
50 VECTOR VALUED FUNCTIONS AND PRODUCTS 

The title practically gives away the content of this chapter. We present first a 

Bochner-type integration theory, that is, one based on absolute summability, for 

Banach space valued functions. Then we consider direct products of integrating gauges 

along with the corresponding Fubini- and Tonelli-type theorems. These two themes 

are related in the formulation of the mentioned theorems; the notion of a measurable 

function is avoided by stating them in terms of Bochner integrability. 

A. Let p be a gauge on a nontrivial family, IC, of scalar valued functions 

on a space n. (See Section 2A.) 

Let E be a Banach space. To avoid some obvious trivialities, we assume that 

E contains a non-zero vector. The convention of writing interchangeably ca = ac , for 

every c E E and a scalar a, will be used throughout the chapter. 

A function f: n -) E will be called Bochner integrable with respect to p, or, 

briefly, p-integrable, if there exist vectors c E E and functions f. E IC, j = 1,2, ... , 
j J 

such that 

00 

(A.l) L I c.1 p(f.) < 00 

1'=1 J J 

and 

00 

(A.2) f(w) = L cJ.(w), 
j=l J J 

for every WEn for which 

00 

(A.3) L Ic.1 If.(w) I < 00. 

j=l J J 

The family of all E-valued functions on 51, Bochner integrable with respect 

to p, is denoted by £(p,IC,E). If the space E happens to be one-dimensional, that 

is, just the space of scalars, then, consistently with the notation introduced in Chapter 

2, we write £(p,IC) = £(p,K,E) . 
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For any function f E C(p,K,E) , let 

where the infimum is taken over all choices of the vectors c. E E and the functions 
J 

f. E JC, j == 1,2, ... , satisfying condition (A.I), such that the equality (A.2) holds for 
J 

every WEn for which the inequality (A.3) does. 

Clearly, £(p,JC,E) is a vector space and sim(K,E) is a vector subspace of it. 

(See Section ID.) Also, it is not difficult to see that qp is a seminorm on C(p,K,E). 

Consequently, we can speak of fJp -Cauchy and qp -convergent sequences of functions 

from £(p,K,E) . 

The p-equivalence class of a function f E C(p,JC,E) consisting of all functions 

9 E C(p,K) such that q/f-g) == 0, is denoted by [flp' The set ([flp: f E C(p,K,E)} 

of all p-equivalence classes of functions from C(p,JC,E) is denoted by L{p,K,E). Then 

L(p,JC,E) is a normed space with respect to the linear operations induced by those of 

C(p,K,E) and the norm induced by the seminorm qp' This norm is still denoted by 

the same symbols qp' 

A function f: n -l E is said to be p-null if f E C(p,r,E) and qp(f) == O. As to 

the null sets, their definition remains of course the same as in Section 2B. Namely, a 

set Zen is p-nuH if its characteristic function is a p-null element of C(p,JC) . 

The introduced definitions do not differ in form from those concerning scalar 

valued functions given in Chapter 2. Because the space E is non-trivial, the 

treatment of scalar valued integrable functions presented in Sections 2A-2D is 

applicable practically without a change to E-valued functions. This fact was first 

noted by J. Mikusinski who exploited in [50], for his definition of Bochner integrable 

functions (in the usual sense). It may be useful to note explicitly that Proposition 2.2 

remains valid if by a function is meant an E-valued function and if C(p,K) is replaced 

by C(p,K,E). It implies that a set Zen is p-null if and only if there exist functions 

f. E C(p,K,E) , j = 1,2, ... , such that 
J 

(A.4) 
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and 

00 

L I f.( w) I = 00 • 

1'=1 J 

for every w E Z . 

The following theorem, which is analogous to Theorem 2.3, is singled out 

because of its central importance. Its proof is of course omitted. 

THEOREM 5.1. Let the functions f. E £(p,JC,E) , j = 1,2, ... , satisfy condition (A.4). 
J 

Then 

co 
1: I!.(w) I < 00 

j=l J 

for p-almost every WEn. Furthermore, if f: n -l E is a function such that 

00 

f(w) = L !.(W) 
pI J 

for p- almost every WEn, then f E £(p,lC,E) and 

lim q [I - f r] = 0 . 
n-loo p j=l J 

Among the implications of this theorem is that L(p,JC,E) is a Banach space. 

