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THE YAMABE THEOREM AND GENERAL RELATIVITY 

Niall 0 Murchadha 

1. INTRODUCTION 

In 1960 H. Yamabe [1] claimed to have proven that every compact Riemannian 

manifold without boundary could be conformally deformed to one with constant scalar 

curvature. In 1968 Neil Trudinger [2] showed that the Y amabe proof was incorrect, 

and gave a partial (correct) proof. This result was improved on by T. Aubin [3'[ aoo 
finally completed by Richard Schoen [4] in 1984. This article consists of a rederivation 

and slight extension of the Schoen result and shows that the Schoen technique casts 

light on several problems in General Relativity. 

I will consistently assume (because of my interest in the Einstein equations) 

that we are dealing with three-dimensional Riemannian manifolds. Much of what I do 

can be repeated in higher dimensions, but I will not deal with these questions. 

The key thread that runs through all the analyses of the Y amabe problem is 

the so called Yamabe invariant of a compact manifold (M,g): 

(1.1) Y (g) = inf J..----,.r-::---"--:c-r::--

0 

The Yamabe constant is a conformal invariant. Consider a conformal 

transformation of M by some positive function 'fJ 

(1.2) 

Given that the scalar curvature transforms as [5] 

(1.3) 

it is easy to show (with 7J = !!..) 
(/) 

- -4 -5 2 
R = 'P R- 8'fJ V 'fJ 
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(1.4) 

and 

(1.5) 

' Thus it immediately follows 

(1.6) Y(M,g) = Y(M,g) . 

The function which minimizes the Yamabe functional satisfies 

(1.7) 2 1 5 -V tt + -Rtt = Af..t 8 

with ).. a constant. The relationship between ).. and Y is 

(1.8) 

Further, the metric g = ig satisfies 

(1.9) 

which is obviously constant. Finally, if we are given a manifold with R = R0 , a 

constant, then the minimizing equation ( 1. 7) is clearly satisfied by J.t = constant. In 

turn, we get 

(1.10) I ]2/3 
Y = !.R [ dv = !.R v2/ 3 

8 0 M 8 0 

Therefore the sign of the Yamabe invariant determines, and is determined by, the sign 

of the constant scalar curvature one can conformally transform to. 

One place where the Y amabe invariant can be easily evaluated is for the 

three-sphere S3 with constant scalar curvature. For this case we get 

(1.11) 
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This is a very special number. It is the Sobolev constant for flat space, defined 

as 

(1.12) s 

evaluated over all functions of compact support. 

Trudinger [2] and Aubin [3] showed that (i) Y ~ 3( 1f2j4) 213 for every compact 

manifold and that (ii) if Y < 3( 1r2 /4)213, then that manifold could be conformally 

transformed to a constant scalar curvature one. Richard Schoen's [4] completion of 

the Y amabe theorem consisted in showing that the Y amabe invariant for every 

compact three-manifold without boundary was strictly less than 3( 1r2 /4)213 (except, 

of course, S3 with constant scalar curvature). 

There are a couple of obvious things one can say about the sign of the Y amabe 

invariant. If we have a manifold with non-positive scalar curvature, we can use 0 = 1 

as a test function in (1.1) to give 

(1.13) Y < !. v-113JRdv < o - 8 

(except, of course, R = 0 , which gives Y ~ 0). 

If, on the other hand, we have a manifold with non-negative scalar curvature, 

R ~ 0 , we have for every test function 0 

(1.14) 

Thus, on a compact manifold, the global sign of the scalar curvature is a conformal 

invariant. This can also be seen directly by multiplying (1.3) by rp5 and integrating. 

Trudinger [2] had proved that one could always make a conformal 

transformation so as to fix the sign of the scalar curvature. Thus Schoen [4] had only 
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to consider those manifolds where the sign of the scalar curvature was everywhere 

positive" 

Flat space, where we found the Sobolev constant S = 3(7r2/4) 213, and S3 with 

constant curvature, where we found the Yamabe invariant Y = 3( 1r2 / 4) 2/ 3 are 

intimately related" We can conformally compactify flat space to give us a sphere of 

constant curvature" The conformal transformation 

(Ll5) 

does exactly that" The function u satisfies 

(L16) 

and is the minimizing function for the Sobolev constant (L12)0 This shows us that the 

