  An operator T € BL(E) is scalar in the sense of Dunford if and
only if there exists a Boolean o-algebra of projection operators, W C BL(E), such
that T e A(W) and every element of W commutes with every operator from BL(E)

which commutes with T .

Proof. If the operator T € BL(FE) is séa.lar in the sensé of Dunford, then there exist a
o-algebra of sets, g, in a space ©, a o-additive spectral measure P: - BL(E)
and a function fe€ £(P) such that T= P(f). Let ¢ ; be the minimal o-algebra of
sets such that ch 9 and, if P, is the restriction of P to &,, then f€ E(Pf). The

f
range, W={P(X):Xed,}, of the spectral measure P, is then a Boolean
f

o-algebra of projections such that T € A(W) and every elenflent of W commutes
with every operator commuting with T.

Conversely, let W BL(E) be a Boolean o-algebra of projections such that
Te A(W). By the Stone representation theorem there exist a compact space {, an
algebra 7 consisting of its compact and open subsets and a spectral set function
P:%-BL(E) such that W={P(X): Xe B}. Let @ be the o-algebra of sets

generated by B . Because P is in fact o-additive and W is a o-algebra of

operators, the set function P has a strongly o¢-additive extension onto @&, still



6.10 173 6F

denoted by P, whose range remains equal to W ; see, for example, [30]. Then
P: Q- BL(FE) is a spectral measure such that, by Proposition 4.3, T'= P(f) , for some

function fe€ L(P) .

Operators which are scalar in the wider sense but not scalar in the sense of
Dunford abound. A way of producing a wealth of such operators is indicated by the

following

EXAMPLE 6.10. Let Q=(0,1], 9={(s4:0<s<¢<1}. Let p>1 and
p(X) = (L(X))l/ P for every Xe€Q, where : is the one-dimensional Lebesgue
measure. By Proposition 2.13 and Proposition 2.26, p is an integrating gauge on & .
Let E=L(p,9) .

For every Xe @, let P(X) be the operator of point-wise multiplication by
the characteristic function of the set X. That is, P(X)[u] o= [Xu]p, for every
u€ L(p,9) . Because L(p,0) # LF(:) (see Example 4.16(ii) in Section 4C) the so-defined
spectral set function P:¢- BL(E) is surely not o-additive; indeed, its additive
extension on the algebra of sets generated by @ is not bounded. Nevertheless, P is
closable. Moreover, if n > 1 is an integer and a set X is equal to the union of =
pair-wise disjoint sets, Xk’ k=12,..,n, belonging to ¢, then ||P(X)|| < n(p_l)/p.
In fact, let u be a function belonging to £{(p,d) . Let ¢ be numbers and Y] €4q

sets, j=1,2,..., such that

©

EHQM@<w
and
ww) = }::1 chj(w)

for every we Q for which

¢
L lelY(w)<o.
=T A

Then

0,(Ynx) < } p(¥px) < T E(v),

IN
?TM;)
—
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for every j=1,2,..., and

for every w e 2 for which

Q0

Y ole (Y nX)(w) < o
P A

Therefore, Xu € £(p,d) and ¢ p(Xu) < ple~D/zg p( u) .

Now, let Z be the function on R which is periodic with period 1 and its
restriction to € is equal to the characteristic function of the interval (4,1]. For
every j=1,2,..., let X] be the function wr Z(2j_1w) , weN. Hence, Xj € sim(9)
and ||P(Xj)[| < 2(j_1)(p_1)/p, for every j=1,2,.... Also,if f(w)=w, then

-y 27X (@),
=1

for every we ). Therefore, f€ L(P) and

9l/p
io-1)(p-1)/p _ 1
PO < § 272 21,,,
=1 17
F. This and the next sections are devoted to an example, or, rather, a class

of examples, which is sufficiently rich to display all the features of the presented
theory.

Let G be alocally compact Abelian group and T' its dual group. The value of
a character £ €' on an element z€ G is denoted by (z,£) .

Let 1< p<o andlet E=LP(G), with respect to a fixed Haar measure on
the group G.

Let M(I') be the family of all individual functions on T' which determine
multiplier operators on E. That is, fe #(I') if and only if there exists an operator
Tf € BL(E) such that (T qp)A = f&, for every @€ L2h LP(G) . Here, of course, &

f
denotes the Fourier-Plancherel transform of an element ¢ of L2( Q).



6.11 175 6F

Functions belonging to M(T') are essentially bounded. In fact, || Al =1l TfH ,
for every fe M(T), where || f|]00 is the essential supremum norm of f with respect
to the Haar measure. The operator Tf depends only on the equivalence class of the
function f. That is, if fe #(T) andif ¢ is a function on T' such that g(¢) = f(¢)
for almost every ¢ ¢ r , relative to the Haar measure, then g€ #(T') and Tg = Tf .