Also, it may seem that the natural semi norm of the space £(p,K,E) should be 

denoted more accurately by q E rather than simply by q . For if E is a subspace of 
~ p 

a Banach space F and f E £(p,JC,E), then also f E £(p,JC,F) and q F(f) ~ q E(f)· 
p, p, 

However, Theorem 5.1 implies that actually q F(f) = q E(f), and so, the simpler p, p, 
notation suffices. 

The introduced notions are useful perhaps only if the gauge p is integrating. 

(See Section 2D.) The proof of the following straightforward proposition is omitted. 

PROPOSITION 5.2. The gauge p is integrating if and only if I cl p(f) = qp( cf), for 

every function f E K and a vector C E E . 
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B. We maintain the notation of the previous section. 

Let us start with two observations. It seems that we would obtain a larger class 

of Bochner integrable functions if we called Bochner integrable all functions belonging 

to C( qp'C(p,JC) ,E) rather than those belonging to £(p,JC,E) , that is, if we admitted for 

t., j = 1,2, ... , in (A.2), any functions from £(p,JC) and not merely from JC. However, 
J 

it is not the case, because Theorem 5.1 clearly implies that C( qp'£(p,JC) ,E) = £(p,JC,E) . 

This is an extension of the last statement of Proposition 2.7. 

More interestingly, we can look at L(p,JC,E) as the projective tensor product of 

the spaces E and L(p,JC). (See Section lC.) Formally, we have the following 

PROPOSITION 5.3. There is a unique isometric isomorphism of the projective tensor 

product, E®L(p,K), of the spaces E and L(p,JC) onto the space L(p,K,E) , that 

maps the tensor prOd1tct, c0 [fl p' of any element, c, of E and element, [tl p' of 

L(p,K) to the element [cfl p of the space L(p,K,E) . 

Proof. Every element, z, of the projective tensor product E®L(p,K) can be written 

in the form 

(B.l) 

where the vectors C E E and the functions f. E £(p,K), j:= 1,2, ... , satisfy the 
j J 

condition 

00 

(B.2) L I c .1 qpU.) < 00 • 

j=l J J 

Moreover, the norm of z in the space E~L(p,JC) is equal to the infimum of the 

numbers (B.2) subject to the equality (B.1). By Theorem 5.1, any function, f, on 

n, such that (A.2) holds for every wEn for which (A.3) does, belongs to C(p,JC,E) 

and its seminorm, qp(f), is equal to the norm of z. Therefore, if we let correspond 

to z the element, [Il p' of the space L(p,K,E) determined by any such function f, 

we obtain an unambiguously defined map of E~L(p,lC) into L(p,lC,E). Clearly, this 

map is a linear isometry. Because, however, every element of the space L(p,lC,E) is 

the image of an element of E®L(p,JC), this map is an isometric isomorphism of the 
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spaces E®L(p,lC) and L(p,lC,E) which, for any c E E and f E C(p,:O, maps c® [fJ p 

to [cflp. 

The spaces L(p,lC) and L(p,!C,E) cannot be replaced, in this proposition, by 

C(p,lC) and C(p,lC,E), respectively, even if the notion of a tensor product were 

extended to seminormed spaces. For, any E-valued function that vanishes p-almost 

everywhere belongs to C(p,!C,E). Consequently, the space £(p,K,E) may contain 

functions that cannot be canonically specified by a sequence of vectors from E and a 

sequence of functions from C(p,lC) 0 

Now, let F and G be Banach spaces and let b: ExF-+ G be a continuous 

bilinear map. (See Section IC.) Let tt: K, -) F be an additive map. Assume that the 

gauge p integrates for the map tt. (See Section 3A.) 

PROPOSITION 5.4. There exists a unique continuous linear map, ttp,b:C(p,lC,E) -) G, 

such that 

(B.3) tt p, b (etl = b( C,ttU)) , 

for any vector e E E and a function f E lC . 

Proof. By the basic property of projective tensor products, there exists a unique 

continuous linear map, .e: E®L(p,lC) -) G, such that .e( c® [f1 ) = b( e,tt(f)), for every -p 

C E E and f E £(p,lC). Because the vector space spanned by {[fl p : f E lC} is dense in 