Yamabe invariant is not only an invariant under regular conformal transformations 

but is also invariant under conformal compactification or decompactification, we 

can use in (Ll) functions which blow up like 1/r at a point" Thus we can also 

evaluate the Yamabe invariant of an asymptotically flat manifold (IVI,g) 

(L17) Y(M,g) 
{(V~l 2 + ~Re}dv 

lje6dv]l/3 

Richard Schoen [4] considers a compact manifold without boundary with 

positive scalar curvature and looks at the Green's function of the operator sr:;2 - R , 

Leo, a solution ( to 

(L18) 

It is easy to show that ( is positive everywhere" Let us assume the opposite, 

that ( < 0 on some subset l\1: of lVI with x0 ~ 

Now multiply (L18) by ( and integrate 

0 We will have ( = 0 on oM 0 
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(1.19) J!'\1:{8(V2(- R(2}dv = 0 

=} sl _ (V(·ds = J _ {8(V()2+R(2}dv. 
JaM M 

The surface integral vanishes and we therefore have the volume integral of a 

positive definite quantity vanishing. This cannot happen and therefore we can assume 

( > 0 . This means we can use ( as a conformal factor and (M,g) = (M, (4g) can be 

regarded as an asymptotically flat manifold. Further since SV2(- R( = 0 everywhere 

except at x0, the 'point at infinity', (M,g) is an asymptotically flat manifold with 

zero scalar curvature. Thus the Y amabe theorem can be reduced to showing that the 

Yamabe invariant of asymptotically flat manifolds with zero scalar curvature is less 

than the flat space value 3(7r2j4)2/ 3 . 

2. THE YAMABE INVARIANT OF ASYMPTOTICALLY FLAT MANIFOLDS. 

Let us be given an asymptotically flat manifold with zero scalar curvature. Let 

us further assume (this will be relaxed later) that the metric is conformally flat 

outside a region of compact support. 

Now conformally transform the metric so as to make it flat outside a region of 

compact support. This means that we are given a manifold (M,g), g flat outside 

some coordinate radius r0, and we know that there exists a positive function v 

which satisfies 

(2.1) 

(this is the conformal factor which transforms us back to the vanishing scalar 

curvature manifold). The positive energy theorem [6] tells us that asymptotically v 

must look like 

(2.2) 

because we know that the energy of g = v4g (with g = v48 near infinity) is positive, 

[6] and that v satisfies V2v = 0 outside the region of compact support. In this 
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calculation we neither know nor care about the interior, the positive energy theorem 

tells us that R, in general, is negative, but we demand no specific information about 

it. 

built up want to do is get an upper limit for the Yamabe invariant (1.17). We use the 

following test function 

0:::: r < f 

(2.3) 
f:'Or<oo 

with f > r0. 

Therefore we use the conformal factor in the interior, and the flat-space Sobolev 

function in the exterior. We have to match the functions and their first derivatives 

. h al/2 
at r. When we match 1 + M/2r w1t 2 2 112 we get 

(a +r ) 

(2.4) 

-1/2[ M]-312 
/J=a 1+-

2r 

It is clear that this is nonsense if we had M :::: 0 . 

Let us break the integral above the line into two parts 

(2.5) 

and we have 



(2.6) 

using (2.1) this reduces to 

(2.7) 

The other integral is 

(2.8) 

(on using (1.16)). 
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= [f\l•(uVu)- uV2u}d3x 
r 

= -f r uVu•dS + 3 fr u6dv 

When we add the two integrals together the surface integrals at I = r cancel 

because we have matched the functions and first derivatives at r = r. Therefore we 

get 

(2.9) 

I can explicitly perform this integration to get 

r 6 2 d7r 3 J"u dv:; 1r /4-?;-(r/(){) 
r 

( 2.10) 

(This is in the limit where we choose r > > M , i.e., (){ > > r . In this case we have 

u(r:Sr):; (){-l/2 , a constant. Therefore we have 
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exactly the correction above). 

The denominator in ( 1.17) we simply estimate by 

(2.11) 

Thus we get 

(2.12) [ 6 }2/3 [ 2 411" [ M] 3/2] 2/3 Y < 3 u dv = 3 11" /4 - -3 -
r 2f 

This is the desired result and we can immediately see that 

(2.13) 

so long as M > 0 , and the positive energy theorem (6] gives us M = 0 only if the 

three-space is flat. 

Unfortunately, the argument detailed between (2.3) and (2.13) is flawed. 