It is well-known that an operator T € BL(E) commutes with all translations of
G if and only if there exists a function fe€ M(T') such that T= Tf. So, {Tf:
f€ H(T)} is a commutative algebra of operators, containing the identity operator,
which is closed in BL(E). Clearly, M#(T') is an algebra of functions and the map
fr Tf , [ € JP(T), is multiplicative and linear.

Let 7°(T') be the family of all sets XcT such that XeJJ(T). Let

P(X) = Ty, forevery Xe (1) .

PROPOSITION 6.11. The family RY(T) s an algebra of sets in T and
PE . 7(T) » B(I*(G)) is a closable spectral set function.

Proof. It follows from the mentioned properties of the map fr Tf , fe€H(T), that
#(T) is an algebra of sets and the set function P = PI’f is spectral. Furthermore, a
set Y CI is P-null if and only if it is null with respect to the Haar measure on I'.
Consequently the Haar measure equivalence classes of functions on I' are the same as
the P-equivalence classes and so are their w-norms. Therefore, L®(P) is a Banach
subspace of L®(T'). Now, A(P) is a closed subalgebra of the Banach algebra
{Tf :feM(T)}. For every Te A(P), let &(T)=[f], where feM(T) isa
function such that 7= Tf. Then @ is an unambiguously defined norm-decreasing
map from A(P) into L®(P) such that ®(P(f))=[f], for every fe€ sim(#(T)).

Therefore, by Proposition 6.4, the set function P is closable.

The usefulness of this proposition depends of course on how rich is the algebra
of sets P(T'). A result of T.A. Gillespie implies that it is rich enough to permit
complete spectral analysis of translation operators. Let us introduce the necessary

relevant notation.
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Let T be the circle group, {z€C: |zl =1}, with its usual topology of a
subset of the complex plane. Connected subsets of T will be called arcs. For an

element z of the group G andanarc ZC T, let

XZ,I={§EI‘: (z,6) € Z} .

Let ICI(I‘) be the family of all sets X P corresponding to arcs ZC T and elements of
z€ G. The classes of sets lCn(I‘), n=2,3,.., are then defined recursively by

requiring that ICn(I‘) consist of all sets XNY such that X € lCn_l(I‘) and Ye ICl(I‘) .

LEMMA 6.12. The inclusion Kn(I‘) CR(T) is valid for every p€ (Lw) and every
n=12... Moreover, for every p€ (lw), there exists a constant Cp > 1 such that
| PE(X)| < CZ, for every Xe€ ICn(I‘) , every n=12..., and every locally compact
Abelian group T .

Proof. For n=1, thisis a simple re-formulation of Lemma 6 of [18]. (See also

Lemma 20.15 in [12].) By induction, the result follows for every n=2,3,... .

Let ]1 be the family of all subsets of R which contains all members of lCl([R)
and all intervals in R and no other sets. The families Jn , n=223,..., are then
defined recursively by requiring that ]n consist of all sets XNY such that X e ]n—l
and YeJ =

If we combine Lemma 6.12 with a classical theorem of M. Riesz (interpreted to
the effect that intervals belong to #(R) and determine a bounded family of multiplier

operators; see e.g. [8], Theorem 6.3.3) we obtain the following

COROLLARY 6.13. The inclusion Jn c P(R) is valid for every p€ (Lw) and every
n=12,.... Moreover, for every pe (1,w), there exists a constant Dp >1 such that

||P§(X)[| < DZ’ forevery XeJ and n=12,...

G. The (total) variation of a function f of bounded variation on R or on
T will be denoted by var(f) . Recall that every function, f, of bounded variation

has a decomposition, f= fl + f2 + f3 , such that the function fl is absolutely
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continuous, f, is continuous and singular (its derivative vanishes almost everywhere)

2
and f3 is a jump-function. If the function f vanishes at a point (or at -») then
there is only one such decomposition with all the three components, f1 R f2 and f3 ,
vanishing at that point. If the continuous singular component, f2, is identically

equal to zero, then the function f is called non-singular.

LEMMA 6.14. Let o, 8 and b be real numbers such that o< . Let u be the
function on R such that uw(¢)=0 for t< a, u(t)=0dt-a) for a<it< B, and
u(t) = b(B-a) for t > B . Then there exist numbers 2 and sets Xj € J2 , j=0,1,2,...,

such that
j;o le,| BRIl < 2D§var(u)
and
jgo c}_Xj( 1) = u(t)

for every teR.

Proof. Because var(u)=|b|(f~a), by Corollary 6.13, the statement holds with
¢.= 277b(B-a), j=0,1.2,..., X, = [B,0) and

j
Xj: {teIR : exp[%@i] efexpsi:m< s< 27r}} nlep),
j=1.2,....