L(p,lC), e is the unique continuous linear map from E®L(p,K) to G, such that 

.e( c® [fl p) = b( c,,u(f)) , for every c E E and f E;C Now, for every f E C(p,lC,E), let 

ttp,b(f) = .e(z), where z is the element of the space E®L(p,lC) such that the element 

lflp of L(p,JC,E) is the image of z under the isomorphism of Proposition 5.3. By the 

definition of the space L(p,lC,E) and Proposition 5.3, this defines a unique continuous 

linear map, tt b: C(p,K,E) -) G, such that (B.3) holds for every C E E and every p, 

f E lC . 
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Under the assumptions of this proposition, we write 

for every function f E £(p,K,E). Of course, if a different notation is used for the 

bilinear map b, then it is also used in the symbol for integral. So, for example, if we 

write b(x,y)::: xy, for any x E E and y E F, using simple juxtaposition, then we 

also write 

for every f E £(p,lC,E). Or, if the function f is F-valued and the map J1 is 

E-valued, we denote the integral 

c. Let the space n be equal to the Cartesian product of the spaces ~ and 

T. That is, n::: ::'::xT . 

If 9 is a function on ::.:: and h a function on T, then f::: g®h will stand for 

the function on n such that f(w}::: g(~)h(v), for every w::: (~,v) with e E::':: and 

vET. 

Let g be a nontrivial family of functions on the space ::.:: and 1 a nontrivial 

family of functions on the space T. Let JC::: {g®h : 9 E g, h E 1} . 

Let a be a gauge on g and T a gauge on 1.. By p::: a®r is denoted the 

gauge on JC such that 

p(f) ::: a(9) r( h) , 

for any function f::: g®h with 9 E g and hE 1t. The gauge p is called the direct 

product of the gauges f7 and T. 

PROPOSITION 5,5. If the gauges f7 and T are both integrating, then their direct 

product, p::: a®T, too is integrating. 
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Proo[ Let f = g®h, 9 E g, h E 11. Let c. be numbers and f. E X functions, 
J J 

00 

(C.1) L I c.lp(fJ < 00 

j=1 J J 

and 

00 

f{w) = 1.: cJ.(w), 
j=l J J 

for every wEn for which 

00 

1.: 1 c.1 I/.( w) I < 00 • 

f=l J J 

Let f. be a continuous linear functional of norm not greater than one on the 

space L( (I,(J) such that 1£( [g]) (II ::: q(l(g) = (I(g), and m a continuous linear 

functional of norm not greater than one on the space L( T,1t) such that 

I m(h) I ::: qT([hl T) == T(h) . 

Let u == l{g)h and u. = c.C(g.)h., for every j = 1,2,.... Then qT( uJ = 
J J J J J 

1 c.IIf.(gJ I T(h.):s I c.1 (I(g.)T(h.) = I c.lpUJ , for every j = 1,2, ... , and, by (C.I), 
J J J J J J J J 

(C.2) 

Now, for every vET, such that 

00 

(C.3) Llc.1 u( g.) I h.( v) I < 00 , 

j=l J J J 

let 3 v be the set of all points e E 3 such that 

00 

L . I c.1 I g.( {) I I h.( v) I < 00 • 

j=l J J J 

By (5.10) and Proposition 2.2, the set 3\3v is a-null, and, by Theorem 2.3, 

lim q(J[h(V)9- f c.h.(vk ] =0. 
n--+ 00 j=l J J J 
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Hence, by the continuity of the functional .e, 

00 

L u.(v) = u(v) 
j=l J 

for every vET such that (C.3) holds. However, by (C.2) and Theorem 2.3, (C.3) 

holds for r-almost every VET. Therefore, by (C.2) and Theorem 23, 

So, by the continuity of the functional m, 

00 00 

f(g)m(h) := m(u) = L m( uJ = t c.C{gJm(h.). 
j=l J j=l J J J 

Consequently, 

00 

p(f) = (J(g)r(h) = If(g)m(h) I :s t Ic.lp(f.), 
j=l J J 

because If(gJm(hJ I :; q(J(g.)qr(h.) = (J(gJr(h.l = p(f.), for every j = 1,2, .... Hence, 
J J J J J J J 

by Proposition 2.7, the gauge p is integrating. 

In many situations, for example when 9 and 1{ are quasirings of sets and (J 

and r non-negative (J-additive set functions or 9 and 1f are vector spaces and (J 

and T seminorms, a simpler direct proof of this proposition, avoiding the duality 

considerations, can be given. The proof presented here was suggested by Brian 

Jefferies. 

D. Let:::: , T , n , 9 , 1{ and K have the same meaning as in Section C . 

PROPOSITION 5.6. Let (J be an integrating gauge on 9 and r an integrating 

gauge on 1f and let p = (J®r be their direct product. 