Fortunately, the error made is one that can be easily set right. The error made is in 

the matching of v and u. While asymptotically v satisfies (2.2), at any finite 

radius we expect that will have dipole and higher multipole terms (because v satisfies 

r;2v = 0 outside r0 ) and so cannot be smoothly matched to u. 

The test function we need to use has to be more complicated than the one 

previously defined ((2.3)). We choose a radius f (now with f > 2r0 ) and find a 

smoothing function t/J(r) satisfying 
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[ 
o, r < r/2 

1/J(r) 
1, r > r 

lli!_N 2/r !I!J£2 N 1fr2 . or ' or 

The test function we use is 

( = [ JJ{ ~ + 1/J( 1 + 2~ - v)}' 
u, 

r < r/2 
r/2=r<f 

f:'Or<oo 

[ M J o?/2 
We still match J) 1 + 2f and at ( ci +r2)1/2 

r = f and that means that 

(2.4) remains valid, giving a and (3 in terms of M and f . Let us define 

(2.16) 

We know w N 0 C2J , Vw N 0 V2J and 1Pw = 0 (so long as r > r0) . 

We now re-evaluate the Yamabe functional with the improved test function 

(2.15), and especially track the extra terms. We still have 

( 2.1 7) 

The surface term is as in (2. 7), and will cancel with the surface integral that arises 

from the outside integral as in (2.8). Therefore the only terms we need worry about 

are those that arise in the volume term in (2.17), due to the difference between ( and 

(3v. The integrand in (2.17) vanishes identically inside f /2 , thus we can write 

J.f 1 2 If 2 
((-8Rf- 'i/ f)dv = e(-J)'i/ [1/Jw])dv 

0 f/2 

(2.18) 

If 2 
= {-J)fwV 1/J- 2(3fl/1/J•Vw}dv 

f/2 
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(because 'i:Pw = 0) . 

We now estimate (2.18) in terms of f , using 

/3( N rJ2 N O(r - 312) , w"' O(r - 2) , Vw N O(r - 3) 

V21j;N O(r-2) , 'i/1/JN O(r-1) 

to give that the integrand is bounded by a term of order ( f-l/ 2) and the integral by a 

term of order (f-5/ 2) . This term, if we choose f large enough, will be overwhelmed 

by the negative-definite term of order r-312 in (2.10). Thus by choosing f large 

enough we can rederive (2.12) and show that the Yamabe invariant is strictly less than 

3[i/4]2/ 3 
0 

A key assumption so far is that the given manifold is conformally flat outside 

some radius. This is not necessary. Let us assume instead that the manifold is 

conformally flat to leading, i.e., 1/r order. In other words, the deviations from 

conformal flatness fall off like r-(l+t). This means that we assume that we are given 

an asymptotically flat metric g (with zero scalar curvature) which can be written as 

(2.19) 

where v is a conformal factor, going to one at infinity. I wish to assume that the 

base metric g can be written (outside some finite radius) as 

(2.20) 

where h TT satisfies 
ab 

( 2.21) 

g = l5 + hTT + O[r-(2+£)] 
ab ab ab 

The positive energy theorem gives us (as before) v -1 1 + 2~ , M > 0 . I will 
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2 
show that the Yamabe invariant of the manifold given by (2.20) is less than 3 [~ J 2/ 3. 

I will do this using the same test function (2.15) as before. The problems now will 

arise in the integral 

and we have to show that all the extra terms fall offfaster than r-312 . 

The first thing we realise is that 

thus corrections which arise from replacing dv by d3x all fall off faster than r- 2 . 

Let us next deal with the ~Ru2 integral. The scalar curvature is dominated 

by 

Therefore we can write 

(2.22) r 1 2 ~ c r 0: 47rr2 
J " 8Ru dv '- _2+£ J " 22 - 2-. dr . 

r r r o: +r r 

The integral is finite (approximately 2i) and so hence the quantity is bounded by 

--(2+c) d b . d r an can e 1gnore . 

The final quantity we need to consider is 

(2.23) 

The first part of (2.23) gives us the desired expression (2.10); the second part can be 

bounded by 

c r o:r3 
- E - 4 1T 2 2 3 dr · 
r r (o: +r ) 
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Substituting r = 01 tan 0 , this changes to 

(2.24) -1J7r/2 3 7rC -1 [M] l/2 -(3/2+t) ~ 01 _ 47r sin 0 cosO dO< - 01 = Jr:C 2 r 
rt e rt 

on using (2A). The corrections to the denominator can be handled in a similar 

fashion. Thus the Yamabe invariant is less than 3( ,?'j 4) 2/ 3 for this class of 

manifolds. 