PROPOSITION 6.15. Let f be a real non-singular function of bounded variation on
R such that f{-w)=0. Then f€ £(P|ﬁ) and

(G.1) PR(f) < 3D2var(f) ,
for every pe (1,») .

Proof. Let f= fl + f3 for a function ¢, integrable on R, such that
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teR, and a jump-function f3 vanishing at -w. Then var(f) = var( fl) + var( f3) .

Moreover, there exist numbers cj and intervals Xj, j=1,2,3,..., such that

I =% ex(n),

=1
for every t€R, and

var(f,) = % lel -

=1

There also exist numbers bj and bounded intervals Y] , j=1,2,..., such that, if

for every t€R and j=1,2,..., then

721 var(u ) = ;::1 luj(oo)l < %J:) lg(s)]ds = % var(f,)
and
fl(t) = ]Zz:l Uj(t)

for every teR. Hence, by Lemma 6.14, and Proposition 2.1, f¢€ L(Plﬁ) and the
inequality (G.1) holds.

This proposition points at the richness of the space £(P[ﬁ) . To be sure, this
space also contains functions of bounded variation which do not vanish at -« and
many functions of unbounded variation. In fact, it also contains many functions of
unbounded r-variation, for any r > 1, because already the characteristic functions of
many sets from ]2 are such. (In this context, see [24].) As [(P[ﬁ) c #/(R) , we have

a large class of multiplier operators which are scalar in the wider sense.

LEMMA 6.16. Let r, o, 8 and b be real numbers such that r< a< < r+2n.
Let u be the function on T such that u(expti) =0 for r< t< a, u(expt) = b(i-a)
for a<t< B, and ulexpti) = b(B-a) for B< t< r+2x. Then there exist numbers

¢ and sets X,- € ICz(T) , j= 0,1,2,..., such that
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£ 161 173001 < Crarta
and

=1
for every z€eT .

Proof. Let m be the largest integer such that m(8-a) < 27. Let 7= a+ 2L
Note that var(u) =2|b|(f-a), r< a< f< y< r+2r and m{y-a) = 2r. Hence,
by Lemma 6.12, it suffices to take ¢ = b(s-a) , X, = {expti: f< t< r+27},

-1

¢ = 2 nbm™! and

Xj = {exp(y-1)i :'exp(2j—1mti) €{expsi:0< s< mp}n{expti: a< t< B}
for 7=1,2,....

PROPOSITION 6.17. Let reR andlet f be a real non-singular function of bounded
variation on T such that flexpri)=0. Then f¢€ £(Prff‘) and

PA(f) < 2Cvax(f)

for every p € (1,0) .

Proof. It is analogous to that of Proposition 6.15 only Lemma 6.16 is used instead of

Lemma 6.14.

COROLLARY 6.18. Let z€ G, let u be a non-singular function of bounded
variation on T and let (€)= u({z,€)), for every £€T . Then f€ L(PE) for every

pE (1,00) .

Proof. A power of a character of a group is a character and all characters of T are
powers of a single one, namely the identity function on T . Interpreting G as the
group of characters of T' we see immediately that, for every Y€ ICn(T) , the set
X={¢eT:{z,6)e Y} Delongs to lCn(I“) , n=12,.. . So, Lemma 6.12 and

Proposition 6.17 imply the result.
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Now, each element, z, of the group G is interpreted as a function on T - the
character it generates - that is, the function ¢ (z,6), €€ . Then z€ #(T) and

Tz is the operator of translation by z. By Corollary 4.17, z€ £(PF) and
(G2) 7,= | (5 PRAO),

for every z€ G. For p=2, thisis an instance of Stone's theorem (see e.g. [46],
36E).

Some observations about the Stone formula (G.2) could be of interest because
they could possibly have somewhat wider implications. Its proof shows that,
TE l:(;}) ,Kz(l‘)) , for every z€ G, where P=PP with any pe€ (lw). That is to
say, for every z € G, there exist numbers ¢ and sets X,- € K2(F) , j=1,2,..., which

depend of course on z but not on p, such that

Q0
Ll IPRX)| < o,
= j

the equality

@& =} eX(0)

=17

holds for every £ €T and
T =% ¢ PUX),
= e
for every pe€ (1,w). Hence fo; each p€ (lw), the translation operator, T , is
expressed as the sum of the same multiples of the projections PIE(X],) , j=12,...
These projections too are 'the same' for each p, only the space, E=IL?(G), in
which they operate varies with p .

Also the fact that the sets Xj, j=12,.., belong to the class ICQ(I‘) may
possibly be worth noting. The algebra 7%?(I') contains of course also sets of much
greater complexity than those belonging to IC2(I‘) . It seems that it would contribute
considerably to our understanding of multiplier operators to know what kind of sets,
besides those belonging to the classes ICn(F) , n=1.2,.., arein the algebra Z°(T).

The classes Jn , n=12,..., give us some indication in the case I'=R.