If 9 E C( (J,(J) and h E C( r,l), then the function f::: g®h is p- integrable and 

qp(f) ::: qcr(g)qr(h) . 
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For every function IE C(p,lC) , there exist functions g. E C(il,Y) 
J 

and 

h. E C( r,ll) , j = 1,2, ... , such that 
J 

(Dol) 

and 

00 

(D.2) f(~,v) = L g.(e)h.(v), 
j=l J J 

lor every e E:::: and vET such that 

00 

(D.3) L Ig.(e)h.(v) I < 00. 

j=l J J 

Furthermore, 

(D.4) lim q [I - I 9.®h.] = 0 . 
n-loo p ;=1 J J 

Conversely, if f is a function on n which there exists functions g. E £( il,Y) 
J 

and h. E C( r,1I.), j = 1,2, ... , satisfying condition (D.l), such that the equality (D.2) 
} 

holds for every e E:::: and vET for which the inequality (D.3) does, then IE £(p,lC) . 

Proof. By a straightforward application of Proposition 2.1, if 9 E (), hE £( 7,lC) and 

f = g®h, then f E C(p,K) and 9f) = il(g)qr(h). By a second application of 

Proposition 201, if 9 E £(a,(}), hE C( 7,.4;) , then IE C(p,K) and q (f) = q (g)q (h) . p a 7 

If f E C(p,K), then such functions g. E C(a,(J) and h. E £( 7,1t), j = 1,2,0'0, as 
J J 

claimed ey,ist trivially because () C £( a,(J), 1t C C( 7,1), qa(g) = il(g) , for 9 E (); and 

qr(h) = 7(h), for hE 1t. The equality (D.4) follows by Proposition 2.1. Conversely, 

if such functions g. and h. do exist, then, as we have just noted, the functions 
J J 

f. = 9.®h. belong to C(p,K), for every j = 1,2'''0' and, hence, by Proposition 2.1, 
J J J 

f E £(p,lC) 0 

COROLLARY 5.7. There is a canonical isometric isomorphism of the space L(p,K) 

onto the projective tensor product of the spaces L( a,(J) and L( 7,1) 0 
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Proof. Every element, t, of the projective tensor product of the spaces L( cr,g) and 

L( T,l) can be written in the form 

where the functions g, E £((J/i) and h, E £( r,l) , j == 1,2, ... , satisfy condition (D. 1). 
J J 

Moreover, the infimum of the numbers (D.l) over all such representations of t is 

equal to the projective tensor product norm of the element t. 

PROPOSITION 5.8. Let E, F and G be Banach spaces and let b: Fx G -+ E be a 

continuous bilinear map. Let (J be a gauge integrating for an additive map l/: 9 -j F 

and r a gauge integrating for an additive map '\: l -j g. Let p == (J®r be their direct 

product. Let /1(f) = b(l/(g),)"{h)) , for every f = g®h such that g E 9 and hE 1{ . 

Then /1: JC -+ E is an additive map and the gauge p integrates for It . 

Proof. By Proposition 3.1, there exist a unique continuous linear map 11 (J : £( (J,g) -+ F 

that extends IJ and a unique continuous linear map r,l) -j G that extends '\. 

Let c: L( o·,g) <2IL( T, l) -+ E be the continuous linear map such that C( [g] (J ® [h] r) = 

b(/J (J(f),))h)), for every 9 E C((J,g) and hE r,ll. Now, given a function 

f E C(p,K) , let t be the element of the tensor product L( (f,g) <2IL( r,7t) that 

corresponds to the element [flp of the space L(p,K) under the isomorphism of 

Corollary 5.7 and let p, p(f) ::: C(t) . This defines a continuous linear map 

/1p : C(p,K) -j E such that It/I)::: p,(f), whenever f::: g®h with 9 E 9 and hE 1f. • 

So, the map /1: lC -; E is indeed additive and the ga.uge p integrates for it. 

EXAMPLE 5.9. Let E, F and G be Banach spaces, b: Fx G -j E a continuous 

bilinear map. Let Q and 1l be cr-algebras of sets in the spaces :::: and T, 

respectively. Let v : Q -j F and A: 11,-+ G be (J-additive set functions. Let 

/1(Xx y) == b(v(X),,\( Y)), for every X E Q and Y E 11,. It is known that p, is not 

necessarily a (J-additive set function on the semi algebra l' = {Xx Y: X E Q, Y E 11,} ; 

not even if F == G is a Hilbert space, E is the space of scalars and b is the inner 
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product in F. Cf. [13] and [58]. However, if 

(7(g) == sup{v(y'o/J,lgl): yl E F',lly'll:::; I}, 

for every 9 E sim(Q) , and 

7(h) == sup{v(z' Ihl): z' E G',llz'li:::; I}, 

for every hE sim(l), then (7 is a semi norm on sim(Q) integrating for /J and 7 a 

seminorm on sim(l) integrating for '\. (See Section 3F, formula (F.2).) Therefore, 

p == (7®7 is a gauge on the family of functions X = {g®h : 9 E sim(Q), hE sim{l)} 

which integrates for jJ. 