I do not believe that condition (2020) is necessary. I conjecture that the 

Yamabe invariant is less than 3(Jr2/4)213 for all those manifolds with finite ADM 

mass, Le., those manifolds which go flat faster than r- 1/ 2 [7,8,9]. 

3. APPLICATIONS. 

(a) The Sobolev constant versus the Yamabe constant. 

On any asymptotically flat manifold we have two related constants, the 

Sobolev constant 

(3.1) 

and the Y amabe constant 

(3.2) 

s 

y 
{(V0) 2 + ~Re2}dv 

[ B6dv]l/3 

It is clear that if R ;:: 0, the term J R02 must contribute a positive amount to 

the integral ( 3.2) over ( 301) and so we must have 

THEOREM. On any asymptotically flat Riemannian manifold with non-negative 

scalar curvature, we must have 

(3.3) 
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Equivalently, on a manifold with non-positive scalar curvature we have 

y:::: s. 

(b) The average scalar curvature and the size of compact manifolds. 

Let us consider a compact manifold without boundary and define on it the 

Yamabe constant 

(3.4) 

One obvious test function to try is f) = 1 . 

Then we get 

(3.5) y :::: 

where V = f dv is the total volume and R = ]Rdv /V is the average scalar curvature. 

In the special case where the manifold has a constant scalar curvature R0, the 

function (} = 1 is the minimizing function and we get 

(3.6) 

A more interesting bound on Y can be arrived at in terms of the minimum 

value of R, call it R . 
mm 

(3.7) 

The minimum value of ( 3. 7) occurs when () is a constant and equals l R . v213 . 8 mm 

Therefore we have 

(3.8) 
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for any compact manifold without boundary. 

Thus we can bracket Y by 

(3.9) lR . y2/3 < y < l:R,y2/3 
8 mm - -s 

and we get equality on both sides if and only if R = R0 , a constant. 

Both of these bounds have interesting applications. Let us begin with (3.8). 

Consider a spacelike slice through a pseudo-riemannian manifold satisfying the 

Einstein equations (with cosmological constant A). On the spacelike slice will be 

defined an intrinsic metric g and extrinsic curvature K (essentially the time 

derivative of g). An especially interesting slice is a so-called 'maximal' slice, one 

with trK = g•K = 0 , and, in a compact manifold, it is the slice of largest volume. 

The Einstein equations imply a relationship between the three scalar curvature R , 

the square of the extrinsic curvature, the source energy density p, and the 

cosmological constant (the Hamiltonian constraint) [10,11]. On a maximal slice the 

Hamiltonian constraint gives 

(3.10) 

Thus, if the sources satisfy the weak energy condition [12] p 2: 0 , then on a maximal 

slice we have 

R 2: 2A 

and hence 

(3.11) 

This can be substituted into (3.8) to give 

or 



(3.12) 
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7r2 [12] 3/2 V<--- 4 A 

But, of course, the maximal slice is the one with largest volume, hence (3.12) 

must be true for any slice through the spacetime. In other words we have shown 

THEOREM Consider any compact solution to the Einstein equations which 

( i) has a maximal slice 

( ii) satisfies the weak energy condition 

(iii) has a positive cosmological constant A . 

then any spacelike slice through the manifold satisfies 

V < 7r2 [12] 2/3 
- 4 A · 

This is an equality only for de Sitter space. 

REMARKS 1: The maximal slice condition is satisfied by any solution which goes 

from a big bang to a big crunch. 

2. Some effort has been expended in recent years to find conditions similar to 

(3.8) which would be valid for a part of a Riemannian manifold, rather than the whole 

[13,14]. Consider conformally flat space with conformal factor cp = (1+A2r 114 , i.e., 

gab= cp48ab . It is possible to find a subset of this manifold for which Rmin V2/ 3 can 

be unboundedly large. 

The other half of the inequality (3.5) also has applications in Physics. One use 

is to relate the volume to the total mass content of the universe via the Hamiltonian 

constraint (3.10) [15]. At a moment-of-time-symmetry (defined by Kab = 0 ) and 

assuming the cosmological constant vanishes, we have (from (3.10)) 

(3.11) 

Thus (3.5) can be written as 
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( 3.12) 

Another use: On the compact manifold without boundary we can define the 

function 

( 3.13) f = R.v213 = v-113J Rdv. 