E. Let =:, I, n, (), 1 and X have the same meaning as in Section C. 

Given a function f on n and a point ~ E =:, by f(~,·) is denoted the 

function v f-) f(~, v), vET. The meaning of f(· j v) , for a given v E I, is analogous. 

PROPOSITION 5.10. Let (7 be an integrating gauge on 9 and T an integrating 

gauge on 1. Let p = (7®T. Let f E £(p,K) . 

Then, for (7- almost every ~ E =:, the function f( e, . ) is 7- integrable. 

Furthermore, if rp is an L( T,ll-valued function on ::::: such that rp( e) = [f( e,· )] T' for 

(7-almost every e E :::::, then the function rp is Bochner integrable with respect to (7 

and Q(7(rp) = qp(f) . 

Similarly, for T- almost every v E I, the function f(·, v) is (7- integrable. 

Furthermore, if 1jJ is an L( (J,g)-valued function on T such that ¢( v) = [f( ., v)] (7' for 

T-almost every VET, then the function 1jJ is Bochner integrable with respect to T 

Proof. Let c. be numbers and g. E 9 and h. E 1{ functions, j = 1,2, ... , such that 
J J J 

00 

(E.1) L I c.1 (J(gJr{hJ < 00 
j=l J J J 

and 
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00 

(E.2) f(e,v) == L cf).(e)h.(v) 
p=l J J 1 

for every e E:=: and vET for which 

00 

(E.3) L Ic.llg.(~)llh.(v)1 < 00. 
pl J J J 

By Proposition 2.2, 

00 

L IC.llg.(ellr(h.) < 00 
pI J J J 

for (J-almost every e E ::::. Furthermore, if e E:=: is a point such that (E.3) holds, 

then f(e,·) E C( r,1) , because (E.1) holds for every v E r for which (E.2) does. 

Now, let 'P.(e)::: c.g.(e)[h.]r" for every e E:=:. Then 'P. E C(r7,{},L(r,1t)) and 
J J J J J 

q(J('PJ::: I c.1 q(J(g.)qr(h.) ::: I c.1 (J(g.)r(h,), for every j::: 1,2"00' Let 'Po be an 
J J 1J J J J 

L( r,1t)-valued function on :=: such that 

00 

'Po( () = L 'Pi e) 
j=l 

for every e E:=: for which 

Then, by Theorem 5.1, 'Po E C( (J,(J,L( r,1)). So, if 'P( e) ::: 'Po ( e) for (J-almost every 

e E :=:, then 'P too belongs to C( OI,(J, L( r,1t)). The equality q (rp) ::: q (I) follows (J P 
from the definition of the seminorm q on £( (J,(J,L( T,1t)) and that of the seminorm (J 

qp on C(p,l) . 

This proposition already contains all the ingredients necessary to state the 

following theorem of Fubini type. 

THEOREM 5.11. Let E, F and G be Banach spaces and b: Fx G -? E a 

continuous bilinear map. Let (J be a gauge on (J integrating for an additive map 

v : (J -) F and r a gauge on 1t integrating for an additive map A: 1t -) G. Let 
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p = lJ®r. Let Jl(f) = b(v(g),/\(h)) , for every function f = g®h such that 9 E (} and 

hE 1t. 

(EA) 

Proof. 

If f E £(p,lC) , then 

I f(w)p,(d w) = f, b[V(d e) , I f(~,V)A(d v)l n P J;::: (f T r -' 

= IT b[J;::: f(~,v)v(d'r~) , A(drV)] 

The existence of the integrals follows from Proposition 5.10. The equalities 

(E.4) are obviously true if f = g®h with 9 E and hE £( r,1f.). Furthermore, all 

terms are linear in f. Propositions 5.4 and 5.10 imply that all terms of (EA) depend 

continuously on f . Because the algebraic tensor product (f,(}) ® L( r,1) IS 

isomorphic to a dense subspace of L(p,lC), the equalities (E.4) are valid for every 

f E £(p,K) . 

F. We still maintain the notation of the previous section and assume that 

(f is an integrating gauge on (} and T an integrating gauge on 1f.. So, p = O'®T is an 

integrating gauge on JC. 

We prove a converse to Proposition 5.10, which is a Tonelli-type theorem only 

under some additional assumptions. 

ASSUMPTION 5.12. Let Zen and let X be the set of all points e E:::: such that 

the set {v E T : (~, v) E Z} is not T-null. If the set X is (f-null, then the set Z is 

p-null. 

The following proposition gives a convenient sufficient condition for Assumption 

5.12 to be satisfied. 

PROPOSITION 5.13. If there exists a function hE £( r,1t) such that h( v) f- 0, for 

every vET, then Assumption 5.12 is satisfied. 

Proof. Let Zen be a set and let X be the set of all points e E;::: such that the set 

{v E T: (~,v) E Z} is not T-null. If the set X is (i-null, then, by Proposition 2.2, 
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there exist numbers c. and functions g. E (), j::: 1,2, ... , such that 
J J 

00 

I I c.1 a(9.) < 00 

j=l J J 

but 

00 

Ilc.llg.(ell=oo 
pI J J 

for every ~ E ::::. Let hE C( r,ll) be a function such that h( v) of 0, for every vET, 

and let !.(W) = c.g.(e)h(v) , for every w=(e,v), eE::::, vET, so that 
J J J 

qp(fj) = I cjl a(g)qr(h) , for every j = 1,2, .... Then 

but 

00 

I q (f.l < 00 , 

'-1 P J )-

00 

I If.(w) I =00 

i=1 J 

for every wE Z. By Proposition 2.2, the set Z is p-null. 

PROPOSITION 5.14. Let Assumption 5.12 be satisfied. Let f be a function on n 
such that, for a- almost every e E ::::, the function f( e,·) is r-integrable and, if cp is 

an L{r,X)·-valued function on :::: such that cp(e)::: (f(e,· )IT' for a-almost every 

e E ::::, then the function cp is Bochner integrable with respect to a. 

Then f E C(p,K) . 

Proof. Let g. E () and h. E C( r,ll), j::: 1,2, ... , be functions such that 
J 1 

00 00 

I q (g.®hJ = I a(g-lqr(h.) < 00 

'-1 P J J '-1 J J J- }-

and 

in the sense of convergence in the space L( r,ll) , for every e E:::: for which 

(F.l) 
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By a modification of the function 'P and/or f on a set of points e E:::: which is 

negligible with respect to (f, we can achieve that 'P(~) = [f(~,' l] T' for every point 

~ E:::: for which the inequality (F.I) holds. Then, given such a {, the equality 

00 

(F.2) f(~,v) = L g.(~)h.(v) 
j=l} J 

holds for T-almost every ({,v) En. Therefore, by Theorem 2.3, f E £(p,K) . 

If Assumption 5.12 is not satisfied, then the conclusion of this proposition does 

not necessarily hold. 

EXAMPLE 5.15. Let :=: == (0,1], Q == {(s,t] : 0 ::; s::; t::; I} and let l be the 

Lebesgue measure on Q. Let T == (0,1], let 11, be the family of all finite subsets of T 

and, for every Y E 11" let K( Y) be the number of elements in Y . 

Let f be the characteristic function of the set {I }xT. Then, for {-almost 

every ~ E :=:, f( ~, .) is the zero-function on T, but the function f does not belong 

to £(l®II;,K) , where K = {Xx Y: X E Q, Y E 1l} . 

Obviously, the roles of the spaces :::: and T, and of the structures they carry, 

are not symmetric in Assumption 5.12, Proposition 5.13 and Proposition 5.14. 

Although, it is quite clear how to formulate analogous assumptions and propositions 

with these roles interchanged, for the record we formulate the analogies of Assumption 

5.12 and Proposition 5.14. 

ASSUMPTION 5.16. Let Zen and let Y be the set of all points vET such that 

the set {{ E::::: (~,'O) E Z} is not (f-null. If the set Y is r-null, then the set Z is 

p-null. 

PROPOSITION 5.17. Let Assumption 5.16 be satisfied. Let f be a function on n 

such that, for T-almost every VET, the function f( -,v) is cr-integrable and, if 1jJ is 

an L(cr,(J)-valued function on T such that 1jJ(v) = [f( "v)lcr' for T-almost every 

VET, then the function 1jJ is Bochner integrable with respect to r. 

Then f E £(p,l) -