If we consider manifolds which are conformally related to one another, this 

function achieves a minimum 8Y on a manifold with constant scalar curvature. On 

the other hand, if we change the conformal geometry while holding the scalar 

curvature constant, f achieves its maximum and only extremum, at the conformally 

flat metric (this is discussed in Section 4). Therefore, the only extremum of f is at 

the conformally flat S3 with constant scalar curvature. Further, this extremum is a 

saddle point. This may well have relevance to the quantum cosmology programme 

[16]. 

(c) Counting solutions to the Einstein Equations 

One way of constructing solutions to the Einstein equations is to choose initial 

data for the gravitational field. As already mentioned, these data consist of a 

Riemannian three-metric and a symmetric tensor Kab (the extrinsic curvature). In 

addition, we also need the energy-density and current density Ja) of the sources. 

These cannot be freely specified, they must satisfy the constraints [10,11] 

( 3.15) 

If the initial data is asymptotically flat, we can define a number of conserved 

quantities (total energy, total linear momentum, total electric charge) which can all be 

expressed as surface integrals at infinity. These objects can take essentially any value 

(of course, they must satisfy the requirements of the positive energy theorem). 
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The situation is very different in the compact, without boundary, case. All 

these conserved quantities must be zero. This means that the positive energy of the 

gravitational waves must exactly balance the negative binding energy; if the sources 

are charged, we must have exactly the same number of protons and electrons. In the 

asymptotically flat case (or any solution with a boundary) the ±1ux lines can be 

allowed to leak out at infinity, whereas they all have to be neatly tied off in the 

compact case. 

This means that it is much harder to construct compact solutions that 

non-compact solutions to the Einstein equations and there should be many more 

asymptotically flat than closed solutions. The Schoen technique [4], as described in 

Section 2, of going from a compact to a non-compact manifold using the Green 

function as a conformal factor can be used to give a more precise version of this 

counting argument. 

The key idea is that the Einstein constraints have a natural conformal 

invariance, especially when trK = 0 [12], Therefore, let us consider a compact 

solution to the vacuum Einstein equations with a maximal slice. On this slice we have 

metric and extrinsic curvature satisfying 

(3,16a) 

(3.16b) V Kab = 0 
a ' 

K ab 
gab = O · 

Choosing a point x0 , find a solution to 

(3.17) 

It is easy to show (using R :=:: 0) that a unique positive solution exists to this 

equation. Further, it can be shown that [17] 

( 3.18) 

form an asymptotically flat solution to 
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(3.19) 

and so are maximal, asymptotically flat data for the Einstein equations. Therefore we 

have a natural mapping from compact maximal initial data to asymptotically flat 

maximal initial data. 

However, this mapping is not one-one, it is many-one. For each choice of x0 , 

the support of the delta function, which becomes the 'point at infinity', we get a 

different asymptotically flat three-space. Therefore, there are enormously more (of 

the order of the number of points in three-space) asymptotically flat maximal 

solutions to the constraints than there are compact maximal data. 

One cannot go directly from this argument to a claim that there are many more 

asymptotically flat solutions that compact solutions. The problem is that a standard 

cosmological solution (going from a big bang to a big crunch) has only a single 

maximal slice, whereas any asymptotically flat solution with a maximal slice has a 

three-fold infinity of such slices. A further piece of information is required to 

eliminate the possibility that many of the different asymptotically flat maximal data 

sets generate the same space-time. 

The key point is that the maximal date sets generated by (3.18) are of a very 

special kind, so that a general asymptotically flat spacetime which can be maximally 

sliced should contain at most one, and so we do have a direct link between the number 

of these special maximal data and the number of different spacetimes. Near x0 , t.p is 

of the form 

(3.20) t.p = 1/r + A + O(r2), A a positive constant . 

Near infinity we get 

( 3.21) - 4A ( -2) g .. = 5 .. + -8 .. + 0 r 
lJ lJ r lJ 
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i.e., g is Schwarzschildian near infinity. The transformed extrinsic curvature K is 

of the form [18] 

(3.22) 

with ue = /-;r , the unit radial vector, K~(x0 ) is a constant tracefree tensor, the 

value of Kij at x0 . 

These asymptotic conditions are not preserved the evolution. In particular, 

the essentially arbitrary 1/r2 part of g will generate a l/r4 part in K . Further, if 

we boost the slice R must pick up a l/r2 part to carry the linear momentum. 

Therefore, a maximal slice satisfying ( 3.21), ( 3.22) will be essentially unique in a 

spacetime, and most spacetimes, even those which can be maximally sliced, will have 

no slice satisfying (3.21), (3.22). For example, not only is the linear momentum zero, 

but the angular momentum is also zero. Therefore, at least within the class of 

maximally slicable solutions to the Einstein equations, there are immensely more 

asymptotically flat solutions than compact solutions. This surely will have relevance 

to any 'statistical mechanics' approach to quantum gravity. 

(d) A Poincare inequality for compact manifolds 

Consider the Yamabe functional on a compact manifold of constant scalar 

curvature R0 : 

(3.23) Y(u) = 

Choose as test-function u = 1 + f, and expand Y(u) in terms of powers of f . 

To quadratic order we get 
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(3.24) 

2 
1 · u dv _ 1 2/3 -2 - 2 
8Ro 6 1/3- 8RoV {1 - 4f + u(f) } 

[ u dv] 

where 

In other words 

(3.25) 

We know that the Yamabe functional is minimized on a manifold with constant 

scalar curvature by the constant functions, so we should not be surprised to find no 

term linear in f in (3.25). The interesting property is that since Y(1) is a minimum, 

the quadratic term, the second variation of Y , must be non-negative for any 

function f. Hence, we must have 

(3.26) 

for any function f , on a compact manifold with constant scalar curvature. 

This is exactly of the same form of the well-known Poincare inequality (19] for 

any convex subset n of 1R3 

(3.27) 

where 1!11 = vol(n), d = diam(n), fn = 1/l!liJnfdv. The two are identical, except 

[ 47r ] 213 3 1/3 for replacing 3fTIT d by (2/R0) . 

This inequality (3.26) can be easily generalised to the case where the compact, 
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without boundary, manifold has nonconstant scalar curvature. In this case, all one has 

to do is replace R0 by R . , the minimum value of the scalar curvature on the 
mm 

manifold. The inequality now takes the form 

(3.28) 

for any function f . 

The trick is to take the standard Yamabe functional (3.2) and replace R in it 

by R . . This functional is now again minimized by the constant functions. Take 
mm 

the second variation and (3.28) immediately emerges. Of course, it is obvious that 

(3.26) and (3.28) are nontrivial only in the case where the scalar curvature is positive. 

4. THE YAMABE CONSTANT AND THE ADM MASS 

Consider any asymptotically flat Riemannian manifold. This manifold will 

have some Yamabe constant Y If Y > 0 , then the manifold can be conformally 

transformed to an asymptotically flat one satisfying R = 0 [24]. On the other hand, if 

Y :=:: 0 , the manifold cannot be conformally transformed to R = 0. One convoluted 

way of proving the first claim is to conformally compactify the manifold (keeping 

Y > 0) , and then open it up again at the same point as in Section 2 to a manifold 

with R = 0. 

The second claim can be proven by contradiction. Let us assume that one can 

transform to R = 0 . On this manifold the Y amabe constant is defined as 

( 4.1) y 

contradicting the assumption Y ::; 0 . 

On any manifold with R = 0 we can define the ADM mass [10,11] 

(4.2) m __ l_f ab cd( _ )dS 
- l67r g g gac d gcd a b 

00 ' ' 



158 

and we know that m > 0 . Thus, there is some connection between positive energy 

and positive Yamabe costant. The linkage goes much deeper, however. 

The first point of similarity is that, on the set of metrics satisfying R = 0, the 

only extremum of the energy is flat space [20]. It is a minimum there. The only 

extremum of the Yamabe constant is also at flat space. However, it is a maximum 

there. 

This has been demonstrated by Lars Andersson [21]. He shows that the first 

derivative of the Yamabe constant is 

(4.3) 

where u is the function that minimizes the Yamabe functional at g . The stationary 

points of the Yamabe constant are those metrics which satisfy 

(4.4) 

If we conformally transform, i.e., write g = u4g, (4.4) can be written as 

(4.5) -3Ric(g) + Y(g)g = 0 . 

The only solution of ( 4.5) is that g is the constant curvature s3 and hence g 

must be conformally flat. This is the point where the Yamabe constant has its largest 

value 3( rr2/4)213 and so must be a maximum. 

Another linkage between Y and m is the behavious of m as Y approaches 

zero. It can be shown that Y = 0 corresponds to m = oo. More precisely, consider the 

set of all asymptotically flat three-metrics with the standard finite-energy asymptotic 

structure [4,8,9], i.e., g - {j N 0 [r- ( l/2+< )]. Conside1 a smooth curve of metrics in this 

space, gt, with Y(gt) > 0 for all t > 0 and Y(g0) = 0. All the metrics gt, t > 0, 

can be regularly conformally transformed to ones with zero scalar curvature, call them 

gt(R=O), and the positive energy theorem guarantees that the mass of gt (as defined 

by ( 4.2)) is finite and positive. The mass of g0 cannot be 
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equivalently defined, because we cannot conformally transform it to an asymptotically 

flat metric with zero scalar curvature. 'What we will show is that m(gt) becomes 

unboundedly large as t-> 0. 

Sine we are dealing with conformal transformations on metrics, we can use this 

conformal freedom to place restrictions on the sequence of metrics gt we consider. 

THEOREM [22] All asymptotically flat metrics 

g N O[r -(3/2+t)] 
ab,c can be conformally transformed to metrics of negative scalar 

curvature of compact support. on such transformed metrics the surface 

integral B = rh gabgcd(g d-g d )dSb is finite. J ca, c ,a 

PROOF Let us first make the scalar curvature negative. Start with an 

asymptotically flat metric g with scalar curvature R . Solve 

( 4.6) 2 1 'iJ (} = 8R , 0 ..., 0 at oo • 

Conformally transform the metric with conformal factor 'P = l Since (} is finite and 

goes to zero at infinity, 'P is positive and goes to one at infinity. If we define g = 'P4g, 

we get 

(4.7) 

Using 

( 4.8) 

we finally get 

( 4.9) 

- _,1 -5 2 
R = 'P 'R - 8'P 'iJ 'P. 

2 2 () 2 2 V 'P = V ( e ) = (f) I! () + 'P( If()) 

1 2 = -R"' + r.oV e 8 r ' 

- -4 -4 -4( )2 
R='P R-'P R-8'P VB 
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Now, to make the scalar curvature have compact support we need a cut off 

function '1/J(r) satisfying 

10, r:::; R 
0 :::; '1/J(r) :::; 1, '1/J(r) = 0 

1, r ~ 2R0 

If we choose R0 large enough we can ensure that '1/JR is small in any 

reasonable norm. This guarantees the existence of a positive solution to 

(4.11) sv2~p - ( ¢R) ~p = o , ~p -t 1 at oo • 

Now conformally transform to g = ~p4g to give 

This gives 

(4.12) 

Obviously R has compact support and is non-positive. 

These conformal transformations do not change the asymptotic behaviour of 

the metric. Since R has compact support, it is obvious that J:Rdv is finite. The 

difference between the surface integral B and J Rdv is an integral of the form 

J (g .. k)2 which is finite, hence :8 is finite. Q.E.D. 
lJ, 

REMARK It is clear that one could make yet another conformal transformation so as 

to set the surface integral to zero while keeping the scalar curvature non-positive and 

of compact support. This, however, is an unnecessari luxury. 

This theorem means that instead of a sequence of metrics along which the 

Y amabe constant goes to zero, we can consider a sequence of metrics each with 

non-positive scalar curvature of compact support, along which the Yamabe constant 
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goes to zero. Since Y(gt) > 0 for t > 0, this means that gt can be conformally 

transformed to an asymptotically flat manifold of zero scalar curvature. Hence there 

exists a function \Ot which satisfies 

( 4.13) 

Since Y(g0) = 0, we can conformally compactify g0 to a compact manifold 

with zero scalar curvature. Hence there exists a function f-to which satisfies 

(4.14) 

Asymptotically, it is clear 

( 4.15) 

(4.16) 

It is clear (3 fc 0 and I will show at --> oo as t --> 0 . We also have, for 

any t fc 0, 

(4.17) 

It is clear that Rt --> R0 and v;llo --> V~p0 as t --> 0 . Therefore the terms 

multiplying \Ot in (4.17) smoothly approach zero as t --> 0 . The only way that the 

volume integral can maintain a fixed value is if \Ot --> oo • In other words 

4Jr(3 = J,rg;:[itto\Ot(Rt-R0)- 10/V~-V~)p0]d3x 

(4.18) :; (max10tl J,rg;: [iltt0(Rt-R0) I + I (v;-v~)/-10 l]d3x. 

The integral on the right-hand-side of (4.18) becomes small as t --> 0 and so 

(max \OJ must become unboundedly large. 
" 
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Since cpt satisfies (4.13) we know that it must achieve its maximum on the 

support of Rt . Further, we know that cpt becomes large everywhere, not just at an 

isolated point. This is the content of the Harnack inequality which says that for any 

function u which is a solution to a linear elliptic equation, on any ball BR of 

radius R 

( 4.19) 

which says that if the maximum becomes large the minimum also becomes large. 

This means in particular that the minimum value of cpt on the support of Rt 

becomes large and 

(4.20) 

The ADM mass of the metric with zero scalar curvature is given by 

(remembering g = cp4g) 

(4.21) 

The metrics gt are chosen so that the surface integral remains finite whereas 

- 1 ~'1r J{g Rep d3x-+ oo as t-+ 0. Therefore the mass becomes unboundedly large as the 

Y amabe constant approaches zero. 

The converse of this is easy to prove: if the mass goes to infinity then the 

Y amabe constant must go to zero. Consider a smooth curve of asymptotically flat 

metrics, each with negative scalar curvature of compact support, which can be 

conformally transformed to zero scalar curvature and along which the ADM mass 



163 

becomes unboundedly large. In other words, we assume a curve of metrics gt , and a 

set of solutions to 

( 4.22) 

with the property that 

( 4.23) -JR cp dv -) oo as t -l 0 . t t t 

Rewrite (4.22) and (4.23) in terms of {)t = {)t- 1 as 

( 4.24) 

and 

( 4.25) 

Multiplying ( 4.24) by ()t to give 

( 4.26) 

Integrating gives 

(4.27) 

Now 

( 4.28) 

Combining (4.27) and (4.28) we get 

( 4.29) 

From ( 4.21) we have 
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Define c1 as the minimum value of 1!11" I Rtdvt - 1!11" T gabgcd(gac,d-gcd,a)dSb for 
00 

some range of t , 0 :::: t :::: t 0 • 

Therefore we have 

(4.30) 

Now (4.28) gives 

(4.31) m + C < _1 lJ I R 16/5dv ]5/6[Jtfdv ]1/6 t 1 - 1611" t t t t 

while ( 4.29) gives 

(4.32) 

Multiplying (4.31) and (4.32) gives 

(4.33) y ( C ) < _1_ lJIR 16/5dv ]5/3 t mt + 1 - 12811" t t · 

Obviously on the same interval we can define 

(4.34) C = max{-1- lJ I R 16/5d ]5/3} 2 12811" t vt 

So therefore on the whole interval 0 :::: t :::: t 0 we have 

or 

(4.35) 

where C3 is finite, but depends on the curve of metrics. 

To get a lower bound on mY we use an argument similar in spirit to the one 

used earlier in this section to prove that the maximum of <pt went to infinity as 

t --; 0 . Since gt has positive Y amabe constant, we know that there exists a positive 

function J.Lt , J.Lt --; 0 at infinity, satisfying 
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(4.36) 

where Ct is a positive constant, and if we normalize p,t to satisfy 

(4.37) 

we get 

(4.38) 

Asymptotically, we have p,t"' (Jtj4m: where 

(4.39) 

Now we have 

( 4.40) 

(Jt = f (p,t v cpt - cpt v p,t) ·d~ 
()() 

J (p,t v2 cpt - cpt v2 p,t)dvt 

J{p,t(l/8Rtcpt)- cpp/8Rtp,t- Ctp,~)}dvt 

ctf p,~ cptdvt 

(Aside: This can also be used to show that max cpt-+ oo, because as t-+ 0 , Ct-+ 0 , p,t 

remains regular and (Jt remains bounded away from zero.) 

From ( 4.40) we get 

( 4.41) 

(4.21) 

(4.42) 

Let us define a ball B which encloses the support of all the Rt's. From (4.42) 

we get 
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( 4.43) 

where C is the constant that enters the Harnack inequality (4.19)[23]. Of course we 

know 

( 4.44) 

so multiplying (4.41) and (4.43) we finally get 

( 4.45) 

We now can combine (4.35) and (4.45) to give 

(4.46) 

for any curve of metrics along which Y -+ 0 . 
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